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Introduction

Background

By awarding Harry Markowitz, William Sharpe, and Merton Miller the 1990 Nobel
Prize in Economics, the Nobel Prize Committee brought to worldwide attention the
fact that the previous forty years had seen the emergence of a new scientific dis-
cipline, the “theory of finance”. This theory attempts to understand how financial
markets work, how to make them more efficient, and how they should be regulated.
It explains and enhances the important role these markets play in capital allocation
and risk reduction to facilitate economic activity. Without losing its application to
practical aspects of trading and regulation, the theory of finance has become increas-
ingly mathematical, to the point that problems in finance are now driving research in
mathematics.

Harry Markowitz’s 1952 Ph.D. thesis Portfolio Selection laid the groundwork for
the mathematical theory of finance. Markowitz developed a notion of mean return
and covariances for common stocks that allowed him to quantify the concept of “di-
versification” in a market. He showed how to compute the mean return and vari-
ance for a given portfolio and argued that investors should hold only those portfolios
whose variance is minimal among all portfolios with a given mean return. Although
the language of finance now involves stochastic (Itô) calculus, management of risk in
a quantifiable manner is the underlying theme of the modern theory and practice of
quantitative finance.

In 1969, Robert Merton introduced stochastic calculus into the study of finance.
Merton was motivated by the desire to understand how prices are set in financial
markets, which is the classical economies question of “equilibrium”, and in later
papers he used the machinery of stochastic calculus to begin investigation of this
issue.

At the same time as Merton’s work and with Merton’s assistance, Fischer Black
and Myron Scholes were developing their celebrated option pricing formula. This
work won the 1997 Nobel Prize in Economics. It provided a satisfying solution to
an important practical problem, that of finding a fair price for a European call option
(i.e., the right to buy one share of a given stock at a specified price and time). In the
period 1979-1983, Harrison, Kreps, and Pliska used the general theory of continuous-
time stochastic processes to put the Black-Scholes option-pricing formula on a solid
theoretical basis, and, as a result, showed how to price numerous other “derivative”
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securities.
Many of the theoretical developments in finance have found immediate application

in financial markets. To understand how they are applied, we digress for a moment on
the role of financial institution. A principal function of a nations financial institutions
is to act as a risk-reducing intermediary among customers engaged in production.
For example, the insurance industry pools premiums of many customers and most
pay off only the few who actually incur losses. But risk arises in situations for winch
pooled-premium insurance is unavailable. For instance, as a hedge against higher
fuel costs, an airline may want to buy a security whose value will rise if oil prices
rise. But who wants to sell such a security? The role of a financial institution is
to design such a security, determine a “fair” price for it, and sell it to airlines. The
security thus sold is usually “derivative” (i.e., its value is based on the value of other,
identified securities). “Fair” in this context means that the financial institution earns
just enough from selling the security to enable it to trade in other securities whose
relation with oil prices is such that, if oil prices do indeed rise, the firm can pay off
its increased obligation to the airlines. An “efficient” market is one in which risk
hedging securities are widely available at “fair” prices.

The Black-Scholes option pricing formula provided, for the first time, a theoret-
ical method of fairly pricing a risk-hedging security. If an investment bank offers
a derivative security at a price that is higher than “fair”, it may he underbid. If it
offers the security at less than the “fair” price, it runs the risk of substantial loss.
This makes the bank reluctant to offer many of the derivative securities that would
contribute to market efficiency. In particular, the bank only wants to offer derivative
securities whose “fair” price can he determined in advance. Furthermore, if the bank
sells such a security, it must then address the hedging problem: how should it manage
the risk associated with its new position? The mathematical theory growing out of
the Black-Scholes option pricing formula provides solutions for both the pricing and
hedging problems. It thus has enabled the creation of a host of specialized derivative
securities. This theory is the subject of this text.

Relationship between Volumes I and II

Volume II treats the continuous-time theory of stochastic calculus within the context
of finance applications. The presentation of this theory is the raison d’être of this
work. Volume II includes a self-contained treatment of the probability theory needed
for stochastic calculus, including Brownian motion and its properties.

Volume I presents many of the same finance applications, but within the simpler
context of the discrete-time binomial model. It prepares the reader for Volume II
by treating several fundamental concepts, including martingales, Markov processes,
change of measure and risk-neutral pricing in this less technical setting. However,
Volume II has a self-contained treatment of these topics. and strictly speaking, it
is not necessary to read Volume I before reading Volume II. It is helpful in that the
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difficult concepts of Volume II are first seen in a simpler context in Volume I.
In the Carnegie Mellon Master’s program in Computational Finance, the course

based on Volume I is a prerequisite for the courses based on Volume II. However,
graduate students in computer science, finance, mathematics, physics and statistics
frequently take the courses based on Volume II without first taking the course based
on Volume I.

The reader who begins with Volume II may use Volume I as a reference. As several
concepts are presented in Volume II, reference is made to the analogous concepts in
Volume I. The reader can at that point choose to read only Volume II or to refer to
Volume I for a discussion of the concept at hand in a more transparent setting.

Summary of Volume I

Volume I presents the binomial asset pricing model. Although this model is interest-
ing in its own right, and is often the paradigm of practice, here it is used primarily as
a vehicle for introducing in a simple setting the concepts needed for the continuous-
time theory of Volume II.

Chapter 1, The Binomial No-Arbitrage Pricing Model, presents the no-arbitrage
method of option pricing in a binomial model. The mathematics is simple, but the
profound concept of risk-neutral pricing introduced here is not. Chapter 2, Probabil-
ity Theory on Coin Toss Space, formalizes the results of Chapter 1, using the notions
of martingales and Markov processes. This chapter culminates with the risk-neutral
pricing formula for European derivative securities, The tools used to derive this for-
mula are not really required for the derivation in the binomial model, but we need
these concepts in Volume II and therefore develop them in the simpler discrete-time
setting of Volume I. Chapter 3, State Prices, discusses the change of measure associ-
ated with risk-neutral pricing of European derivative securities, again as a warm-up
exercise for change of measure in continuous-time models. An interesting applica-
tion developed here is to solve the problem of optimal (in the sense of expected utility
maximization) investment in a binomial model. The ideas of Chapters 1 to 3 are es-
sential to understanding the methodology of modern quantitative finance. They are
developed again in Chapters 4 and 5 of Volume II.

The remaining three chapters of Volume I treat more specialized concepts. Chap-
ter 4, American Derivative Securities, considers derivative securities whose owner
can choose the exercise time. This topic is revisited in a continuous-time context in
Chapter 8 of Volume II. Chapter 5, Random Walk, explains the reflection principle
for random walk. The analogous reflection principle for Brownian motion plays a
prominent role in the derivation of pricing formulas for exotic options in Chapter
7 of Volume II. Finally, Chapter 6, Interest-Rate-Dependent Assets, considers mod-
els with random interest rates, examining the difference between forward and futures
prices and introducing The concept of a forward measure. Forward and futures prices
reappear at the end of Chapter 5 of Volume II. Forward measures for continuous-time
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models are developed in Chapter 9 of Volume II and used to create forward LIBOR
models for interest rate movements in Chapter 10 of Volume II.

Summary of Volume II

Chapter 1, General Probability Theory, and Chapter 2, Information and Condition-
ing, of Volume II lay the measure-theoretic foundation for probability theory required
for a treatment of continuous-time models. Chapter 1 presents probability spaces,
Lebesgue integrals, and change of measure. Independence, conditional expectations,
and properties of conditional expectations arc introduced in Chapter 2. These chap-
ters are used extensively throughout the text, but some readers, especially those with
exposure to probability theory, may choose to skip this material at the outset, refer-
ring to it as needed.

Chapter 3, Brownian Motion, introduces Brownian motion and its properties. The
most important of these for stochastic calculus is quadratic variation, presented in
Section 3.4. All of this material is needed in order to proceed, except Sections 3.6
and 3.7, which are used only in Chapter 7, Exotic Options and Chapter 8, Early
Exercise.

The core of Volume II is Chapter 4, Stochastic Calculus. Here the Itô integral
is constructed and Itô’s formula (called the Itô-Doeblin formula in this text) is de-
veloped. Several consequences of the Itô-Doeblin formula are worked out. One of
these is the characterization of Brownian motion in terms of its quadratic variation
(Lévy’s theorem) and another is the Black-Scholes equation for a European call price
(called the Black-Scholes-Merton equation in this text). The only material which the
reader may omit is Section 4.7, Brownian Bridge. This topic is included because of
its importance in Monte Carlo simulation, but it is not used elsewhere in the text.

Chapter 5, Risk-Neutral Pricing, states and proves Girsanov’s Theorem, which
underlies change of measure. This permits a systematic treatment of risk neutral
pricing and the Fundamental Theorems of Asset Pricing (Section 5.1). Section 5.5,
Dividend-Paying Stocks, is not used elsewhere in the text. Section 5.6, Forwards and
Futures, appears later in Section 9.4 and in some exercises.

Chapter 6, Connections with Partial Differential Equations, develops the connec-
tion between stochastic calculus and partial differential equations. This is used fre-
quently in later chapters.

With the exceptions noted above, the material in Chapters 1-6 is fundamental for
quantitative finance is essential for reading the later chapters. After Chapter 6, the
reader has choices.

Chapter 7, Exotic Options, is not used in subsequent chapters, nor is Chapter 8,
Early Exercise. Chapter 9, Change of Numéraire, plays an important role in Section
10.4, Forward LIBOR model, but is not otherwise used. Chapter 10, Term Structure
Models, and Chapter 11, Introduction to Jump Processes, are not used elsewhere in
the text.



Chapter 1

General Probability Theory

1.1 Infinite Probability Spaces

An infinite probability space is used to model a situation in which a random ex-
periment with infinitely many possible outcomes is conducted. For purposes of the
following discussion, there are two such experiments to keep in mind:

(i) choose a number from the unit interval [0,1], and

(ii) toss a coin infinitely many times.

In each case, we need a sample space of possible outcomes. For (i), our sample
space will be simply the unit interval [0,1]. A generic element of [0,1] will be denoted
by ω, rather than the more natural choice x, because these elements are the possible
outcomes of a random experiment.

For case (ii), we define

Ω∞ = the set of infinite sequences of Hs and T s. (1.1.1)

A generic element of Ω∞ will be denoted ω = ω1ω2 . . ., where ωn indicates the result
of the nth coin toss.

The samples spaces listed above are not only infinite but are uncountably infinite
(i.e., it is not possible to list their elements in a sequence). The first problem we face
with an uncountably infinite sample space is that, for most interesting experiments,
the probability of any particular outcome is zero. Consequently, we cannot determine
the probability of a subset A of the sample space, a so-called event, by summing up
the probabilities of the elements in A, as we did in equation (2.1.5) of Chapter 2 of
Volume I. We must instead define the probabilities of events directly. But in infinite
sample spaces there axe infinitely many events. Even though we may understand
well what random experiment we want to model, some of the events may have such
complicated descriptions that it is not obvious what their probabilities should be. It
would be hopeless to try to give a formula that determines the probability for every
subset of an uncountably infinite sample space. We instead give a formula for the
probability of certain simple events and then appeal to the properties of probability
measures to determine the probability of more complicated events. This prompts the
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following definitions, after which we describe the process of setting up the uniform
probability measure on [0,1].

Definition 1.1.1. Let Ω be a nonempty set, and let F be a collection of subsets of Ω.
We say that F is a σ-algebra (called a σ-field by some authors) provided that:

(i) the empty set ∅ belongs to F ,

(ii) whenever a set A belongs to F , its complement Ac also belongs to F , and

(iii) whenever a sequence of sets A1, A2, . . . belongs to F , their union
⋃∞

n=1 An also
belongs to F .

If we have a σ-algebra of sets, then all the operations we might want to do to the
sets will give us other sets in the σ-algebra. If we have two sets A and B in a σ-
algebra, then by considering the sequence A,B, ∅, ∅, ∅, . . ., we can conclude from (i)
and (iii) that A ∪ B must also be in the σ-algebra. The same argument shows that if
A1, A2, . . . , AN are finitely many sets in a σ-algebra, then their union must also be in
the σ-algebra. Finally, if A1, A2, . . . is a sequence of sets in a σ-algebra, then because

∞⋂

n=1

An =

( ∞⋃

n=1

Ac
n

)c

,

properties (ii) and (iii) applied to the right-hand side show that
⋂∞

n=1 An is also in the
σ-algebra. Similarly, the intersection of a finite number of sets in a σ-algebra results
in a set in the σ-algebra. Of course, if F is a σ-algebra, then the whole space Ω must
be one of the sets in F because Ω = ∅c.

Definition 1.1.2. Let Ω be a nonempty set, and let F be a σ-algebra of subsets of Ω.
A probability measure P is a function that, to every set A ∈ F , assigns a number in
[0, 1], called the probability of A and written P(A). We require:

(i) P(Ω) = 1, and

(ii) (countable additivity) whenever A1, A2, . . . is a sequence of disjoint sets in F ,
then

P

( ∞⋃

n=1

An

)
=

∞∑

n=1

P(An). (1.1.2)

The triple (Ω,F ,P) is called a probability space.

If Ω is a finite set and F is the collection of all subsets of Ω, then F is a σ-algebra
and Definition 1.1.2 boils down to Definition 2.1.1 of Chapter 2 of Volume I. In the
context of infinite probability spaces, we must take care that the definition of prob-
ability measure just given is consistent with our intuition. The countable additivity
condition (ii) in Definition 1.1.2 is designed to take care of this. For example, we
should be sure that P(∅) = 0. That follows from taking

A1 = A2 = A3 = · · · = ∅



1.1 Infinite Probability Spaces 3

in (1.1.2), for then this equation becomes P(∅) =
∑∞

n=1 P(∅). The only number in
[0,1] that P(∅) could be is

P(∅) = 0. (1.1.3)

We also still want (2.1.7) of Chapter 2 of Volume I to hold: if A and B are disjoint
sets in F , we want to have

P(A ∪B) = P(A) + P(B). (1.1.4)

Not only does Definition 1.1.2(ii) guarantee this, it guarantees the finite additivity
condition that if A1, A2, . . . , AN are finitely many disjoint sets in F , then

P

(
N⋃

n=1

An

)
=

N∑

n=1

P(An). (1.1.5)

To see this, apply (1.1.2) with

AN+1 = AN+2 = AN+3 = · · · = ∅.
In the special case that N = 2 and A1 = A, A2 = B, we get (1.1.4). From part (i) of
Definition 1.1.2 and (1.1.4) with B = Ac, we get

P(Ac) = 1− P(A). (1.1.6)

In summary, from Definition 1.1.2, we conclude that a probability measure must
satisfy (1.1.3)-(1.1.6).

We now describe by example the process of construction of probability measures
on uncountable sample spaces. We do this here for the spaces [0,1] and Ω∞ with
which we began this section.

Example 1.1.3. (Uniform (Lebesgue) measure on [0, 1].)

We construct a mathematical model for choosing a number at random from the
unit interval [0,1] so that the probability is distributed uniformly over the interval.
We define the probability of closed intervals [a, b] by the formula

P[a, b] = b− a, 0 ≤ a ≤ b ≤ 1, (1.1.7)

(i.e., the probability that the number chosen is between a and b is b − a). (This
particular probability measure on [0,1] is called Lebesgue measure and in this text
is sometimes denoted L. The Lebesgue measure of a subset of R is its “length.”) If
b = a, then [a, b] is the set containing only the number a, and (1.1.7) says that the
probability of this set is zero (i.e., the probability is zero that the number we choose
is exactly equal to a). Because single points have zero probability, the probability of
an open interval (a, b) is the same as the probability of the closed interval [a, b]; we
have

P(a, b) = b− a, 0 ≤ a ≤ b ≤ 1. (1.1.8)

There are many other subsets of [0,1] whose probability is determined by the formula
(1.1.7) and the properties of probability measures. For example, the set [0, 1

3 ] ∪ [23 , 1]

is not an interval, but we know from (1.1.7) and (1.1.4) that its probability is 2
3 .
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It is natural to ask if there is some way to describe the collection of all sets whose
probability is determined by formula (1.1.7) and the properties of probability mea-
sures. It turns out that this collection of sets is the σ-algebra we get starting with the
closed intervals and putting in everything else required in order to have a σ-algebra.
Since an open interval can be written as a union of a sequence of closed intervals,

(a, b) =
∞⋃

n=1

[
a +

1

n
, b− 1

n

]
,

this σ-algebra contains all open intervals. It must also contain the set [0, 1
3 ] ∪ [23 , 1],

mentioned at the end of the preceding paragraph, and many other sets.
The σ-algebra obtained by beginning with closed intervals and adding everything

else necessary in order to have a σ-algebra is called the Borel σ-algebra of subsets of
[0,1] and is denoted B[0, 1]. The sets in this σ-algebra are called Borel sets. These are
the subsets of [0,1], the so-called events, whose probability is determined once we
specify the probability of the closed intervals. Every subset of [0,1] we encounter in
this text is a Borel set, and this can be verified if desired by writing the set in terms
of unions, intersections, and complements of sequences of closed intervals1.

¤

Example 1.1.4 (Infinite, independent coin-toss space).

We toss a coin infinitely many times and let Ω∞ of (1.1.1) denote the set of possible
outcomes. We assume the probability of head on each toss is p > 0, the probability
of tail is q = 1 − p > 0, and the different tosses are independent, a concept we
define precisely in the next chapter. We want to construct a probability measure
corresponding to this random experiment.

We first define P(∅) = 0 and P(Ω) = 1. These 2(20) = 2 sets form a σ-algebra,
which we call F0:

F0 = {∅, Ω}. (1.1.9)

We next define P for the two sets

AH = the set of all sequences beginning with H = {ω; ω1 = H},
AT = the set of all sequences beginning with T = {ω; ω1 = T},

by setting P(AH) = p, P(AT ) = q. We have now defined P for 2(21) = 4 sets, and
these four sets form a σ-algebra; since Ac

H = AT we do not need to add anything else
in order to have a σ-algebra. We call this σ-algebra F1:

F1 = {∅, Ω, AH , AT}. (1.1.10)

We next define P for the four sets
1See Appendix A, Section A.1 for the construction of the Cantor set, which gives some indication of how

complicated sets in B[0, 1] can be.
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AHH = The set of all sequences beginning with HH

= {ω; ω1 = H, ω2 = H},
AHT = The set of all sequences beginning with HT

= {ω; ω1 = H, ω2 = T},
ATH = The set of all sequences beginning with TH

= {ω; ω1 = T, ω2 = H},
ATT = The set of all sequences beginning with TT

= {ω; ω1 = T, ω2 = T},
by setting

P(AHH) = p2, P(AHT ) = pq, P(AT H) = pq, P(AT T ) = q2. (1.1.11)

Because of (1.1.6), this determines the probability of the complements Ac
HH , Ac

HT ,
Ac

TH , Ac
TT . Using (1.1.5), we see that the probabilities of the unions AHH ∪ ATH ,

AHH ∪ ATT , AHT ∪ ATH , and AHT ∪ ATT are also determined. We have already
defined the probabilities of the two other pairwise unions AHH ∪ AHT = AH and
ATH ∪ ATT = AT . We have already noted that the probability of the triple unions is
determined since these are complements of the sets in (1.1.11), e.g.,

AHH ∪ AHT ∪ ATH = Ac
TT .

At this point, we have determined the probability of 2(22) = 16 sets, and these sets
form a σ-algebra, which we call F2:

F2 =

{
∅, Ω, AH , AT , AHH , AHT , ATH , ATT , Ac

HH , Ac
HT , Ac

TH , Ac
TT ,

AHH ∪ ATH , AHH ∪ ATT , AHT ∪ ATH , AHT ∪ ATT

}
(1.1.12)

We next define the probability of every set that can be described in terms of the
outcome of the first three coin tosses. Counting the sets we already have, this will
give us 2(23) = 256 sets, and these will form a σ-algebra, which we call F3.

By continuing this process, we can define the probability of every set that can be
described in terms of finitely many tosses. Once the probabilities of all these sets are
specified, there are other sets, not describable in terms of finitely many coin tosses,
whose probabilities are determined. For example, the set containing only the single
sequence HHHH . . . cannot be described in terms of finitely many coin tosses, but it
is a subset of AH , AHH , AHHH , etc. Furthermore,

P(AH) = p, P(AHH) = p2, P(AHHH) = p3, . . . ,

and since these probabilities converge to zero, we must have

P(Every toss results in head) = 0.

Similarly, the single sequence HTHTHT . . ., being the intersection of the sets AH ,
AHT , AHTH , etc. must have probability less than or equal to each of

P(AH) = p, P(AHT ) = pq, P(AHTH) = p2q, . . . ,



6 General Probability Theory

and hence must have probability zero. The same argument shows that every individ-
ual sequence in Ω∞ has probability zero.

We create a σ-algebra, called F∞, by putting in every set that can be described in
terms of finitely many coin tosses and then adding all other sets required in order to
have a σ-algebra. It turns out that once we specify the probability of every set that
can be described in terms of finitely many coin tosses, the probability of every set in
F∞ is determined. There are sets in F∞ whose probability, although determined, is
not easily computed. For example, consider the set A of sequences ω = ω1ω2 . . . for
which

lim
n→∞

Hn(ω1 . . . ωn)

n
=

1

2
, (1.1.13)

where Hn(ω1 . . . ωn) denotes the number of Hs in the first n tosses. In other words,
A is the set of sequences of heads and tails for which the long-run average number
of heads is 1

2 . Because its description involves all the coin tosses, it was not defined
directly at any stage of the process outlined above. On the other hand, it is in F∞, and
that means its probability is somehow determined by this process and the properties
of probability measures. To see that A is in F∞, we fix positive integers m and n and
define the set

An,m =

{
ω;

∣∣∣∣
Hn(ω1 . . . ωn)

n
− 1

2

∣∣∣∣ ≤
1

m

}
.

This set is inFn, and once n and m are known, its probability is defined by the process
outlined above. By the definition of limit, a coin-toss sequence ω = ω1ω2 . . . satisfies
(1.1.13) if and only if for every positive integer m there exists a positive integer N

such that for all n ≥ N we have ω ∈ An,m. In other words, the set of ω for which
(1.1.13) holds is

A =
∞⋂

m=1

∞⋃

N=1

∞⋂

n=N

An,m.

The set A is in F∞ because it is described in terms of unions and intersections of
sequences of sets that are in F∞. This does not immediately tell us how to compute
P(A), but it tells us that P(A) is somehow determined. As it turns out, the Strong Law
of Large Numbers asserts that P(A) = 1 if p = 1

2 and P(A) = 0 if p 6= 1
2 .

Every subset of Ω∞ we shall encounter will be in F∞. Indeed, it is extremely
difficult to produce a set not in F∞, although such sets exist.

¤

The observation in Example 1.1.4 that every individual sequence has prob- ability
zero highlights a paradox in uncountable probability spaces. We would like to say
that something that has probability zero cannot happen. In particular, we would like
to say that if we toss a coin infinitely many times, it cannot happen that we get a head
on every toss (we are assuming here that the probability for head on each toss is p > 0

and q = 1− p > 0). It would be satisfying if events that have probability zero are sure
not to happen and events that have probability one are sure to happen. In particular,
we would like to say that we are sure to get at least one tail. However, because
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the sequence that is all heads is in our sample space, and is no less likely to hap-
pen than any other particular sequence (every single sequence has probability zero),
mathematicians have created a terminology that equivocates. We say that we will get
at least one tail almost surely. Whenever an event is said to be almost sure, we mean
it has probability one, even though it may not include every possible outcome. The
outcome or set of outcomes not included, taken all together, has probability zero.

Definition 1.1.5. Let (Ω,F ,P) be a probability space. If a set A ∈ F satisfies P(A) =

1, we say that the event A occurs almost surely.

1.2 Random Variables and Distributions

Definition 1.2.1. Let (Ω,F ,P) be a probability space. A random variable is a real-
valued function X defined on Ω with the property that for every Borel subset B of R,
the subset of Ω given by

{X ∈ B} = {ω ∈ Ω; X(ω) ∈ B} (1.2.1)

is in the σ-algebra F . (We sometimes also permit a random variable to take the
values +∞ and −∞.)

To get the Borel subsets of R, one begins with the closed intervals [a, b] ⊂ R
and adds all other sets that are necessary in order to have a σ-algebra. This means
that unions of sequences of closed intervals are Borel sets. In particular, every open
interval is a Borel set, because an open interval can be written as the union of a
sequence of closed intervals. Furthermore, every open set (whether or not an interval)
is a Borel set because every open set is the union of a sequence of open intervals.
Every closed set is a Borel set because it is the complement of an open set. We
denote the collection of Borel subsets of R by B(R) and call it the Borel σ-algebra of
R. Every subset of R we encounter in this text is in this σ-algebra.

A random variable X is a numerical quantity whose value is determined by the
random experiment of choosing ω ∈ Ω. We shall be interested in the probability
that X takes various values. It is often the case that the probability that X takes a
particular value is zero, and hence we shall mostly talk about the probability that X

takes a value in some set rather than the probability that X takes a particular value.
In other words, we will want to speak of P{X ∈ B}. Definition 1.2.1 requires that
{X ∈ B} be in F for all B ∈ B(R), so that we are sure the probability of this set is
defined.

Example 1.2.2 (Stock prices).

Recall the independent, infinite coin-toss space (Ω∞,F∞,P) of Example 1.1.4. Let
us define stock prices by the formulas
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S0(ω) = 4 for all ω ∈ Ω∞,

S1(ω) =





8 if ω1 = H,

2 if ω1 = T,

S2(ω) =





16 if ω1 = ω2 = H,

4 if ω1 6= ω2,

1 if ω1 = ω2 = T,

and, in general,

Sn+1(ω) =





2Sn(ω) if ωn+1 = H,

1
2Sn(ω) if ωn+1 = T.

All of these are random variables. They assign a numerical value to each possible
sequence of coin tosses. Furthermore, we can compute the probabilities that these
random variables take various values. For example, in the notation of Example 1.1.4,

P{S2 = 4} = P(AHT ∪ ATH) = 2pq.

¤

In the previous example, the random variables S0, S1, S2, etc., have distributions.
Indeed, S0 = 4 with probability one, so we can regard this random variable as putting
a unit of mass on the number 4. On the other hand, P{S2 = 16} = p2, P{S2 = 4} =

2pq, and P{S2 = 1} = q2. We can think of the distribution of this random variable
as three lumps of mass, one of size p2 located at the number 16, another of size 2pq

located at the number 4, and a third of size q2 located at the number 1. We need
to allow for the possibility that the random variables we consider don’t assign any
lumps of mass but rather spread a unit of mass “continuously” over the real line. To
do this, we should think of the distribution of a random variable as telling us how
much mass is in a set rather than how much mass is at a point. In other words, the
distribution of a random variable is itself a probability measure, but it is a measure
on subsets of R rather than subsets of Ω.
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Fig. 1.2.1. Distribution measure of X.

Definition 1.2.3. Let X be a random variable on a probability space (Ω,F ,P). The
distribution measure of X is the probability measure µX that assigns to each Borel
subset B of R the mass µX(B) = P{X ∈ B} (see Figure 1.2.1).

In this definition, the set B could contain a single number. For example, if B =

{4}, then in Example 1.2.2 we would have µS2
(B) = 2pq. If B = [2, 5], we still have

µS2
(B) = 2pq, because the only mass that S2 puts in the interval [2,5] is the lump

of mass placed at the number 4. Definition 1.2.3 for the distribution measure of a
random variable makes sense for discrete random variables as well as for random
variables that spread a unit of mass “continuously” over the real line.

Random variables have distributions, but distributions and random variables are
different concepts. Two different random variables can have the same distribution. A
single random variable can have two different distributions. Consider the following
example.

Example 1.2.4.

Let P be the uniform measure on [0,1] described in Example 1.1.3. Define X(ω) =

ω and Y (ω) = 1− ω for all ω ∈ [0, 1]. Then the distribution measure of X is uniform,
i.e.,

µX [a, b] = P{ω; a ≤ X(ω) ≤ b} = P[a, b] = b− a, 0 ≤ a ≤ b ≤ 1,

by the definition of P. Although the random variable Y is different from the random
variable X (if X takes the value 1

3 , Y takes the value 2
3), Y has the same distribution

as X:

µY [a, b] = P{ω; a ≤ Y (ω) ≤ b} = P{ω; a ≤ 1− ω ≤ b} = P[1− b, 1− a]

= (1− a)− (1− b) = b− a = µX [a, b], 0 ≤ a ≤ b ≤ 1.

Now suppose we define another probability measure P̃ on [0,1] by specifying

P̃[a, b] =

∫ b

a
2ωdω = b2 − a2, 0 ≤ a ≤ b ≤ 1. (1.2.2)
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Equation (1.2.2) and the properties of probability measures determine P̃(B) for every
Borel subset B of R. Note that P̃[0, 1] = 1, so P̃ is in fact a probability measure.
Under P̃, the random variable X no longer has the uniform distribution. Denoting the
distribution measure of X under P̃ by µ̃X , we have

µ̃X [a, b] = P{ω; a ≤ X(ω) ≤ b} = P̃[a, b] = b2 − a2, 0 ≤ a ≤ b ≤ 1.

Under P, the distribution of Y no longer agrees with the distribution of X. We have

µ̃Y [a, b] = P̃{ω; a ≤ Y (ω) ≤ b} = P̃{ω; a ≤ 1− ω ≤ b} = P̃[1− b, 1− a]

= (1− a)2 − (1− b)2, 0 ≤ a ≤ b ≤ 1.

¤

There are other ways to record the distribution of a random variable rather than
specifying the distribution measure µX . We can describe the distribution of a random
variable in terms of its cumulative distribution function (cdf)

F (x) = P{X ≤ x}, x ∈ R. (1.2.3)

If we know the distribution measure µX , then we know the cdf F because F (x) =

µX(−∞, x]. On the other hand, if we know the cdf F , then we can compute µX(x, y] =

F (y)− F (x) for x < y. For a ≤ b, we have

[a, b] =
∞⋂

n=1

(
a− 1

n
, b

]
,

and so we can compute2

µX [a, b] = lim
n→∞µX

(
a− 1

n
, b

]
= F (b)− lim

n→∞F

(
a− 1

n

)
. (1.2.4)

Once the distribution measure µX [a, b] is known for every interval [a, b] ⊂ R, it is
determined for every Borel subset of R. Therefore, in principle, knowing the cdf F

for a random variable is the same as knowing its distribution measure µX .
In two special cases, the distribution of a random variable can be recorded in

more detail. The first of these is when there is a density function f(x), a nonnegative
function defined for x ∈ R such that

µX [a, b] = P{a ≤ X ≤ b} =

∫ b

a
f(x)dx, −∞ < a ≤ b < ∞. (1.2.5)

In particular, because the closed intervals [−n, n] have union R, we must have3

∫ ∞

−∞
f(x)dx = lim

n→∞

∫ n

−n
f(x)dx = lim

n→∞P{−n ≤ X ≤ n}

= P{X ∈ R} = P(Ω) = 1.

(1.2.6)

2See Appendix A, Theorem A.1.1(ii) for more detail.
3See Appendix A, Theorem A.1.1(i) for more detail.
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(For purposes of this discussion, we are not considering random variables that can
take the value ±∞.)

The second special case is that of a probability mass function, in which case there
is either a finite sequence of numbers x1, x2, . . . , xN or an infinite sequence x1, x2, . . .

such that with probability one the random variable X takes one of the values in the
sequence. We then define pi = P{X = xi}. Each pi is nonnegative, and

∑
i pi = 1.

The mass assigned to a Borel set B ⊂ R by the distribution measure of X is

µX(B) =
∑

{i;xi∈B}
pi, B ∈ B(R). (1.2.7)

The distribution of some random variables can be described via a density, as in
(1.2.5). For other random variables, the distribution must be described in terms of a
probability mass function, as in (1.2.7). There are random variables whose distribu-
tion is given by a mixture of a density and a probability mass function, and there are
random variables whose distribution has no lumps of mass but neither does it have a
density4. Random variables of this last type have applications in finance but only at
a level more advanced than this part of the text.

Example 1.2.5. (Another random variable uniformly distributed on [0,1].)

We construct a uniformly distributed random variable taking values in [0,1] and
defined on infinite coin-toss space Ω∞. Suppose in the independent coin-toss space
of Example 1.1.4 that the probability for head on each toss is p = 1

2 . For n = 1, 2, . . .,
we define

Yn(ω) =





1 if ωn = H,

0 if ωn = T.

(1.2.8)

We set

X =
∞∑

n=1

Yn

2n
.

If Y1 = 0, which happens with probability 1
2 , then 0 ≤ X ≤ 1

2 . If Y1 = 1, which also
happens with probability 1

2 , then 1
2 ≤ X ≤ 1. If Y1 = 0 and Y2 = 0, which happens

with probability 1
4 , then 0 ≤ X ≤ 1

4 . If Y1 = 0 and Y2 = 1, which also happens
with probability 1

4 , then 1
4 ≤ X ≤ 1

2 . This pattern continues; indeed for any interval[
k
2n , k+1

2n

] ⊂ [0, 1], the probability that the interval contains X is 1
2n . In terms of the

distribution measure µX of X, we write this fact as µX

[
k
2n , k+1

2n

]
= 1

2n whenever k

and n are integers and 0 ≤ k ≤ 2n − 1. Taking unions of intervals of this form and
using the finite additivity of probability measures, we see that whenever k, m, and n

are integers and 0 ≤ k ≤ m ≤ 2n, we have

µX

[
k

2n
,
m

2n

]
=

m

2n
− k

2n
. (1.2.9)

4See Appendix A, Section A.3.
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From (1.2.9), one can show that

µX [a, b] = b− a, 0 ≤ a ≤ b ≤ 1;

in other words, the distribution measure of X is uniform on [0,1].

Example 1.2.6. (Standard normal random variable).

Let
ϕ(x) =

1√
2π

e−
x2

2

be the standard normal density, and define the cumulative normal distribution func-
tion

N(x) =

∫ x

−∞
ϕ(ξ)dξ.

The function N(x) is strictly increasing, mapping R onto (0,1), and so has a strictly
increasing inverse function N−1(y). In other words, N(N 1(y)) = y for all y ∈ (0, 1).
Now let Y be a uniformly distributed random variable, defined on some probability
space (Ω,F ,P) (two possibilities for (Ω,F ,P) and Y are presented in Examples 1.2.4
and 1.2.5), and set X = N−1(Y ). Whenever −∞ < a ≤ b < ∞, we have

µX [a, b] = P{ω ∈ Ω; a ≤ X(ω) ≤ b}
= P{ω ∈ Ω; a ≤ N−1(Y (ω)) ≤ b}
= P{ω ∈ Ω; N(a) ≤ N

(
N−1(Y (ω))

) ≤ N(b)}
= P{ω ∈ Ω; N(a) ≤ Y (ω) ≤ N(b)}
= N(b)−N(a)

=

∫ b

a
ϕ(x)dx.

The measure µX on R given by this formula is called the standard normal distri-
bution. Any random variable that has this distribution, regardless of the probability
space (Ω,F ,P) on which it is defined, is called a standard normal random variable.
The method used here for generating a standard normal random variable from a uni-
formly distributed random variable is called the probability integral transform and is
widely used in Monte Carlo simulation.

Another way to construct a standard normal random variable is to take Ω = R,
F = B(R), take P to be the probability measure on R that satisfies

P[a, b] =

∫ b

a
ϕ(x)dx whenever −∞ < a ≤ b < ∞,

and take X(ω) = ω for all ω ∈ R.

¤

The second construction of a standard normal random variable in Example 1.2.6
is economical, and this method can be used to construct a random variable with any
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desired distribution. However, it is not useful when we want to have multiple random
variables, each with a specified distribution and with certain dependencies among
the random variables. For such cases, we construct (or at least assume there exists)
a single probability space (Ω,F ,P) on which all the random variables of interest are
defined. This point of view may seem overly abstract at the outset, but in the end it
pays off handsomely in conceptual simplicity.

1.3 Expectations

Let X be a random variable defined on a probability space (Ω,F ,P). We would like
to compute an “average value” of X, where we take the probabilities into account
when doing the averaging. If Ω is finite, we simply define this average value by

EX =
∑

ω∈Ω

X(ω)P(ω)

If Ω is countably infinite, its elements can be listed in a sequence ω1, ω2, ω3, . . ., and
we can define EX as an infinite sum:

EX =
∞∑

k=1

X(ωk)P(ωk).

Difficulty arises, however, if Ω is uncountably infinite. Uncountable sums cannot be
defined. Instead, we must think in terms of integrals.

To see how to go about this, we first review the Riemann integral. If f(x) is a con-
tinuous function defined for all x in the closed interval [a, b], we define the Riemann
integral

∫ b
a f(x)dx as follows. First partition [a, b] into subintervals [x0, x1], [x1, x2], . . . , [xn−1, xn],

where a = x0 < x1 < · · · < xn = b. We denote by Π = {x0, x1, . . . , xn} the set of
partition points and by

‖Π‖ = max
1≤k≤n

(xk − xk−1)

the length of the longest subinterval in the partition. For each subinterval [xk−1, xk],
we set Mk = maxxk−1≤x≤xk f(x) and mk = minxk−1≤x≤xk f(x). The upper Riemann
sum is

RS+
Π(f) =

n∑

k=1

Mk(xk − xk−1),

and the lower Riemann sum (see Figure 1.3.1) is

RS−Π(f) =
n∑

k=1

mk(xk − xk−1).

As ‖Π‖ converges to zero (i.e., as we put in more and more partition points, and the
subintervals in the partition become shorter and shorter), the upper Riemann sum
RS+

Π(f) and the lower Riemann sum RS−Π(f) converge to the same limit, which we
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call
∫ b
a f(x)dx. This is the Riemann integral.

The problem we have with imitating this procedure to define expectation is that
the random variable X, unlike the function f in the previous paragraph, is a function
ω ∈ Ω, and Ω is often not a subset of R. In Figure 1.3.2 the “x-axis” is not the real
numbers but some abstract space Ω. There is no natural way to partition the set Ω

as we partitioned [a, b] above. Therefore, we partition instead the y-axis in Figure
1.3.2. To see how this goes, assume for the moment that 0 ≤ X(ω) < ∞ for every
ω ∈ Ω, and let Π = {y0, y1, y2, . . .}, where 0 = y0 < y1 < y2 < . . . For each subinterval
[yk, yk+1], we set

Ak = {ω ∈ Ω; yk ≤ X(ω) < yk+1}.

We define the lower Lebesgue sum to be (see Figure 1.3.2)

LS−Π(X) =
∑

k=1

ykP(Ak).

This lower sum converges as ‖Π‖, the maximal distance between the yk partition
points, approaches zero, and we define this limit to be the Lebesgue integral

∫
Ω X(ω)dP(ω),

or simply
∫
Ω X(ω)dP. The Lebesgue integral might be ∞, because we have not made

any assumptions about how large the values of X can be.

We assumed a moment ago that 0 ≤ X(ω) < ∞ for every ω ∈ Ω. If the set of
ω that violates this condition has zero probability, there is no effect on the integral
we just defined. If P{ω; X(ω) ≥ 0} = 1 but P{ω; X(ω) = ∞} > 0, then we define
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∫
Ω X(ω)dP(ω) = ∞.

Finally, we need to consider random variables X that can take both positive and
negative values. For such a random variable, we define the positive and negative
parts of X by

X+(ω) = max{X(ω), 0}, X−(ω) = max{−X(ω), 0}. (1.3.1)

Both X+ and X− are nonnegative random variables, X = X+ − X−, and |X| =

X+ + X−. Both
∫
Ω X+(ω)dP(ω) and

∫
Ω X−(ω)dP(ω) are defined by the procedure

described above, and provided they are not both ∞, we can define
∫

Ω
X(ω)dP(ω) =

∫

Ω
X+(ω)dP(ω)−

∫

Ω
X−(ω)dP(ω). (1.3.2)

If
∫
Ω X+(ω)dP(ω) and

∫
Ω X−(ω)dP(ω) are both finite, we say that X is integrable,

and
∫
Ω X(ω)dP(ω) is also finite. If

∫
Ω X+(ω)dP(ω) = ∞ and

∫
Ω X−(ω)dP(ω) is finite,

then
∫
Ω X(ω)dP(ω) = ∞. If

∫
Ω X+(ω)dP(ω) is finite and

∫
Ω X−(ω)dP(ω) = ∞, then∫

Ω X(ω)dP(ω) = −∞. If both
∫
Ω X+(ω)dP(ω) = ∞ and

∫
Ω X−(ω)dP(ω) = ∞, then

an “∞−∞” situation arises in (1.3.2), and
∫
Ω X(ω)dP(ω) is not defined.

The Lebesgue integral has the following basic properties.

Theorem 1.3.1. Let X be a random variable on a probability space (Ω,F ,P).

(i) If X takes only finitely many values y1, y2, . . . , yn, then
∫

Ω
X(ω)dP(ω) =

n∑

k=0

ykP{X = yk}.

(ii) (Integrability) The random variable X is integrable if and only if
∫

Ω
|X(ω)|dP(ω) < ∞.
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Now let Y be another random variable on (Ω,F ,P).

(iii) (Comparison) If X ≤ Y almost surely (i.e., P{X ≤ Y } = 1), and if
∫
Ω X(ω)dP(ω)

and
∫
Ω Y (ω)dP(ω) are defined, then

∫

Ω
X(ω)dP(ω) ≤

∫

Ω
Y (ω)dP(ω).

In particular, if X = Y almost surely and one of the integrals is defined, then
they are both defined and

∫

Ω
X(ω)dP(ω) =

∫

Ω
Y (ω)dP(ω).

(iv) (Linearity) If α and β are real constants and X and Y are integrable, or if α

and β are nonnegative constants and X and Y are nonnegative, then
∫

Ω

(
αX(ω) + βY (ω)

)
dP(ω) = α

∫

Ω
X(ω)dP(ω) + β

∫

Ω
Y (ω)dP(ω).

PARTIAL PROOF: For (i), we consider only the case when X is almost surely non-
negative. If zero is not among the yks, we may add y0 = 0 to the list and then relabel
the yks if necessary so that 0 = y0 < y1 < y2 < · · · < yn. Using these as our partition
points, we have Ak = {yk ≤ X < yk+1} = {X = yk} and the lower Lebesgue sum is

LS−Π(X) =
n∑

k=0

ykP{X = yk}.

If we put in more partition points, the lower Lebesgue sum does not change, and
hence this is also the Lebesgue integral.

We next consider part (iii). If X ≤ Y almost surely, then X+ ≤ Y + and X− ≥ Y −

almost surely. Because X+ ≤ Y + almost surely, for every partition Π, the lower
Lebesgue sums satisfy LS−Π(X+) ≤ LS−Π(Y +), so

∫

Ω
X+(ω)dP(ω) ≤

∫

Ω
Y +(ω)dP(ω). (1.3.3)

Because X− ≥ Y − almost surely, we also have
∫

Ω
X−(ω)dP(ω) ≥

∫

Ω
Y −(ω)dP(ω). (1.3.4)

Subtracting (1.3.4) from (1.3.3) and recalling the definition (1.3.2), we obtain the
comparison property (iii).

The linearity property (iv) requires a more detailed analysis of the construction of
Lebesgue integrals. We do not provide that here.

We can use the comparison property (iii) and the linearity property (iv) to prove
(ii) as follows. Because |X| = X+ + X−, we have X+ ≤ |X| and X− ≤ |X|. If∫
Ω |X(ω)|dP(ω) < ∞, then the comparison property implies

∫
Ω X+(ω)dP(ω) < ∞

and
∫
Ω X−(ω)dP(ω) < ∞, and X is integrable by definition. On the other hand, if X

is integrable, then
∫
Ω X+(ω)dP(ω) < ∞ and

∫
Ω X−(ω)dP(ω) < ∞. Adding these two

quantities and using (iv), we see that
∫
Ω |X(ω)|dP(ω) < ∞.
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Remark 1.3.2. We often want to integrate a random variable X over a subset A of Ω

rather than over all of Ω. For this reason, we define
∫

A
X(ω)dP(ω) =

∫

Ω
IA(ω)X(ω)dP(ω) for all A ∈ F ,

where IA is the indicator function (random variable) given by

IA(ω) =





1 if ω ∈ A,

0 if ω /∈ A.

If A and B are disjoint sets in F , then IA + IB = IA∪B and the linearity property (iv)
of Theorem 1.3.1 implies that

∫

A∪B
X(ω)dP(ω) =

∫

A
X(ω)dP(ω) +

∫

B
X(ω)dP(ω)

Definition 1.3.3. Let X be a random variable on a probability space (Ω,F ,P). The
expectation (or expected value) of X is defined to be

EX =

∫

Ω
X(ω)dP(ω).

This definition makes sense if X is integrable, i.e.; if

E|X| =
∫

Ω
|X(ω)|dP(ω) < ∞

or if X ≥ 0 almost surely. In the latter case, EX might be ∞.

We have thus managed to define EX when X is a random variable on an abstract
probability space (Ω,F ,P). We restate in terms of expected values the basic proper-
ties of Theorem 1.3.1 and add an additional one.

Theorem 1.3.4. Let X be a random variable on a probability space (Ω,F ,P).

(i) If X takes only finitely many values x0, x1, . . . , xn, then

EX =
n∑

k=0

xkP{X = xk}.

In particular, if Ω is finite, then

EX =
∑

ω∈Ω

X(ω)P(ω).

(ii) (Integrability) The random variable X is integrable if and only if

E|X| < ∞.

Now let Y be another random variable on (Ω,F ,P).
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(iii) (Comparison) If X ≤ Y almost surely and X and Y are integrable or almost
surely nonnegative, then

EX ≤ EY.

In particular, if X = Y almost surely and one of the random variables is in-
tegrable or almost surely nonnegative, then they are both integrable or almost
surely nonnegative, respectively, and

EX = EY.

(iv) (Linearity) If α and β are real constants and X and Y are integrable or if α

and β are nonnegative constants and X and Y are nonnegative, then

E(αX + βY ) = αEX + βEY.

(v) (Jensen’s inequality) If ϕ is a convex, real-valued function defined on R, and if
E|X| < ∞, then

ϕ(EX) ≤ Eϕ(X).

Proof. The only new claim is Jensen’s inequality, and the proof of that is the same as
the proof given for Theorem 2.2.5 of Chapter 2 of Volume I.

Example 1.3.5.

Consider the infinite independent coin-toss space Ω∞ of Example 1.1.4 with the
probability measure P that corresponds to probability 1

2 for head on each toss. Let

Yn(ω) =





1 if ωn = H,

0 if ωn = T.

Even though the probability space Ω∞ is uncountable, this random variable takes
only two values, and we can compute its expectation using Theorem 1.3.4(i):

EYn = 1 · P{Yn = 1}+ 0 · P{Yn = 0} =
1

2
.

Example 1.3.6.

Let Ω = [0, 1], and let P be the Lebesgue measure on [0,1] (see Example 1.1.3).
Consider the random variable

X(ω) =





1 if ω is irrational,

0 if ω is rational.

Again the random variable takes only two values, and we can compute its expectation
using Theorem 1.3.4(i):

EX = 1 · P{ω ∈ [0, 1]; ω is irrational}+ 0 · P{ω ∈ [0, 1]; ω is rational}.
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There are only countably many rational numbers in [0,1] (i.e., they can all be listed
in a sequence x1, x2, x3, . . .). Each number in the sequence has probability zero, and
because of the countable additivity property (ii) of Definition 1.1.2, the whole se-
quence must have probability zero. Therefore, P{ω ∈ [0, 1]; ω is rational} = 0. Since
P[0, 1] = 1, the probability of the set of irrational numbers in [0,1] must be 1. We
conclude that EX = 1.

The idea behind this example is that if we choose a number from [0,1] according
to the uniform distribution, then with probability one the number chosen will be
irrational. Therefore, the random variable X is almost surely equal to 1, and hence
its expected value equals 1. As a practical matter, of course, almost any algorithm we
devise for generating a random number in [0,1] will generate a rational number. The
uniform distribution is often a reasonable idealization of the output of algorithms that
generate random numbers in [0,1], but if we push the model too far it can depart from
reality.

If we had been working with Riemann rather than Lebesgue integrals, we would
have gotten a different result. To make the notation more familiar, we write x rather
than ω and f(x) rather than X(ω), thus defining

f(x) =





1 if x is irrational,

0 if x is rational.
(1.3.5)

We have just seen that the Lebesgue integral of this function over the interval [0,1] is
1.

To construct the Riemann integral, we choose partition points 0 = x0 < x1 < x2 <

· · · < xn = 1. We define

Mk = max
xk−1≤x≤xk

f(x), mk = min
xk−1≤x≤xk

f(x).

But each interval [xk−1, xk] contains both rational and irrational numbers, so Mk = 1

and mk = 0. Therefore, for this partition Π = {x0, x1, . . . ,×n}, the upper Riemann
sum is 1,

RS+
Π(f) =

n∑

k=1

Mk(xk − xk−1) =
n∑

k=1

(xk − xk−1) = 1,

whereas the lower Riemann sum is zero,

RS−Π(f) =
n∑

k=1

mk(xk − xk−1) = 0.

This happens no matter how small we take the subintervals in the partition. Since the
upper Riemann sum is always 1 and the lower Riemann sum is always 0, the upper
and lower Riemann sums do not converge to the same limit and the Riemann integral
is not defined. For the Riemann integral, which discretizes the x-axis rather than the
y-axis, this function is too discontinuous to handle. The Lebesgue integral, however,
which discretizes the y-axis, sees this as a simple function taking only two values.
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¤

We constructed the Lebesgue integral because we wanted to integrate over abstract
probability spaces (Ω,F ,P), but as Example 1.3.6 shows, after this construction we
can take Ω to be a subset of the real numbers and then compare Lebesgue and Rie-
mann integrals. This example further shows that these two integrals can give different
results. Fortunately, the behavior in Example 1.3.6 is the worst that can happen. To
make this statement precise, we first extend the construction of the Lebesgue integral
to all of R, rather than just [0,1].

Definition 1.3.7. Let B(R) be the σ-algebra of Borel subsets of R (i.e., the smallest
σ-algebra containing all the closed intervals [a, b])5. The Lebesgue measure on R,
which we denote by L, assigns to each set B ∈ B(R) a number in [0,∞) or the value
∞ so that

(i) L[a, b] = b− a whenever a ≤ b, and

(ii) if B1, B2, B3, . . . is a sequence of disjoint sets in B(R), then we have the count-
able additivity property

L
( ∞⋃

n=1

Bn

)
=

∞∑

n=1

L(Bn).

Definition 1.3.7 is similar to Definition 1.1.2, except that now some sets have
measure greater than 1. The Lebesgue measure of every interval is its length, so that
R and half-lines [a,∞) and (−∞, b] have infinite Lebesgue measure, single points
have Lebesgue measure zero, and the Lebesgue measure of the empty set is zero.
Lebesgue measure has the finite additivity property (see (1.1.5))

L
(

N⋃

n=1

Bn

)
=

N∑

n=1

L(Bn)

whenever B1, B2, . . . , BN are disjoint Borel subsets of R.
Now let f(x) be a real-valued function defined on R. For the following construc-

tion, we need to assume that for every Borel subset B of R, the set {x; f(x) ∈ B} is
also a Borel subset of R. A function f with this property is said to be Borel mea-
surable. Every continuous and piecewise continuous function is Borel measurable.
Indeed, it is extremely difficult to find a function that is not Borel measurable. We
wish to define the Lebesgue integral

∫
R f(x)dL(x) of f over R. To do this, we as-

sume for the moment that 0 ≤ f(x) < ∞ for every x ∈ R. We choose a partition
Π = {y0, y1, y2, . . .}, where 0 = y0 < y1 < y2 < . . .. For each subinterval [yk, yk+1),
we define

Bk = {x ∈ R; yk ≤ f(x) < yk+1}.
Because of the assumption that f is Borel measurable, even though these sets Bk can
be quite complicated, they are Borel subsets of R and so their Lebesgue measures are

5This concept is discussed in more detail in Appendix A, Section A.2.
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defined. We define the lower Lebesgue sum

LS−Π(f) =
∞∑

k=1

ykL(Bk).

As ‖Π‖ converges to zero, these lower Lebesgue sums will converge to a limit, which
we define to be

∫
R f(x)dL(x). It is possible that this integral gives the value ∞.

We assumed a moment ago that 0 ≤ f(x) < ∞ for every x ∈ R. If the set of
x where the condition is violated has zero Lebesgue measure, the integral of f is
not affected. If L{x ∈ R; f(x) < 0} = 0 and L{x ∈ R; f(x) = ∞} > 0, we define∫
R f(x)dL(x) = ∞.

We next consider the possibility that f(x) takes both positive and negative values.
In this case, we define

f+(x) = max{f(x), 0}, f−(x) = max{−f(x), 0}.

Because f+ and f− are nonnegative,
∫
R f+(x)dL(x) and

∫
R f−(x)dL(x) are defined

by the procedure described above. We then define
∫

R
f(x)dL(x) =

∫

R
f+(x)dL(x)−

∫

R
f−(x)dL(x),

provided this is not∞−∞. In the case where both
∫
R f+(x)dL(x) and

∫
R f−(x)dL(x)

are infinite,
∫
R f(x)dL(x) is not defined. If

∫
R f+(x)dL(x) and

∫
R f−(x)dL(x) are fi-

nite, we say that f is integrable. This is equivalent to the condition
∫
R |f(x)|dL(x) <

∞. The Lebesgue integral just constructed has the comparison and linearity prop-
erties described in Theorem 1.3.1. Moreover, if f takes only finitely many values
y0, y1, y2, . . . , yn, then

∫

R
f(x)dL(x) =

n∑

k=0

ykL{x ∈ R; f(x) = yk},

provided the computation of the right-hand side does not require that ∞ − ∞ be
assigned a value.

Finally, sometimes we have a function f(x) defined for every x ∈ R but want to
compute its Lebesgue integral over only part of R, say over some set B ∈ B(R). We
do this by multiplying f(x) by the indicator function of B:

IB(x) =





1 if x ∈ B,

0 if x /∈ B.

The product f(x)IB(x) agrees with f(x) when x ∈ B and is zero when x /∈ B. We
define ∫

B
f(x)dL(x) =

∫

R
IB(x)f(x)dL(x).

The following theorem, whose proof is beyond the scope of this book, relates
Riemann and Lebesgue integrals on R.
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Theorem 1.3.8 (Comparison of Riemann and Lebesgue integrals). Let f be a bounded
function defined on R, and let a < b be numbers.

(i) The Riemann integral
∫ b
a f(x)dx is defined (i.e., the lower and upper Riemann

sums converge to the same limit) if and only if the set of points x in [a, b] where
f(x) is not continuous has Lebesgue measure zero,

(ii) If the Riemann integral
∫ b
a f(x)dx is defined, then f is Borel measurable (so

the Lebesgue integral
∫
[a,b] f(x)dL(x) is also defined), and the Riemann and

Lebesgue integrals agree.

A single point in R has Lebesgue measure zero, and so any finite set of points
has Lebesgue measure zero. Theorem 1.3.8 guarantees that if we have a real-valued
function f on R that is continuous except at finitely many points, then there will be
no difference between Riemann and Lebesgue integrals of this function.

Definition 1.3.9. If the set of numbers in R that fail to have some property is a set
with Lebesgue measure zero, we say that the property holds almost everywhere.

Theorem 1.3.8(i) may be restated as:

The Riemann integral
∫ b
a f(x)dx exists if and only if f(x) is almost every-

where continuous on [a, b].

Because the Riemann and Lebesgue integrals agree whenever the Riemann in-
tegral is defined, we shall use the more familiar notation

∫ b
a f(x)dx to denote the

Lebesgue integral rather than
∫
[a,b] f(x)dL(x). If the set B over which we wish to in-

tegrate is not an interval, we shall write
∫
B f(x)dx. When we are developing theory,

we shall understand
∫
B f(x)dx to be a Lebesgue integral; when we need to compute,

we will use techniques learned in calculus for computing Riemann integrals.

1.4 Convergence of Integrals

There are several ways a sequence of random variables can converge. In this section,
we consider the case of convergence almost surely, defined as follows.

Definition 1.4.1. Let X1, X2, X3, . . . be a sequence of random variables, all defined
on the same probability space

(Ω,F ,P). Let X be another random variable defined on this space. We say that
X1, X2, X3, . . . converges to X almost surely and write

lim
n→∞Xn = X almost surely

if the set of ω ∈ Ω for which the sequence of numbers X1(ω), X2(ω), X3(ω), . . . has
limit X(ω) is a set with probability one. Equivalently, the set of ? e ? for which the
sequence of numbers X1(ω), X2(ω), X3(ω), . . . does not converge to X(ω) is a set with
probability zero.
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Example 1.4.2. (Strong Law of Large Numbers).

An intuitively appealing case of almost sure convergence is the Strong Law of
Large Numbers. On the infinite independent coin-toss space Ω∞, with the probability
measure chosen to correspond to probability p = 1

2 of head on each toss, we define

Yk(ω) =





1 if ωk = H,

0 if ωk = T,

and

Hn =
n∑

k=1

Yk,

so that Hn is the number of heads obtained in the first n tosses. The Strong Law of
Large Numbers is a theorem that asserts that

lim
n→∞

Hn

n
=

1

2
almost surely.

In other words, the ratio of the number of heads to the number of tosses approaches 1
2

almost surely. The “almost surely” in this assertion acknowledges the fact that there
are sequences of tosses, such as the sequence of all heads, for which the ratio does
not converge to 1

2 . We shall ultimately see that there are in fact uncountably many
such sequences. However, under our assumptions that the probability of head on each
toss is 1

2 and the tosses are independent, the probability of all these sequences taken
together is zero.

¤

Definition 1.4.3. Let f1, f2, f3, . . . be a sequence of real-valued, Borel-measurable
functions defined on R. Let f be another real-valued, Borel-measurable function
defined on R. We say that f1, f2, f3, . . . converges to f almost everywhere and write

lim
n→∞ fn = f almost everywhere

if the set of x ∈ R for which the sequence of numbers f1(x), f2(x), f3(x), . . . does not
have limit f(x) is a set with Lebesgue measure zero.

It is clear from these definitions that convergence almost surely and convergence
almost everywhere are really the same concept in different notation.

Example 1.4.4.

Consider a sequence of normal densities, each with mean zero and the nth having
variance 1

n (see Figure 1.4.1):

fn(x) =

√
n

2π
e−

nx2

2 .
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If x 6= 0, then limn→∞ fn(x) = 0, but

lim
n→∞ fn(0) = lim

n→∞

√
n

2π
= ∞.

Therefore, the sequence f1, f2, f3, . . . converges everywhere to the function

f∗(x) =





0 if x 6= 0,

∞ if x = 0,

and converges almost everywhere to the identically zero function f(x) = 0 for all
x ∈ R. The set of x where the convergence to f(x) does not take place contains only
the number 0, and this set has zero Lebesgue measure.

¤

Often when random variables converge almost surely, their expected values con-
verge to the expected value of the limiting random variable. Likewise, when func-
tions converge almost everywhere, it is often the case that their Lebesgue integrals
converge to the Lebesgue integral of the limiting function. This is not always the
case, however. In Example 1.4.4, we have a sequence of normal densities for which∫∞
−∞ fn(x)dx = 1 for every n but the almost everywhere limit function f is identically

zero. It would not help matters to use the everywhere limit function f∗(x) because
any two functions that differ only on a set of zero Lebesgue measure must have the
same Lebesgue integral. Therefore,

∫∞
−∞ f∗(x)dx =

∫∞
−∞ f(x)dx = 0. It cannot be

otherwise because 2f∗(x) = f∗(x) for every x ∈ R, and so

2

∫ ∞

−∞
f∗(x)dx =

∫ ∞

−∞
2f∗(x)dx =

∫ ∞

−∞
f∗(x)dx.

This equation implies that
∫∞
−∞ f∗(x)dx = 0. It would also not help matters to replace
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the functions fn by the functions

gn(x) =





fn(x) if x 6= 0,

0 if x = 0.

The sequence g1, g2, . . . converges to 0 everywhere, whereas the integrals
∫∞
−∞ gn(x)dx

agree with the integrals ∫ ∞

−∞
fn(x)dx,

and these converge to 1, not 0. The inescapable conclusion is that in this example

lim
n→∞

∫ ∞

−∞
fn(x)dx 6=

∫ ∞

−∞
lim

n→∞ fn(x)dx;

the left-hand side is 1 and the right-hand side is 0.
Incidentally, matters are even worse with the Riemann integral, which is not de-

fined for f∗; upper Riemann sums for f∗ are infinite, and lower Riemann sums are
zero.

To get the integrals of a sequence of functions to converge to the integral of the
limiting function, we need to impose some condition. One condition that guarantees
this is that all the functions are nonnegative and they converge to their limit from
below. If we think of an integral as the area under a curve, the assumption is that as
we go farther out in the sequence of functions, we keep adding area and never taking
it away. If we do this, then the area under the limiting function is the limit of the areas
under the functions in the sequence. The precise statement of this result is given in
the following theorem.

Theorem 1.4.5 (Monotone convergence). Let X1, X2, X3, . . . be a sequence of ran-
dom variables converging almost surely to another random variable X. If

0 ≤ X1 ≤ X2 ≤ X3 ≤ . . . almost surely,

then
lim

n→∞EXn = EX.

Let f1, f2, f3, . . . be a sequence of Borel-measurable functions onR converging almost
everywhere to a function f . If

0 ≤ f1 ≤ f2 ≤ f3 ≤ . . . almost everywhere,

then

lim
n→∞

∫ ∞

−∞
fn(x)dx =

∫ ∞

−∞
f(x)dx.

The following corollary to the Monotone Convergence Theorem extends Theorem
1.3.4(i).
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Corollary 1.4.6. Suppose the nonnegative random variable X takes countably many
values x0, x1, x2, . . .. Then

EX =
∞∑

k=0

xkP{X = xk}. (1.4.1)

Proof. Let Ak = {X = xk}, so that X can be written as

X =
∞∑

k=0

xkIAk
.

Define X =
∑n

k=0 xkIAk
. Then 0 ≤ X1 ≤ X2 ≤ X3 ≤ . . . and limn→∞Xn = X almost

surely (“surely,” actually). Theorem 1.3.4(i) implies that

EX =
n∑

k=0

xkP{X = xk}.

Taking the limit on both sides as n → ∞ and using the Monotone Convergence
Theorem to justify the first equality below, we obtain

EX = lim
n→∞EXn = lim

n→∞

n∑

k=0

xkP{X = xk} =
∞∑

k=0

xkP{X = xk}.

Remark 1.4.7. If X can take negative as well as positive values, we can apply Corol-
lary 1.4.6 to X+ and X− separately and then subtract the resulting equations to again
get formula (1.4.1), provided the subtraction does not create an “∞−∞” situation.

Example 1.4.8. (St. Petersburg paradox).

On the infinite independent cointoss space Ω∞ with the probability of a head on
each toss equal to 1

2 , define a random variable X by

X(ω) =





2 if ω1 = H,

4 if ω1 = T, ω2 = H,

8 if ω1 = ω2 = T, ω3 = H,

...

2k if θ1 = ω2 = · · · = ωk−1 = T, ωk = H.

...

This defines X(ω) for every sequence of coin tosses except the sequence that is all
tails. For this sequence, we define X(TTT . . .) = ∞. The probability that X = ∞
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is then the probability of this sequence, which is zero. Therefore, X is finite almost
surely. According to Corollary 1.4.6,

EX = 2 · P{X = 2}+ 4 · P{X = 4}+ 8 · P{X = 8}+ · · ·
= 2 · 1

2
+ 4 · 1

4
+ 8 · 1

8
+ · · ·

= 1 + 1 + 1 + · · · = ∞.

The point is that EX can be infinite, even though X is finite almost surely.

¤

The following theorem provides another common situation in which we are as-
sured that the limit of the integrals of a sequence of functions is the integral of the
limiting function.

Theorem 1.4.9 (Dominated convergence). Let X1, X2, . . . be a sequence of random
variables converging almost surely to a random variable X. If there is another ran-
dom variable Y such that EY < ∞ and |Xn| ≤ Y almost surely for every n, then

lim
n→∞EXn = EX.

Let f1, f2, . . . be a sequence of Borel-measurable functions on R converging almost
everywhere to a function f . If there is another function g such that

∫∞
−∞ g(x)dx < ∞

and |fn| ≤ g almost everywhere for every n, then

lim
n→∞

∫ ∞

−∞
fn(x)dx =

∫ ∞

−∞
f(x)dx.

1.5 Computation of Expectations

Let X be a random variable on some probability space (Ω,F ,P). We have defined
the expectation of X to be the Lebesgue integral

EX =

∫

Ω
X(ω)dP(ω),

the idea being to average the values of X(ω) over Ω, taking the probabilities into
account. This level of abstraction is sometimes helpful. For example, the equality

E(X + Y ) = EX + EY

follows directly from the linearity of integrals. By contrast, if we were to derive
this fact using a joint density for X and Y , it would be a tedious, unenlightening
computation.

On the other hand, the abstract space Ω is not a pleasant environment in which
to actually compute integrals. For computations, we often need to rely on densities
of the random variables under consideration, and we integrate these over the real
numbers rather than over Ω. In this section, we develop the relationship between
integrals over Ω and integrals over R.
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Recall that the distribution measure of X is the probability measure µX defined on
R by

µX(B) = P{X ∈ B} for every Borel subset B of R. (1.5.1)

Because µX is a probability measure on R, we can use it to integrate functions over
R. We have the following fundamental theorem relating integrals over R to integrals
over Ω.

Theorem 1.5.1. Let X be a random variable on a probability space (Ω,F ,P) and let
g be a Borel-measurable function on R. Then

E|g(X)| =
∫

R
|g(x)|dµX(x), (1.5.2)

and if this quantity is finite, then

Eg(X) =

∫

R
g(x)dµX(x). (1.5.3)

Proof. The proof proceeds by several steps, which collectively are called the stan-
dard machine.

Step 1. Indicator functions. Suppose the function g(x) = IB(x) is the indicator of
a Borel subset of R. Since this function is nonnegative, (1.5.2) and (1.5.3) reduce to
the same equation, namely

EIB(X) =

∫

R
IB(x)dµX(x). (1.5.4)

Since the random variable IB(X) takes only the two values one and zero, its expecta-
tion is

EIB(X) = 1 · P{X ∈ B}+ 0 · P{X /∈ B} = P{X ∈ B}.
Similarly, the function IB(x) of the dummy (not random!) variable x takes only the
two values one and zero, so according to Theorem 1.3.1(i) with Ω = R, X = IB, and
P = µX , its integral is

∫

R
IB(x)dµX(x) = 1 · µX{x; IB(x) = 1}+ 0 · µX{x; IB(x) = 0} = µX(B).

In light of (1.5.1), we have gotten the same result in both cases, and (1.5.4) is proved.

Step 2. Nonnegative simple functions. A simple function is a finite sum of indicator
functions times constants. In this step, we assume that

g(x) =
n∑

k=1

αkIBk
(x),

where α1, α2, . . . , αn are nonnegative constants and B1, B2, . . . , Bn are Borel subsets
of R. Because of linearity of integrals,

Eg(X) = E
n∑

k=1

αkIBk
(X) =

n∑

k=1

αkEIBk
(X) =

n∑

k=1

αk

∫

R
IBk

(x)dµX(x),
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where we have used (1.5.4) in the last step. But the linearity of integrals also implies
that

n∑

k=1

αk

∫

R
IBk

(x)dµX(x) =

∫

R

(
n∑

k=1

αkIBk
(x)

)
dµX(x) =

∫

R
g(x)dµX(x),

and we conclude that
Eg(X) =

∫

R
g(x)dµX(x)

when g is a nonnegative simple function.

Step 3. Nonnegative Borel-measurable functions. Let g(x) be an arbitrary nonnega-
tive Borel-measurable function defined on R. For each positive integer n, define the
sets

Bk,n =

{
x;

k

2n
≤ g(x) <

k + 1

2n

}
, k = 0, 1, 2, . . . , 4n − 1.

For each fixed n, the sets B0,n, B1,n, . . . , B4n−1,n correspond to the partition

0 <
1

2n
<

2

2n
< · · · < 4n

2n
= 2n.

At the next stage n + 1, the partition points include all those at stage n and new
partition points at the midpoints between the old ones. Because of this fact, the
simple functions

gn(x) =
4n−1∑

k=0

k

2n
IBk,n

(x)

satisfy 0 ≤ g1 ≤ g2 ≤ · · · ≤ g. Furthermore, these functions become more and more
accurate approximations of g as n becomes larger; indeed, limn→∞ gn(x) = g(x) for
every x ∈ R. From Step 2, we know that

Egn(X) =

∫

R
gn(x)dµX(x)

for every n. Letting n → ∞ and using the Monotone Convergence Theorem, Theo-
rem 1.4.5, on both sides of the equation, we obtain

Eg(X) = lim
n→∞Egn(X) = lim

n→∞

∫

R
gn(x)dµX(x) =

∫

R
g(x)dµX(x).

This proves (1.5.3) when g is a nonnegative Borel-measurable function.

Step 4. General Borel-measurable function. Let g(x) be a general Borel-measurable
function, which can take both positive and negative values. The functions

g+(x) = max{g(x), 0} and g−(x) = max{−g(x), 0}

are both nonnegative, and from Step 3 we have

Eg+(X) =

∫

R
g+(x)dµX(x), Eg−(X) =

∫

R
g−(x)dµX(x).
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Adding these two equations, we obtain (1.5.2). If the quantity in (1.5.2) is finite, then

Eg+(X) =

∫

R
g+(x)dµX(x) < ∞,

Eg−(X) =

∫

R
g−(x)dµX(x) < ∞,

and we can subtract these two equations because this is not an ∞−∞ situation. The
result of this subtraction is (1.5.3).

Theorem 1.5.1 tells us that in order to compute the Lebesgue integral EX =∫
Ω X(ω)dP(ω) over the abstract space Ω, it suffices to compute the integral

∫
R g(x)dµX(x)

over the set of real numbers. This is still a Lebesgue integral, and the integrator is
the distribution measure µX rather than the Lebesgue measure. To actually perform
a computation, we need to reduce this to something more familiar. Depending on the
nature of the random variable X, the distribution measure µX on the right-hand side
of (1.5.3) can have different forms. In the simplest case, X takes only finitely many
values x0, x1, x2, . . . , xn, and then µX places a mass of size pk = P{X = xk} at each
number xk. In this case, formula (1.5.3) becomes

Eg(X) =

∫

R
g(x)µX(dx) =

n∑

k=0

g(xk)pk.

The most common case for continuous-time models in finance is when X has a
density. This means that there is a nonnegative, Borel-measurable function f defined
on R such that

µX(B) =

∫

B
f(x)dx for every Borel subset B of R. (1.5.5)

This density allows us to compute the measure µX of a set B by computing an integral
over B. In most cases, the density function f is bounded and continuous or almost
everywhere continuous, so that the integral on the righthand side of (1.5.5) can be
computed as a Riemann integral.

If X has a density, we can use this density to compute expectations, as shown by
the following theorem.

Theorem 1.5.2. Let X be a random variable on a probability space (Ω,F ,P), and
let g be a Borel-measurable function on R. Suppose that X has a density f (i.e., f is
a function satisfying (1.5.5)). Then

E|g(X)| =
∫ ∞

−∞
|g(x)|f(x)dx. (1.5.6)

If this quantity is finite, then

Eg(X) =

∫ ∞

−∞
g(x)f(x)dx. (1.5.7)

Proof. The proof proceeds again by the standard machine.
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Step 1. Indicator functions. If g(x) = IB(x), then because g is nonnegative, equa-
tions (1.5.6) and (1.5.7) are the same and reduce to

EIB(X) =

∫

B
f(x)dx.

The left-hand side is P{X ∈ B} = µX(B), and (1.5.5) shows that the two sides are
equal.

Step 2. Simple functions. If g(x) =
∑n

k=1 αkIBk
(x), then

Eg(X) = E

(
n∑

k=1

αkIBk
(X)

)
=

n∑

k=1

αkEIBk
(X)

=
n∑

k=1

αk

∫ ∞

−∞
IBk

(x)f(x)dx =

∫ ∞

−∞

n∑

k=1

αkIBk
(x)f(x)dx

=

∫ ∞

−∞
g(x)f(x)dx.

Step 3. Nonnegative Borel-measurable functions. Just as in the proof of Theorem
1.5.1 we construct a sequence of nonnegative simple functions 0 ≤ g1 ≤ g2 ≤ · · · ≤ g

such that limn→∞ gn(x) = g(x) for every x ∈ R. We have already shown that

Egn(X) =

∫ ∞

−∞
gn(x)f(x)dx

for every n. We let n → ∞, using the Monotone Convergence Theorem, Theorem
1.4.5, on both sides of the equation, to obtain (1.5.7).

Step 4. General Borel-measurable functions. Let g be a general Borel-measurable
function, which can take positive and negative values. We have just proved that

Eg+(X) =

∫ ∞

−∞
g+(x)f(x)dx, Eg−(X) =

∫ ∞

−∞
g−(x)f(x)dx.

Adding these equations, we obtain (1.5.6). If the expression in (1.5.6) is finite, we
can also subtract these equations to obtain (1.5.7).

1.6 Change of Measure

We pick up the thread of Section 3.1 of Volume I, in which we used a positive random
variable Z to change probability measures on a space Ω. We need to do this when we
change from the actual probability measure P to the risk-neutral probability measure
P̃ in models of financial markets. When Ω is uncountably infinite and P(ω) = P̃(ω) =

0 for every ω ∈ Ω, it no longer makes sense to write (3.1.1) of Chapter 3 of Volume I,

Z(ω) =
P̃(ω)

P(ω)
, (1.6.1)
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because division by zero is undefined. We could rewrite this equation as

Z(ω)P(ω) = P̃(ω), (1.6.2)

and now we have a meaningful equation, with both sides equal to zero, but the equa-
tion tells us nothing about the relationship among P, P̃, and Z. Because P(ω) =

P̃(ω) = 0, the value of Z(ω) could be anything and (1.6.2) would still hold.
However, (1.6.2) does capture the spirit of what we would like to accomplish. To

change from P to P̃, we need to reassign probabilities in Ω using Z to tell us where
in Ω we should revise the probability upward (where Z > 1) and where we should
revise the probability downward (where Z < 1). However, we should do this set-by-
set, rather than ω-by-ω. The process is described by the following theorem.

Theorem 1.6.1. Let (Ω,F ,P) be a probability space and let Z be an almost surely
nonnegative random variable with EZ = 1. For A ∈ F , define

P̃(A) =

∫

A
Z(ω)dP(ω). (1.6.3)

Then P̃ is a probability measure. Furthermore, if X is a nonnegative random variable,
then

ẼX = E[XZ]. (1.6.4)

If Z is almost surely strictly positive, we also have

EY = Ẽ
[
Y

Z

]
(1.6.5)

for every nonnegative random variable Y .

The Ẽ appearing in (1.6.4) is expectation under the probability measure P̃ (i.e.,
ẼX =

∫
Ω X(gw)dP̃(ω)).

Remark 1.6.2. Suppose X is a random variable that can take both positive and nega-
tive values. We may apply (1.6.4) to its positive and negative parts X+ = max{X, 0}
and X− = max{−X, 0}, and then subtract the resulting equations to see that (1.6.4)
holds for this X as well, provided the subtraction does not result in an ∞−∞ situa-
tion. The same remark applies to (1.6.5).

PROOF OF THEOREM 1.6.1: According to Definition 1.1.2, to check that P̃ is a prob-
ability measure, we must verify that P̃(Ω) = 1 and that P̃ is countably additive. We
have by assumption

P̃(Ω) =

∫

Ω
Z(ω)dP(ω) = EZ = 1.

For countable additivity, let A1, A2, . . . be a sequence of disjoint sets in F , and define
Bn =

⋃n
k=1 Ak, B∞ =

⋃∞
k=1 Ak. Because

IB1
≤ IB2

≤ IB3
≤ · · ·
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and limn→∞ IBn
− IB∞ , we may use the Monotone Convergence Theorem, Theorem

1.4.5, to write

P̃(B∞) =

∫

Ω
IB∞(ω)Z(ω)dP(ω) = lim

n→∞

∫

Ω
IBn

(ω)Z(ω)dP(ω).

But
∑n

k=1 IAk
(ω), and so

∫

Ω
IBn

(ω)Z(ω)dP(ω) =
n∑

k=1

∫

Ω
IAk

(ω)Z(ω)dP(ω) =
n∑

k=1

P̃(Ak).

Putting these two equations together, we obtain the countable additivity property

P̃

( ∞⋃

k=1

Ak

)
= lim

n→∞

n∑

k=1

P̃(Ak) =
∞∑

k=1

P̃(Ak).

Now suppose X is a nonnegative random variable. If X is an indicator function
X = IA, then

ẼX = P̃(A) =

∫

Ω
IA(ω)Z(ω)dP(ω) = E[IAZ] = E[XZ],

which is (1.6.4). We finish the proof of (1.6.4) using the standard machine developed
in Theorem 1.5.1. When Z > 0 almost surely, Y

Z is defined and we may replace X in
(1.6.4) by Y

Z to obtain (1.6.5).

Definition 1.6.3. Let Ω be a nonempty set and F a σ-algebra of subsets of Ω. Two
probability measures P and P̃ on (Ω,F) are said to be equivalent if they agree which
sets in F have probability zero.

Under the assumptions of Theorem 1.6.1, including the assumption that Z > 0

almost surely, P and P̃ are equivalent. Suppose A ∈ F is given and P(A) = 0. Then
the random variable IAZ is P almost surely zero, which implies

P̃(A) =

∫

Ω
IA(ω)Z(ω)dP(ω) = 0.

On the other hand, suppose B ∈ F satisfies P̃(B) = 0. Then 1
Z IB = 0 almost surely

under P̃, so

Ẽ
[

1

Z
IB

]
= 0.

Equation (1.6.5) implies P(B) = EIB = 0. This shows that P and P̃ agree which sets
have probability zero. Because the sets with probability one are complements of the
sets with probability zero, P and P̃ agree which sets have probability one as well.
Because P̃ and P are equivalent, we do not need to specify which measure we have
in mind when we say an event occurs almost surely.

In financial models, we will first set up a sample space Ω, which one can regard as
the set of possible scenarios for the future. We imagine this set of possible scenarios
has an actual probability measure P. However, for purposes of pricing derivative se-
curities, we will use a risk-neutral measure P̃. We will insist that these two measures
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are equivalent. They must agree on what is possible and what is impossible; they
may disagree on how probable the possibilities are. This is the same situation we
had in the binomial model; P and P̃ assigned different probabilities to the stock price
paths, but they agreed which stock price paths were possible. In the continuous-time
model, after we have P and P̃, we shall determine prices of derivative securities that
allow us to set up hedges that work with P̃-probability one. These hedges then also
work with P-probability one. Although we have used the risk-neutral probability to
compute prices, we will have obtained hedges that work with probability one under
the actual (and the risk-neutral) probability measure.

It is common to refer to computations done under the actual measure as com-
putations in the real world and computations done under the risk-neutral measure
as computations in the risk-neutral world. This unfortunate terminology raises the
question whether prices computed in the “risk-neutral world” are appropriate for the
“real world” in which we live and have our profits and losses. Our answer to this
question is that there is only one world in the models. There is a single sample space
Ω representing all possible future states of the financial markets, and there is a single
set of asset prices, modeled by random variables (i.e., functions of these future states
of the market). We sometimes work in this world assuming that probabilities are
given by an empirically estimated actual probability measure and sometimes assum-
ing that they are given by risk-neutral probabilities, but we do not change our view
of the world of possibilities. A hedge that works almost surely under one assumption
of probabilities works almost surely under the other assumption as well, since the
probability measures agree which events have probability one.

The change of measure discussed in Section 3.1 of Volume I is the special case
of Theorem 1.6.1 for finite probability spaces, and Example 3.1.2 of Chapter 3 of
Volume I provides a case with explicit formulas for P, P̃, and Z when the expectations
are sums. We give here two examples on uncountable probability spaces.

Example 1.6.4.

Recall Example 1.2.4 in which Ω = [0, 1], P is the uniform (i.e., Lebesgue) mea-
sure, and

P̃[a, b] =

∫ b

a
2ωdω = b2 − a2, 0 ≤ a ≤ b ≤ 1.

We may use the fact that P(dω) = dω to rewrite (1.2.2) as

P̃[a, b] =

∫

[a,b]
2ωdP(ω). (1.2.2)′

Because B[0, 1] is the σ-algebra generated by the closed intervals (i.e., begin with the
closed intervals and put in all other sets necessary in order to have a σ-algebra), the
validity of (1.2.2)′ for all closed intervals [a, b] ⊂ [0, 1] implies its validity for all Borel
subsets of [0,1]:

P̃(B) =

∫

B
2ωdP(ω) for every Borel set B ⊂ R.
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This is (1.6.3) with Z(ω) = 2ω.
Note that Z(ω) = 2ω is strictly positive almost surely (P{0} = 0), and

ẼZ =

∫ 1

0
2ωdω = 1.

According to (1.6.4), for every nonnegative random variable X(ω), we have the equa-
tion ∫ 1

0
X(ω)dP̃(ω) =

∫ 1

0
X(ω) · 2ωdω.

This suggests the notation

dP̃(ω) = 2ωdω = 2ωdP(ω). (1.6.6)

¤

In general, when P, P̃, and Z are related as in Theorem 1.6.1, we may rewrite the
two equations (1.6.4) and (1.6.5) as

∫

Ω
X(ω)dP̃(ω) =

∫

Ω
X(ω)Z(ω)dP(ω),

∫

Ω
Y (ω)dP(ω) =

∫

Ω

Y (ω)

Z(ω)
dP̃(ω).

A good way to remember these equations is to formally write Z(ω) = deP(ω)
dP(ω) . Equation

(1.6.6) is a special case of this notation that captures the idea behind the nonsensical
equation (1.6.1) that Z is somehow a “ratio of probabilities.” In Example 1.6.4,
Z(ω) = 2ω is in fact a ratio of densities, with the denominator being the uniform
density 1 for all ω ∈ [0, 1].

Definition 1.6.5. Let (Ω,F ,P) be a probability space, let P̃ be another probability
measure on (Ω,F) that is equivalent to P, and let Z be an almost surely positive ran-
dom variable that relates P and P̃ via (1.6.3). Then Z is called the Radon-Nikodym
derivative of P̃ with respect to P, and we write

Z =
dP̃
dP

.

Example 1.6.6. (Change of measure for a normal random variable).

Let X be a standard normal random variable defined on some probability space
(Ω,F ,P). Two ways of constructing X and (Ω,F ,P) were described in Example
1.2.6. For purposes of this example, we do not need to know the details about the
probability space (Ω,F ,P), except we note that the set Ω is necessarily uncountably
infinite and P(ω) = 0 for every ω ∈ Ω.

When we say X is a standard normal random variable, we mean that

µX(B) = P{X ∈ B} =

∫

B
ϕ(x)dx for every Borel subset B of R. (1.6.7)
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where
ϕ(x) =

1√
2π

e−
x2

2

is the standard normal density. If we take B = (−∞, b], this reduces to the more
familiar condition

P{X ≤ b} =

∫ b

−∞
ϕ(x)dx for every b ∈ R. (1.6.8)

In fact, (1.6.8) is equivalent to the apparently stronger statement (1.6.7). Note that
EX = 0 and variance Var(X) = E(X − EX)2 = 1.

Let θ be a constant and define Y = X + θ, so that under P, the random variable
Y is normal with EY = θ and variance Var(Y ) = E(Y − EY )2 = 1. Although
it is not required by the formulas, we will assume θ is positive for the discussion
below. We want to change to a new probability measure P̃ on Ω under which Y is a
standard normal random variable. In other words, we want ẼY = 0 and Ṽar(Y ) =

Ẽ(Y − ẼY )2 = 1. We want to do this not by subtracting θ away from Y , but rather by
assigning less probability to those ω for which Y (ω) is sufficiently positive and more
probability to those ω for which Y (ω) is negative. We want to change the distribution
of Y without changing the random variable Y . In finance, the change from the actual
to the risk-neutral probability measure changes the distribution of asset prices without
changing the asset prices themselves, and this example is a step in understanding that
procedure.

We first define the random variable

Z(ω) = exp

{
−θX(ω)− 1

2
θ2

}
for all ω ∈ Ω.

This random variable has two important properties that allow it to serve as a Radon-
Nikodym derivative for obtaining a probability measure P̃ equivalent to P:

(i) Z(ω) > 0 for all ω ∈ Ω (Z > 0 almost surely would be good enough), and

(ii) EZ = 1.

Property (i) is obvious because Z is defined as an exponential. Property (ii) follows
from the integration

EZ =

∫ ∞

−∞
exp

{
−θx− 1

2
θ2

}
ϕ(x)dx

=
1√
2π

∫ ∞

−∞
exp

{
−1

2
(x2 + 2θx + θ2)

}
dx

=
1√
2π

∫ ∞

−∞
exp

{
−1

2
(x + θ)2

}
dx

=
1√
2π

∫ ∞

−∞
exp

{
−1

2
y2

}
dy

where we have made the change of dummy variable y = x + θ in the last step. But
1√
2π

∫∞
−∞ exp

{−1
2y2

}
dy, being the integral of the standard normal density, is equal to

one.
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We use the random variable Z to create a new probability measure P̃ by adjusting
the probabilities of the events in Ω. We do this by defining

P̃(A) =

∫

A
Z(ω)dP(ω) for all A ∈ F . (1.6.9)

The random variable Z has the property that if X(ω) is positive, then Z(ω) < 1

(we are still thinking of θ as a positive constant). This shows that P̃ assigns less
probability than P to sets on which X is positive, a step in the right direction of
statistically recentering Y . We claim not only that ẼY = 0 but also that, under P̃, Y

is a standard normal random variable. To see this, we compute

P̃{Y ≤ b} =

∫

{ω;Y (ω)≤b}
Z(ω)dP(ω)

=

∫

Ω
I{Y (ω)≤b}Z(ω)dP(ω)

=

∫

Ω
I{X(ω)≤b−θ} exp

{
−θX(ω)− 1

2
θ2

}
dP(ω).

At this point, we have managed to write P̃{Y ≤ b} in terms of a function of the
random variable X, integrated with respect to the probability measure P under which
X is standard normal. According to Theorem 1.5.2,

∫

Ω
I{X(ω)≤b−θ} exp

{
−θX(ω)− 1

2
θ2

}
dP(ω)

=

∫ ∞

−∞
I{x≤b−θ}e−θx− 1

2
θ2

ϕ(x)dx

=
1√
2π

∫ b−θ

−∞
e−θx− 1

2
θ2

e−
x2

2 dx

=
1√
2π

∫ b−θ

−∞
e−

1
2
(x+θ)2dx

=
1√
2π

∫ b

−∞
e−

1
2
y2

dy,

where we have made the change of dummy variable y = x + θ in the last step. We
conclude that

P̃{Y ≤ b} =
1√
2π

∫ b

−∞
e−

1
2
y2

dy,

which shows that Y is a standard normal random variable under the probability mea-
sure P.

¤

Following Corollary 2.4.6 of Chapter 2 of Volume I, we discussed how the exis-
tence of a risk-neutral measure guarantees that a financial model is free of arbitrage,
the so-called First Fundamental Theorem of Asset Pricing. The same argument ap-
plies in continuous-time models and in fact underlies the Heath-Jarrow-Merton no-
arbitrage condition for term-structure models. Consequently, we are interested in the
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existence of risk-neutral measures. As discussed earlier in this section, these must
be equivalent to the actual probability measure. How can such probability measures
P̃ arise? In Theorem 1.6.1, we began with the probability measure P and an almost
surely positive random variable Z and constructed the equivalent probability measure
P̃. It turns out that this is the only way to obtain a probability measure P̃ equivalent
to P. The proof of the following profound theorem is beyond the scope of this text.

Theorem 1.6.7 (Radon-Nikodym). Let P and P̃ be equivalent probability measures
defined on (Ω,F). Then there exists an almost surely positive random variable Z

such that EZ = 1 and

P̃(A) =

∫

A
Z(ω)dP(ω) for every A ∈ F .

1.7 Summary

Probability theory begins with a probability space (Ω,F ,P) (Definition 1.1.2). Here
Ω is the set of all possible outcomes of a random experiment, F is the collection of
subsets of Ω whose probability is defined, and P is a function mapping F to [0,1].
The two axioms of probability spaces are P(Ω) = 1 and countable additivity: the
probability of a union of disjoint sets is the sum of the probabilities of the individual
sets.

The collection of sets F in the preceding paragraph is a σ-algebra, which means
that ∅ belongs to F , the complement of every set in F is also in F , and the union
of any sequence of sets in F is also in F . The Borel σ-algebra in R, denoted B(R),
is the smallest σ-algebra that contains all the closed interval [a, b] in R. Every set
encountered in practice is a Borel set (i.e., belongs to B(R))

A random variable X is a mapping from Ω to R (Definition 1.2.1). By definition,
it has the property that, for every B ∈ B(R), the set {ω ∈ Ω; X(ω) ∈ B} is in the
σ-algebra F . A random variable X together with the probability measure P on Ω

determines a distribution on R. This distribution is not the random variable. Different
random variables can have the same distribution, and the same random variable can
have different distributions. We describe the distribution as a measure µX that assigns
to each Borel subset B of R the mass µX(B) = P{X ∈ B} (Definition 1.2.3). If X

has a density f(x), then µX(B) =
∫
B f(x)dx. If X is a discrete random variable,

which means that it takes one of count ably many values x1, x2, . . ., then we define
pi = P{X = xi} and have µX(B) =

∑
{i;xi∈B} pi.

The expectation of a random variable X is EX =
∫
Ω X(ω)dP(ω), where the right-

hand side is a Lebesgue integral over Ω. Lebesgue integrals are discussed in Section
1.3. They differ from Riemann integrals, which form approximating sums to the
integral by partitioning the “x” (horizontal)-axis, because Lebesgue integrals form
approximating sums to the integral by partitioning the “y” (vertical)-axis. Lebesgue
integrals have the properties one would expect (Theorem 1.3.4):
Comparison. If X ≤ Y almost surely, then EX ≤ EY ;
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Linearity. E(αX + βY ) = αEX + βEY .
In addition, if ϕ is a convex function, we have Jensen’s inequality: ϕ(EX) ≤ Eϕ(X).

If the random variable X has a density f(x), then EX =
∫∞
−∞ xf(x)dx and, more

generally, Eg(X) =
∫∞
−∞ g(x)f(x)dx (Theorem 1.5.2). If the random variable is dis-

crete with pi = P{X = xi}, then Eg(X) =
∑

i g(xi)pi.
Suppose we have a sequence of random variables X1, X2, X3, . . . converging al-

most surely to a random variable X. It is not always true that

EX = lim
n→∞EXn. (1.7.1)

However, if 0 ≤ X1 ≤ X2 ≤ X3 ≤ · · · almost surely, then (1.7.1) holds (Monotone
Convergence Theorem, Theorem 1.4.5). Alternatively, if there exists a random vari-
able Y such that EY < ∞ and |Xn| ≤ Y almost surely for every n, then again (1.7.1)
holds (Dominated Convergence Theorem, Theorem 1.4.9).

We may start with a probability space (Ω,F ,P) and change to a different measure
P̃. Our motivation for considering two measures is that in finance there is both an
actual probability measure and a risk-neutral probability measure. If P is a probability
measure and Z is a nonnegative random variable satisfying EZ = 1, then P̃ defined
by

P̃(A) =

∫

A
Z(ω)dP(ω) for all A ∈ F

is also a probability measure (Theorem 1.6.1). If Z is strictly positive almost surely,
the two measures are equivalent: they agree about which sets have probability zero.
For a random variable X, we have the change-of-expectation formula Ẽ[X] = E[XZ].
If Z is strictly positive almost surely, there is a change-of-expectation formula in the
other direction. Namely, if Y is a random variable, then EY = Ẽ

[
Y
Z

]
.

1.8 Notes

Probability theory is usually learned in two stages. In the first stage, one learns that
a discrete random variable has a probability mass function and a continuous random
variable has a density. These can be used to compute expectations and variances,
and even conditional expectations, which are discussed in Chapter 2. Furthermore,
one learns how transformations of continuous random variables change densities. A
well-written book that contains all these things is DeGroot [48].

The second stage of probability theory, which is treated in this chapter, is measure-
theoretic. In this stage, one views a random variable as a function from a sample
space Ω to the set of real numbers R. Certain subsets of Ω are called events, and the
collection of all events forms a σ-algebra F . Each set A in F has a probability P(A).
This point of view handles both discrete and continuous random variables within the
same unifying framework. It is necessary to adopt this point of view in order to
understand the change from the actual to the risk-neutral measure in finance.

The measure-theoretic view of probability theory was begun by Kolmogorov [104].
A comprehensive book on measure-theoretic probability is Billingsley [10]. A suc-
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cinct book on measure-theoretic probability and martingales is Williams [161]. A
more detailed book is Chung [35]. All of these are at the level of a Ph.D. course in
mathematics.

1.9 Exercises

Exercise 1.1.

Using the properties of Definition 1.1.2 for a probability measure P, show the
following.

(i) If A ∈ F , B ∈ F , and A ⊂ B, then P(A) ≤ P(B).

(ii) If A ∈ F and {An}∞n=1 is a sequence of sets in F with limn→∞ P(An) = 0 and
A ⊂ An for every n, then P(A) = 0. (This property was used implicitly in
Example 1.1.4 when we argued that the sequence of all heads, and indeed any
particular sequence, must have probability zero.)

Exercise 1.2.

The infinite coin-toss space Ω∞ of Example 1.1.4 is uncountably infinite. In other
words, we cannot list all its elements in a sequence. To see that this is impossible,
suppose there were such a sequential list of all elements of Ω∞:

ω(1) = ω
(1)
1 ω

(1)
2 ω

(1)
3 ω

(1)
4 · · · ,

ω(2) = ω
(2)
1 ω

(2)
2 ω

(2)
3 ω

(2)
4 · · · ,

ω(3) = ω
(3)
1 ω

(3)
2 ω

(3)
3 ω

(3)
4 · · · ,

...

An element that does not appear in this list is the sequence whose first component is
H if ω

(1)
1 is T and is T if ω

(1)
1 is H, whose second component is H if ω

(2)
2 is T and is T

if ω
(2)
2 is H, whose third component is H if ω

(3)
3 is T and is T if ω

(3)
3 is H, etc. Thus,

the list does not include every element of Ω∞.
Now consider the set of sequences of coin tosses in which the outcome on each

even-numbered toss matches the outcome of the toss preceding it, i.e.,

A = {ω = ω1ω2ω3ω4ω5 . . . ; ω1 = ω2, ω3 = ω4, . . .}.

(i) Show that A is uncountably infinite,

(ii) Show that, when 0 < p < 1, we have P(A) = 0.

Uncountably infinite sets can have any probability between zero and one, including
zero and one. The uncountability of the set does not help determine its probability.

Exercise 1.3.
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Consider the set function P defined for every subset of [0,1] by the formula that
P(A) = 0 if A is a finite set and P(A) = ∞ if A is an infinite set. Show that P satisfies
(1.1.3)-(1.1.5), but P does not have the countable additivity property (1.1.2). We see
then that the finite additivity property (1.1.5) does not imply the countable additivity
property (1.1.2).

Exercise 1.4.

(i) Construct a standard normal random variable Z on the probability space (Ω∞,F∞,P)

of Example 1.1.4 under the assumption that the probability for head is p = 1
2 .

(Hint: Consider Examples 1.2.5 and 1.2.6.)

(ii) Define a sequence of random variables {Zn}∞n=1 on Ω∞ such that

lim
n→∞Zn(ω) = Z(ω) for every ω ∈ Ω∞

and, for each n, Zn depends only on the first n coin tosses. (This gives us
a procedure for approximating a standard normal random variable by random
variables generated by a finite number of coin tosses, a useful algorithm for
Monte Carlo simulation.)

Exercise 1.5.

When dealing with double Lebesgue integrals, just as with double Riemann in-
tegrals, the order of integration can be reversed. The only assumption required is
that the function being integrated be either nonnegative or integrable. Here is an
application of this fact.

Let X be a nonnegative random variable with cumulative distribution function
F (x) = P{X ≤ x}. Show that

EX =

∫ ∞

0
(1− F (x))dx

by showing that ∫

Ω

∫ ∞

0
I[0,X(ω))(x)dxdP(ω)

is equal to both EX and
∫∞
0 (1− F (x))dx.

Exercise 1.6.

Let u be a fixed number in R, and define the convex function ϕ(x) = eux for all
x ∈ R. Let X be a normal random variable with mean µ = EX and standard deviation
σ = [E(X − µ)2]

1
2 , i.e., with density

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .

(i) Verify that
EeuX = euµ+ 1

2
u2σ2

.
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(ii) Verify that Jensen’s inequality holds (as it must):

Eϕ(X) ≤ ϕ(EX).

Exercise 1.7.

For each positive integer n, define fn to be the normal density with mean zero and
variance n, i.e.,

fn(x) =
1√
2nπ

e−
x2

2n .

(i) What is the function f(x) = limn→∞ fn(x)?

(ii) What is limn→∞
∫∞
−∞ fn(x)dx?

(iii) Note that

lim
n→∞

∫ ∞

−∞
fn(x)dx 6=

∫ ∞

−∞
f(x)dx.

Explain why this does not violate the Monotone Convergence Theorem, Theo-
rem 1.4.5.

Exercise 1.8 (Moment-generating function).

Let X be a nonnegative random variable, and assume that

ϕ(t) = EetX

is finite for every t ∈ R. Assume further that E[XetX ] < ∞ for every t ∈ R. The
purpose of this exercise is to show that ϕ′(t) = E[XetX ] and, in particular, ϕ′(0) =

EX.
We recall the definition of derivative:

ϕ′(t) = lim
s→t

ϕ(t)− ϕ(s)

t− s
= lim

s→t

EetX − EesX

t− s
= lim

s→t
E

[
etX − esX

t− s

]
.

The limit above is taken over a continuous variable s, but we can choose a sequence
of numbers {sn}∞n=1 converging to t and compute

lim
sn→t

E
[
etX − esnX

t− sn

]
,

where now we are taking a limit of the expectations of the sequence of random vari-
ables

Yn =
etX − esnX

t− sn
.

If this limit turns out to be the same, regardless of how we choose the sequence
{sn}∞n=1 that converges to t, then this limit is also the same as lims→t E

[
etX−esX

t−s

]
and

is ϕ′(t).
The Mean Value Theorem from calculus states that if f(t) is a differentiable func-

tion, then for any two numbers s and t, there is a number θ between s and t such
that

f(t)− f(s) = f ′(θ)(t− s).
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If we fix ω ∈ Ω and define f(t) = etX(ω), then this becomes

etX(ω) − esX(ω) = (t− s)X(ω)eθ(ω)X(ω), (1.9.1)

where θ(ω) is a number depending on ω (i.e., a random variable lying between t and
s).

(i) Use the Dominated Convergence Theorem (Theorem 1.4.9) and equation (1.9.1)
to show that

lim
n→∞EYn = E

[
lim

n→∞Yn

]
= E[XetX ]. (1.9.2)

This establishes the desired formula ϕ′(t) = E[XetX ].

(ii) Suppose the random variable X can take both positive and negative values and
EetX < ∞ and E[|X|etX ] < ∞ for every t ∈ R. Show that once again ϕ′(t) =

E[XetX ]. (Hint: Use the notation (1.3.1) to write X = X+ −X−.)

Exercise 1.9.

Suppose X is a random variable on some probability space (Ω,F ,P), A is a set in
F , and for every Borel subset B of R, we have

∫

A
IB(X(ω))dP(ω) = P(A) · P{X ∈ B}. (1.9.3)

Then we say that X is independent of the event A.
Show that if X is independent of an event A, then

∫

A
g(X(ω))dP(ω) = P(A) · Eg(X)

for every nonnegative, Borel-measurable function g.

Exercise 1.10.

Let P be the uniform (Lebesgue) measure on Ω = [0, 1]. Define

Z(ω) =





0 if 0 ≤ ω < 1
2 ,

2 if 1
2 ≤ ω ≤ 1.

For A ∈ B[0, 1], define

P̃(A) =

∫

A
Z(ω)dP(ω).

(i) Show that P̃ is a probability measure,

(ii) Show that if P(A) = 0, then P̃(A) = 0. We say that P̃ is absolutely continuous
with respect to P.

(iii) Show that there is a set A for which P̃(A) = 0 but P(A) > 0. In other words, P̃
and P are not equivalent.
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Exercise 1.11.

In Example 1.6.6, we began with a standard normal random variable X under
a measure P. According to Exercise 1.6, this random variable has the moment-
generating function

EeuX = e
1
2
u2

for all u ∈ R.

The moment-generating function of a random variable determines its distribution. In
particular, any random variable that has moment-generating function e

1
2
u2

must be
standard normal.

In Example 1.6.6, we also defined Y = X + θ, where θ is a constant, we set
Z = e−θX− 1

2
θ2

, and we defined P̃ by the formula (1.6.9):

P̃(A) =

∫

A
Z(ω)dP(ω) for all A ∈ F .

We showed by considering its cumulative distribution function that Y is a standard
normal random variable under P̃. Give another proof that Y is standard normal under
P̃ by verifying the moment-generating function formula

ẼeuY = e
1
2
u2

for all u ∈ R.

Exercise 1.12.

In Example 1.6.6, we began with a standard normal random variable X on a prob-
ability space (Ω,F ,P) and defined the random variable Y = X + θ, where θ is a
constant. We also defined Z = e−θX− 1

2
θ2

and used Z as the Radon-Nikodym deriva-
tive to construct the probability measure P̃ by the formula (1.6.9):

P̃(A) =

∫

A
Z(ω)dP(ω) for all A ∈ F .

Under P̃, the random variable Y was shown to be standard normal.
We now have a standard normal random variable Y on the probability space

(Ω,F , P̃), and X is related to Y by X = Y − θ. By what we have just stated, with X

replaced by Y and θ replaced by −θ, we could define Ẑ = eθY− 1
2
θ2

and then use Ẑ as
a Radon-Nikodym derivative to construct a probability measure P̂ by the formula

P̂(A) =

∫

A
Ẑ(ω)dP̃(ω) for all A ∈ F ,

so that, under P̂, the random variable X is standard normal. Show that Ẑ = 1
Z and

P̂ = P.

Exercise 1.13 (Change of measure for a normal random variable).

A nonrigorous but informative derivation of the formula for the Radon-Nikodym
derivative Z(ω) in Example 1.6.6 is provided by this exercise. As in that example,
let X be a standard normal random variable on some probability space (Ω,F ,P), and
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let Y = X + θ. Our goal is to define a strictly positive random variable Z(ω) so that
when we set

P̃(A) =

∫

A
Z(ω)dP(ω) for all A ∈ F , (1.9.4)

the random variable Y under P̃ is standard normal. If we fix ω̄ ∈ Ω and choose a set
A that contains ω̄ and is “small,” then (1.9.4) gives

P̃(A) ≈ Z(ω̄)P(A),

where the symbol ≈ means “is approximately equal to.” Dividing by P(A), we see
that

P̃(A)

P(A)
≈ Z(ω̄)

for “small” sets A containing ω̄. We use this observation to identify Z(ω̄).
With ω̄ fixed, let x = X(ω̄). For ε > 0, we define B(x, ε) =

[
x− ε

2 , x + ε
2

]
to be

the closed interval centered at x and having length ε. Let y = x + θ and B(y, ε) =[
y − ε

2 , y + ε
2

]
.

(i) Show that
1

ε
P{X ∈ B(x, ε)} ≈ 1√

2π
exp

{
−X2(ω̄)

2

}
.

(ii) In order for Y to be a standard normal random variable under P̃, show that we
must have

1

ε
P{Y ∈ B(y, ε)} ≈ 1√

2π
exp

{
−Y 2(ω̄)

2

}
.

(iii) Show that {X ∈ B(x, ε)} and {Y ∈ B(y, ε)} are the same set, which we call
A(ω̄, ε). This set contains ω̄ and is “small” when ε > 0 is small.

(iv) Show that
P̃(A)

P(A)
≈ exp

{
−θX(ω̄)− 1

2
θ2

}
.

The right-hand side is the value we obtained for Z(ω̄) in Example 1.6.6.

Exercise 1.14 (Change of measure for an exponential random variable).

Let X be a nonnegative random variable defined on a probability space (Ω,F ,P)

with the exponential distribution, which is

P{X ≤ a} = 1− e−λa, a ≥ 0,

where λ is a positive constant. Let λ̃ be another positive constant, and define

Z =
λ̃

λ
e−(λ̃−λ)X .

Define P̃ by

P̃(A) =

∫

A
ZdP for all A ∈ F .
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(i) Show that P̃(Ω) = 1.

(ii) Compute the cumulative distribution function

P̃{X ≤ a} for a ≥ 0

for the random variable X under the probability measure P̃.

Exercise 1.15 (Provided by Alexander Ng).

Let X be a random variable on a probability space (Ω,F ,P), and assume X has a
density function f(x) that is positive for every x ∈ R. Let g be a strictly increasing,
differentiable function satisfying

lim
y→−∞ g(y) = −∞, lim

y→∞ g(y) = ∞,

and define the random variable Y = g(X).
Let h(y) be an arbitrary nonnegative function satisfying

∫∞
−∞ h(y)dy = 1. We want

to change the probability measure so that h(y) is the density function for the random
variable Y . To do this, we define

Z =
h
(
g(X)

)
g′(X)

f(X)
.

(i) Show that Z is nonnegative and EZ = 1.
Now define P̃ by

P̃(A) =

∫

A
ZdP for all A ∈ F .

(ii) Show that Y has density h under P̃.



Chapter 2

Information and Conditioning

2.1 Information and σ-algebras

The no-arbitrage theory of derivative security pricing is based on contingency plans.
In order to price a derivative security, we determine the initial wealth we would need
to set up a hedge of a short position in the derivative security. The hedge must specify
what position we will take in the underlying security at each future time contingent
on how the uncertainty between the present time and that future time is resolved.
In order to make these contingency plans, we need a way to mathematically model
the information on which our future decisions can be based. In the binomial model,
that information was knowledge of the coin tosses between the initial time and the
future time. For the continuous-time model, we need to develop somewhat more
sophisticated machinery to capture this concept of information.

We imagine as always that some random experiment is performed, and the out-
come is a particular ω in the set of all possible outcomes Ω. We might then be given
some information—not enough to know the precise value of ω but enough to nar-
row down the possibilities. For example, the true ω might be the result of three coin
tosses, and we are told only the first one. Or perhaps we are told the stock price at
time two without being told any of the coin tosses. In such a situation, although we
do not know the true ω precisely, we can make a list of sets that are sure to contain
it and other sets that are sure not to contain it. These are the sets that are resolved by
the information.

Indeed, suppose Ω is the set of eight possible outcomes of three coin tosses. If we
are told the outcome of the first coin toss only, the sets

AH = {HHH, HHT,HTH, HTT}, AT = {THH, THT, TTH, TTT} (2.1.1)

are resolved. For each of these sets, once we are told the first coin toss, we know if
the true ω is a member. The empty set ∅ and the whole space Ω are always resolved,
even without any information; the true ω does not belong to ∅ and does belong to Ω.
The four sets that are resolved by the first coin toss form the σ-algebra

F1 = {∅, Ω, AH , AT}.

We shall think of this σ-algebra as containing the information learned by observing
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the first coin toss. More precisely, if instead of being told the first coin toss, we are
told, for each set in F1, whether or not the true ω belongs to the set, we know the
outcome of the first coin toss and nothing more.

If we are told the first two coin tosses, we obtain a finer resolution. In particular,
the four sets

AHH = {HHH, HHT}, AHT = {HTH,HTT},
ATH = {THH, THT}, ATT = {TTH, TTT},

(2.1.2)

are resolved. Of course, the sets in F1 are still resolved. Whenever a set is resolved,
so is its complement, which means that Ac

HH , Ac
HT , Ac

TH , and Ac
TT are resolved.

Whenever two sets are resolved, so is their union, which means that AHH ∪ ATH ,
AHH ∪ ATT , AHT ∪ ATH , and AHT ∪ ATT are resolved. We have already noted
that the two other pairwise unions, AH = AHH ∪ AHT and AT = ATH ∪ ATT , are
resolved. The triple unions are also resolved, and these are the complements already
mentioned, e.g.,

AHH ∪ AHT ∪ ATH = Ac
TT .

In all, we have 16 resolved sets that together form a σ-algebra we call F2; i.e.,

F2 =

{
∅, Ω, AH , AT , AHH , AHT , ATH , ATT , Ac

HH , Ac
HT , Ac

TH , Ac
TT ,

AHH ∪ ATH , AHH ∪ ATT , AHT ∪ ATH , AHT ∪ ATT

}
. (2.1.3)

We shall think of this σ-algebra as containing the information learned by observing
the first two coin tosses.

If we are told all three coin tosses, we know the true ω and every subset of Ω

is resolved. There are 256 subsets of Ω and, taken all together, they constitute the
σ-algebra F3:

F3 = The set of all subsets of Ω.

If we are told nothing about the coin tosses, the only resolved sets are ∅ and Ω. We
form the so-called trivial σ-field F0 with these two sets:

F0 = {∅, Ω}.
We have then four σ-algebras, F0, F1, F2, and F3, indexed by time. As time moves

forward, we obtain finer resolution. In other words, if n < m, then Fm contains every
set in Fn and even more. This means that Fm contains more information than Fn.
The collection of σ-algebras F0, F1, F2, F3 is an example of a filtration. We give the
continuous-time formulation of this situation in the following definition.

Definition 2.1.1. Let Ω be a nonempty set. Let T be a fixed positive number, and
assume that for each t ∈ [0, T ] there is a σ-algebra F(t). Assume further that if s ≤ t,
then every set in F(s) is also in F(t). Then we call the collection of σ-algebras F(t),
0 ≤ t ≤ T , a filtration.

A filtration tells us the information we will have at future times. More precisely,
when we get to time t, we will know for each set in F(t) whether the true ω lies in
that set.
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Example 2.1.2.

Suppose our sample space is Ω = C0[0, T ], the set of continuous functions defined
on [0, T ] taking the value zero at time zero. Suppose one of these functions ω̄ is
chosen at random and we get to observe it up to time t, where 0 ≤ t ≤ T . That
is to say, we know the value of ω̄(s) for 0 ≤ s ≤ t, but we do not know the value
of ω̄(s) for t < s ≤ T . Certain subsets of Ω are resolved. For example, the set
{ω ∈ Ω, max0≤s≤t ω(s) ≤ 1} is resolved. We would put this in the σ-algebra F(t).
Other subsets of Ω are not resolved by time t. For example, if t < T , the set {ω ∈
Ω; ω(T ) > 0} is not resolved by time t. Indeed, the sets that are resolved by time t

are just those sets that can be described in terms of the path of ω up to time t1. Every
reasonable2 subset of Ω = C0[0, T ] is resolved by time T . By contrast, at time zero
we see only the value of ω̄(0), which is equal to zero by the definition of Ω. We learn
nothing about the outcome of the random experiment of choosing ω̄ by observing this.
The only sets resolved at time zero are ∅ and Ω, and consequently F(0) = {∅, Ω}.

¤

Example 2.1.2 provides the simplest setting in which we may construct a Brown-
ian motion. It remains only to assign probability to the sets in F = F(T ), and then
the paths ω ∈ C0[0, T ] will be the paths of the Brownian motion.

The discussion preceding Definition 2.1.1 suggests that the σ-algebras in a filtra-
tion can be built by taking unions and complements of certain fundamental sets in the
way F2 was constructed from the four sets AHH , AHT , ATH , and ATT . If this were
the case, it would be enough to work with these so-called atoms (indivisible sets in
the σ-algebra) and not consider all the other sets. In uncountable sample spaces,
however, there are sets that cannot be constructed as countable unions of atoms (and
uncountable unions are forbidden because we cannot add up probabilities of such
unions). For example, let us fix t ∈ (0, T ) in Example 2.1.2. Now choose a contin-
uous function f(u), defined only for 0 ≤ u ≤ t and satisfying f(0) = 0. The set of
continuous functions ω ∈ C0[0, T ] that agree with f on [0, t] and that are free to take
any values on (t, T ] form an atom in Ft. In symbols, this atom is

{ω ∈ C0[0, T ]; ω(u) = f(u) for all u ∈ [0, t]}.

Each time we choose a new function f(u), defined for 0 ≤ u ≤ t, we get a new atom.
However, there is no way to obtain the important set {ω ∈ Ω; ω(t) > 0} by taking
countable unions of these atoms. Moreover, it is usually the case that the atoms have
zero probability. Consequently, in what follows we work with all the sets of F(t),
especially those with positive probability, not with just the atoms.

Besides observing the evolution of an economy over time, which is the idea behind
Example 2.1.2, there is a second way we might acquire information about the value

1For technical reasons, we would not include in F(t) sets such as {ω ∈ Ω;max0≤s≤t ω(s) ∈ B} if B is a
subset of R that is not Borel measurable. This technical issue can safely be ignored.

2Once again, there are pathological sets such as {ω ∈ Ω; ω(T ) ∈ B}, where B is a subset of R that is not
Borel measurable. These are not included in F(T ), but that shall not concern us.
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of ω. Let X be a random variable. We assume throughout that there is a “formula”
for X, and we know this formula even before the random experiment is performed.
Because we already know this formula, we are waiting only to learn the value of ω

to substitute into the formula so we can evaluate X(ω). But suppose that rather than
being told the value of ω we are told only the value of X(ω). This resolves certain
sets. For example, if we know the value of X(ω), then we know if ω is in the set
{X ≤ 1} (yes if X(ω) ≤ 1 and no if X(ω) > 1). Indeed, every set of the form
{X ∈ B}, where B is a subset of R, is resolved. Again, for technical reasons, we
restrict attention to subsets B that are Borel measurable.

Definition 2.1.3. Let X be a random variable defined on a nonempty sample space
Ω. The σ-algebra generated by X, denoted σ(X), is the collection of all subsets of Ω

of the form {X ∈ B}3, where B ranges over the Borel subsets of R.

Example 2.1.4.

We return to the three-period model of Example 1.2.1 of Chapter 1. In that model,
Ω is the set of eight possible outcomes of three coin tosses, and

S2(HHH) = S2(HHT ) = 16,

S2(HTH) = S2(HTT ) = S2(THH) = S2(THT ) = 4,

S2(TTH) = S2(TTT ) = 1.

In Example 1.2.2 of Chapter 1, we wrote S2 as a function of the first two coin tosses
alone, but now we include the irrelevant third toss in the argument to get the full
picture. If we take B to be the set containing the single number 16, then {S2 ∈
B} = {HHH, HHT} = AHH , where we are using the notation of (2.1.2). It follows
that AHH belongs to the σ-algebra σ(S2). Similarly, we can take B to contain the
single number 4 and conclude that AHT ∪ ATH belongs to σ(S2), and we can take
B to contain the single number 1 to see that ATT belongs to σ(S2). Taking B = ∅,
we obtain ∅. Taking B = R, we obtain Ω. Taking B = [4, 16], we obtain the set
AHH ∪AHT ∪ATH . In short, as B ranges over the Borel subsets of R, we will obtain
the list of sets

∅, Ω, AHH , AHT ∪ ATH , ATT

and all unions and complements of these. This is the σ-algebra σ(S2).
Every set in σ(S2) is in the σ-algebra F2 of (2.1.3), the information contained in

the first two coin tosses. On the other hand, AHT and ATH appear separately in F2

and only their union appears in σ(S2). This is because seeing the first two coin tosses
allows us to distinguish an initial head followed by a tail from an initial tail followed
by a head, but knowing only the value of S2 does not permit this. There is enough
information in F2 to determine the value of S2 and even more. We say that S2 is
F2-measurable.

¤
3We recall that {X ∈ B} is shorthand notation for the subset {ω ∈ Ω; X(ω) ∈ B} of Ω.
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Definition 2.1.5. Let X be a random variable defined on a nonempty sample space
Ω. Let G be a σ-algebra of subsets of Ω. If every set in σ(X) is also in G, we say that
X is G- measurable.

A random variable X is G-measurable if and only if the information in G is suf-
ficient to determine the value of X. If X is G-measurable, then f(X) is also G-
measurable for any Borel-measurable function f ; if the information in G is sufficient
to determine the value of X, it will also determine the value of f(X). If X and Y

are G-measurable, then f(X,Y ) is G-measurable for any Borel-measurable function
f(x, y) of two variables. In particular, X + Y and XY are G-measurable.

A portfolio position ∆(t) taken at time t must be F(t)-measurable (i.e., must de-
pend only on information available to the investor at time t). We revisit a concept
first encountered in Definition 2.4.1 of Chapter 2 of Volume I.

Definition 2.1.6. Let Ω be a nonempty sample space equipped with a filtration F(t),
0 ≤ t ≤ T . Let X(t) be a collection of random variables indexed by t ∈ [0, T ]. We say
this collection of random variables is an adapted stochastic process if, for each t, the
random variable X(t) is F(t)-measurable.

In the continuous-time models of this text, asset prices, portfolio processes (i.e.,
positions), and wealth processes (i.e., values of portfolio processes) will all be adapted
to a filtration that we regard as a model of the flow of public information.

2.2 Independence

When a random variable is measurable with respect to a σ-algebra G, the information
contained in G is sufficient to determine the value of the random variable. The other
extreme is when a random variable is independent of a σ-algebra. In this case, the
information contained in the σ-algebra gives no clue about the value of the random
variable. Independence is the subject of the present section. In the more common
case, when we have a σ-algebra G and a random variable X that is neither measur-
able with respect to G nor independent of G, the information in G is not sufficient to
evaluate X, but we can estimate X based on the information in G. We take up this
case in the next section.

In contrast to the concept of measurability, we need a probability measure in order
to talk about independence. Consequently, independence can be affected by changes
of probability measure; measurability is not.

Let (Ω,F ,P) be a probability space. We say that two sets A and B in F are inde-
pendent if

P(A ∩B) = P(A) · P(B).

For example, in Ω = {HH,HT, TH, TT} with 0 ≤ p ≤ 1, q = 1− p, and

P(HH) = p2, P(HT ) = pq, P(TH) = pq, P(TT ) = q2,
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the sets
A = {head on first toss} = {HH,HT}

and
B = {head on second toss} = {HH,TH}

are independent. Indeed,

P(A ∩B) = P(HH) = p2 and P(A)P(B) = (p2 + pq)(p2 + pq) = p2.

Independence of sets A and B means that knowing that the outcome ω of a random
experiment is in A does not change our estimation of the probability that it is in B.
If we know the first toss results in head, we still have probability p for a head on the
second toss.

In a similar way, we want to define independence of two random variables X and
Y to mean that if ω occurs and we know the value of X(ω) (without actually knowing
ω), then our estimation of the distribution of Y is the same as when we did not know
the value of X(ω). The formal definitions are the following.

Definition 2.2.1. Let (Ω,F ,P) be a probability space, and let G and H be sub-σ-
algebras of F (i.e., the sets in G and the sets in H are also in F). We say these two
σ-algebras are independent if

P(A ∩B) = P(A) · P(B) for all A ∈ G, B ∈ H.

Let X and Y be random variables on (Ω,F ,P). We say these two random variables
are independent if the σ-algebras they generate, σ(X) and σ(Y ), are independent. We
say that the random variable X is independent of the σ-algebra G if σ(X) and G are
independent.

Recall that σ(X) is the collection of all sets of the form {X ∈ C}, where C ranges
over the Borel subsets of R. Similarly, every set in σ(Y ) is of the form {Y ∈ D}.
Definition 2.2.1 says that X and Y are independent if and only if

P{X ∈ C and Y ∈ D} = P{X ∈ C} · P{Y ∈ D}

for all Borel subsets C and D of R.

Example 2.2.2.

Recall the space Ω of three independent coin tosses on which the stock price ran-
dom variables of Figure 1.2.2 of Chapter 1 are constructed. Let the probability mea-
sure P be given by

P(HHH) = p3, P(HHT ) = p2q, P(HTH) = p2q, P(HTT ) = pq2,

P(THH) = p2q, P(THT ) = pq2, P(TTH) = pq2, P(TTT ) = q3.

Intuitively, the random variables S2 and S3 are not independent because if we know
that S2 takes the value 16, then we know that S3 is either 8 or 32 and is not 2 or
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.50. To formalize this, we consider the sets {S3 = 32} = {HHH} and {S2 = 16} =

{HHH, HHT}, whose probabilities are P{S3 = 32} = p3 and P{S2 = 16} = p2. In
order to have independence, we must have

P{S2 = 16 and S3 = 32} = P{S2 = 16} · P{S3 = 32} = p5.

But P{S2 = 16 and S3 = 32} = P(HHH) = p3, so independence requires p = 1 or
p = 0. Indeed, if p = 1, then after learning that S2 = 16, we do not revise our estimate
of the distribution of S3; we already knew it would be 32. If p = 0, then S2 cannot be
16, and we do not have to worry about revising our estimate of the distribution of S3

if this occurs because it will not occur.
As the previous discussion shows, in the interesting cases of 0 < p < 1, the random

variables S2 and S3 are not independent. However, the random variables S2 and S3

S2

are independent. Intuitively, this is because S2 depends on the first two tosses, and S3

S2

depends on the third toss only. The σ-algebra generated by S2 comprises ∅, Ω3, the
atoms (fundamental sets)

{S2 = 16} = {HHH, HHT},
{S2 = 4} = {HTH,HTT, THH, THT},
{S2 = 1} = {TTH, TTT},

and their unions. The σ-algebra generated by S3

S2
comprises ∅, Ω3, and the atoms

{
S3

S2
= 2

}
= {HHH, HTH, THH, TTH},

{
S3

S2
=

1

2

}
= {HHT,HTT, THT, TTT}.

To verify independence, we can conduct a series of checks of the form

P
{

S2 = 16 and
S3

S2
= 2

}
= P{S2 = 16} · P

{
S3

S2
= 2

}
.

The left-hand side of this equality is

P
{

S2 = 16 and
S3

S2
= 2

}
= P{HHH} = p3,

and the right-hand side is

P{S2 = 16} · P
{

S3

S2
= 2

}

= P{HHH, HHT} · P{HHH, HTH, THH, TTH}
= p2 · p.

Indeed, for every A ∈ σ(S2) and every B ∈ σ
(

S3

S2

)
, we have

P(A ∩B) = P(A) · P(B).

¤
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We shall often need independence of more than two random variables. We make the
following definition.

Definition 2.2.3. Let (Ω,F ,P) be a probability space and let G1,G2,G3, . . . be a se-
quence of sub-σ-algebras of F . For a fixed positive integer n, we say that the n

σ-algebras G1,G2, . . . ,Gn are independent if

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1) · P(A2) · . . . · P(An)

for all A1 ∈ G1, A2 ∈ G2, . . . , An ∈ Gn.

Let X1, X2, X3, . . . be a sequence of random variables on (Ω,F ,P). We say the n ran-
dom variables X1, X2, . . . , Xn are independent if the σ-algebras σ(X1), σ(X2), . . . , σ(Xn)

are independent. We say the full sequence of σ-algebras G1,G2,G3, . . . is independent
if, for every positive integer n, the n σ-algebras G1,G2, . . . ,Gn are independent. We
say the full sequence of random variables X1, X2, X3, . . . is independent if for every
positive integer n, the n random variables X1, X2, . . . , Xn are independent.

Example 2.2.4.

The infinite independent coin-toss space (Ω∞,F ,P) of Example 1.1.4 of Chapter
1 exhibits the kind of independence described in Definition 2.2.3. Let Gk be the σ-
algebra of information associated with the kth toss. In other words, Gk comprises the
sets ∅, Ω∞, and the atoms

{ω ∈ Ω∞; ωk = H} and {ω · · · ∈ Ω∞; ωk = T}.
Note that Gk is different from Fk in Example 1.1.4 of Chapter 1, the σ-algebra asso-
ciated with the first k tosses. Under the probability measure constructed in Example
1.1.4 of Chapter 1, the full sequence of σ-algebras G1,G2,G3, . . . is independent. Now
recall the sequence of the random variables of (1.2.8) of Chapter 1:

Yk(ω) =





1 if ωk = H,

0 if ωk = T.

The full sequence of random variables Y1, Y2, Y3, . . . is likewise independent.

¤

The definition of independence of random variables, which was given in terms of
independence of σ-algebras that they generate, is a strong condition that is concep-
tually useful but difficult to check in practice. We illustrate the first point with the
following theorem and thereafter give a second theorem that simplifies the verifica-
tion that two random variables are independent. Although this and the next section
treat only the case of a pair of random variables, there are analogues of these results
for n random variables.

Theorem 2.2.5. Let X and Y be independent random variables, and let f and g

be Borel-measurable functions on R. Then f(X) and g(Y ) are independent random
variables.
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Proof. Let A be in the σ-algebra generated by f(X). This σ-algebra is a sub-σ-algebra
of σ(X). To see this, recall that, by definition, every set A in σ(f(X)) is of the form
{ω ∈ Ω; f(X(ω)) ∈ C}, where C is a Borel subset ofR. We define D = {x ∈ R; f(x) ∈
C} and then have

A = {ω ∈ Ω; f(X(ω)) ∈ C} = {ω ∈ Ω, X(ω) ∈ D}. (2.2.1)

The set on the right-hand side of (2.2.1) is in σ(X), so A ∈ σ(X).
Let B be in the σ-algebra generated by g(Y ). This σ-algebra is a sub-σ-algebra

of σ(Y ), so B ∈ σ(Y ). Since X and Y are independent, we have P(A ∩ B) = P(A) ·
P(B).

Definition 2.2.6. Let X and Y be random variables. The pair of random variables
(X,Y ) takes values in the plane R2, and the joint distribution measure of (X,Y ) is
given by4

µX,Y (C) = P{(X,Y ) ∈ C} for all Borel sets C ⊂ R2. (2.2.2)

This is a probability measure (i.e., a way of assigning measure between 0 and 1 to
subsets of R2 so that µX,Y (R2) = 1 and the countable additivity property is satisfied).
The joint cumulative distribution function of (X,Y ) is

FX,Y (a, b) = µX,Y

(
(−∞, a]× (∞, b]

)
= P{X ≤ a, Y ≤ b}, a ∈ R, b ∈ R. (2.2.3)

We say that a nonnegative, Borel-measurable function fX,Y (x, y) is a joint density for
the pair of random variables (X,Y ) if

µX,Y (C) =

∫ ∞

−∞

∫ ∞

−∞
IC(x, y)fX,Y (x, y)dydx for all Borel sets C ⊂ R2. (2.2.4)

Condition (2.2.4) holds if and only if

FX,Y (a, b) =

∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y)dydx for all a ∈ R, b ∈ R. (2.2.5)

The distribution measures (generally called the marginal distribution measures in
this context) of X and Y are

µX(A) = P{X ∈ A} = µX,Y (A× R) for all Borel subsets A ⊂ R,

µY (B) = P{Y ∈ B} = µX,Y (R×B) for all Borel subsets B ⊂ R.

The (marginal) cumulative distribution functions are

FX(a) = µX(−∞, a] = P{X ≤ a} for all a ∈ R,

FY (b) = µY (−∞, b] = P{Y ≤ b} for all b ∈ R.

If the joint density fX,Y exists, then the marginal densities exist and are given by

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy and fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx.

4One way to generate the σ-algebra of Borel subsets of R2 is to start with the collection of closed rectangles
[a1, b1] × [a2, b2] and then add all other sets necessary in order to have a σ-algebra. Any set in this resulting
σ-algebra is called a Borel subset of R2. All subsets of R2 normally encountered belong to this σ-algebra.
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The marginal densities, if they exist, are nonnegative, Borel-measurable functions
that satisfy

µX(A) =

∫

A
fX(x)dx for all Borel subsets A ⊂ R,

µY (B) =

∫

B
fY (y)dy for all Borel subsets B ⊂ R.

These last conditions hold if and only if

FX(a) =

∫ a

−∞
fX(x)dx for all a ∈ R, (2.2.6)

FY (b) =

∫ b

−∞
fY (y)dy for all b ∈ R. (2.2.7)

Theorem 2.2.7. Let X and Y be random variables. The following conditions are
equivalent.

(i) X and Y are independent.

(ii) The joint distribution measure factors:

µX,Y (A×B) = µX(A) · µY (B) for all Borel subsets A ⊂ R, B ⊂ R. (2.2.8)

(iii) The joint cumulative distribution function factors:

FX,Y (a, b) = FX(a) · FY (b) for all a ∈ R, b ∈ R. (2.2.9)

(iv) The joint moment-generating function factors:

EeuX+vY = EeuX · EevY (2.2.10)

for all u ∈ R, v ∈ R for which the expectations are finite.

If there is a joint density, each of the conditions above is equivalent to the fol-
lowing.

(v) The joint density factors:

fX,Y (x, y) = fX(x) · fY (y) for almost every x ∈ R, y ∈ R. (2.2.11)

The conditions above imply but are not equivalent to the following.

(vi) The expectation factors:
E[XY ] = EX · EY, (2.2.12)

provided E|XY | < ∞.

OUTLINE OF PROOF: We sketch the various steps that constitute the proof of this
theorem.
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(i)⇒(ii) Assume that X and Y are independent. Then

µX,Y (A×B) = P{X ∈ A and Y ∈ B}
= P

({X ∈ A} ∩ {Y ∈ B})

= P{X ∈ A} · P{Y ∈ B}
= µX(A) · µY (B).

(ii)⇒(i) A typical set in σ(X) is of the form {X ∈ A}, and a typical set in σ(Y ) is
of the form {Y ∈ B}. Assume (ii). Then

P
({X ∈ A} ∩ {Y ∈ B}) = P{X ∈ A and Y ∈ B}

= µX,Y (A×B)

= µX(A) · µY (B)

= P{X ∈ A} · P{Y ∈ B}.
This shows that every set in σ(X) is independent of every set in σ(Y ).

(ii)⇒(iii) Assume (2.2.8). Then

FX,Y (a, b) = µX,Y

(
(−∞, a]× (−∞, b]

)

= µX(−∞, a] · µY (−∞, b]

= FX(a) · FY (b).

(iii)⇒(ii) Equation (2.2.9) implies that (2.2.8) holds whenever A is of the form
A = (−∞, a] and B is of the form B = (−∞, b]. This is enough to establish (2.2.8)
for all Borel sets A and B, but the details of this are beyond the scope of the text.

(iii)⇒(v) If there is a joint density, then (iii) implies
∫ a

−∞

∫ b

−∞
fX,Y (x, y)dydx =

∫ a

−∞
fX(x)dx ·

∫ b

−∞
fY (y)dy.

Differentiating first with respect to a and then with respect to b, we obtain

fX,Y (a, b) = fX(a) · fY (b),

which is just (2.2.11) with different dummy variables.
(v)⇒(iii) Assume there is a joint density. If we also assume (2.2.11), we can

integrate both sides to get

FX,Y (a, b) =

∫ a

−∞

∫ b

−∞
fX,Y (x, y)dydx

=

∫ a

−∞

∫ b

−∞
fX(x) · fY (y)dydx

=

∫ a

−∞
fX(x)dx ·

∫ b

−∞
fY (y)dy

= FX(a) · FY (b).

(i)⇒(iv) We first use the “standard machine” as in the proof of Theorem 1.5.1 of
Chapter 1, starting with the case when h is the indicator function of a Borel subset of
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R2, to show that, for every real-valued, Borel-measurable function h(x, y) on R2, we
have

E|h(X,Y )| =
∫

R2

|h(x, y)|dµX,Y (x, y),

and if this quantity is finite, then

Eh(X,Y ) =

∫

R2

h(x, y)dµX,Y (x, y). (2.2.13)

This is true for any pair of random variables X and Y , whether or not they are inde-
pendent. If X and Y are independent, then the joint distribution µX,Y is a product of
marginal distributions, and this permits us to rewrite (2.2.13) as

Eh(X,Y ) =

∫ ∞

−∞

∫ ∞

−∞
h(x, y)dµY (y)dµX(x). (2.2.14)

We now fix numbers u and v and take h(x, y) = eux+vy. Equation (2.2.14) reduces to

EeuX+vY =

∫ ∞

−∞

∫ ∞

−∞
eux+vydµY (y)dµX(x)

=

∫ ∞

−∞
euxdµX(x) ·

∫ ∞

−∞
euydµY (y)

= EeuX · EevY ,

where we have used Theorem 1.5.1 of Chapter 1 for the last step. The proof (iv)⇒(i)
is beyond the scope of this text.

(i)⇒(vi) In the special case when h(x, y) = xy, (2.2.14) reduces to

E[XY ] =

∫ ∞

−∞
xdµX(x) ·

∫ ∞

−∞
ydµY (y) = EX · EY,

where again we have used Theorem 1.5.1 of Chapter 1 for the last step.

Example 2.2.8. (Independent normal random variables).

Random variables X and Y are independent and standard normal if they have the
joint density

fX,Y (x, y) =
1

2π
e−

1
2
(x2+y2) for all x ∈ R, y ∈ R.

This is the product of the marginal densities

fX(x) =
1√
2π

e−
1
2
x2

and fY (y) =
1√
2π

e−
1
2
y2

.

We use the notation
N(a) =

1√
2π

∫ a

−∞
e−

1
2
x2

dx (2.2.15)

for the standard normal cumulative distribution function. The joint cumulative distri-
bution function for (X,Y ) factors:

FX,Y (a, b) =

∫ a

−∞

∫ b

−∞
fX(x)fY (y)dydx

=

∫ a

−∞
fX(x)dx ·

∫ b

−∞
fY (y)dy

= N(a) ·N(b).
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The joint distribution µX is the probability measure on R2 that assigns a measure to
each Borel set C ⊂ R2 equal to the integral of fx,y(x, y) over C. If C = A×B, where
A ∈ B(R) and B ∈ B(R), then µX,Y factors:

µX,Y (A×B) =

∫

A

∫

B
fX(x)fY (y)dydx

=

∫

A
fX(x)dx ·

∫

B
fY (y)dy

= µX(A) · µY (B).

¤

We give an example to show that property (vi) of Theorem 2.2.7 does not imply
independence. We precede this with a definition.

Definition 2.2.9. Let X be a random variable whose expected value is defined. The
variance of X, denoted Var(X),

is
Var(X) = E

[
(X − EX)2

]
.

Because (X − EX)2 is nonnegative, Var(X) is always defined, although it may be
infinite. The

standard deviation of X is
√

Var(X). The linearity of expectations shows that

Var(X) = E[X2]− (EX)2.

Let Y be another random variable and assume that EX, Var(X), EY and Var(Y ) are
all finite. The covariance of X and Y is

Cov(X,Y ) = E
[
(X − EX)(Y − EY )

]
.

The linearity of expectations shows that

Cov(X,Y ) = E[XY ]− EX · EY.

In particular, E[XY ] = EX · EY if and only if Cov(X,Y ) = 0. Assume, in addition to
the finiteness of expectations and variances, that Var(X) > 0 and Var(Y ) > 0. The
correlation coefficient of X and Y is

ρ(X,Y ) =
Cov(X,Y )√

Var(X) Var(Y )
.

If ρ(X,Y ) = 0 (or equivalent, Cov(X,Y ) = 0), we say that X and Y are uncorrelated.

Property (vi) of Theorem 2.2.7 implies that independent random variables are un-
correlated. The converse is not true, even for normal random variables, although it is
true of jointly normal random variables (see Definition 2.2.11 below).

Example 2.2.10. (Uncorrelated, dependent normal random variables)
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Let X be a standard normal random variable and let Z be independent of X and
satisfy5

P{Z = 1} =
1

2
and P{Z = −1} =

1

2
. (2.2.16)

Define Y = ZX. We show below that, like X, the random variable Y is standard
normal. Furthermore, X and Y are uncorrelated, but they are not independent. The
pair (X,Y ) does not have a joint density.

Let us first determine the distribution of Y . We compute

FY (b) = P{Y ≤ b}
= P{Y ≤ b and Z = 1}+ P{Y ≤ b and Z = −1}
= P{X ≤ b and Z = 1}+ P{−X ≤ b and Z = −1}.

Because X and Z are independent, we have

P{X ≤ b and Z = 1}+ P{−X ≤ b and Z = −1}
= P{Z = 1} · P{X ≤ b}+ P{Z = −1} · P{−X ≤ b}
=

1

2
P{X ≤ b}+

1

2
P{−X ≤ b}.

Because X is a standard normal random variable, so is −X. Therefore, P{X ≤ b} =

P{−X ≤ b} = N(b). It follows that FY (b) = N(b); in other words, Y is a standard
normal random variable.

Since EX = EY = 0, the covariance of X and Y is

Cov(X,Y ) = E[XY ] = E[ZX2].

Because Z and X are independent, so are Z and X2, and we may use Theorem
2.2.7(vi) to write

E[ZX2] = EZ · E[X2] = 0 · 1 = 0.

Therefore, X and Y are uncorrelated.
The random variables X and Y cannot be independent for if they were, then |X|

and |Y | would also be independent (Theorem 2.2.5). But |X| = |Y |. In particular,

P{|X| ≤ 1, |Y | ≤ 1} = P{|X| ≤ 1} = N(1)−N(−1),

and
P{|X| ≤ 1} · P{|Y | ≤ 1} =

(
N(1)−N(−1)

)2
.

These two expressions are not equal, as they would be for independent random vari-
ables.

Finally, we want to examine the joint distribution measure µX,Y of (X,Y ). Since
|X| = |Y |, the pair (X,Y ) takes values only in the set

C = {(x, y); x = ±y}.
5To construct such random variables, we can choose Ω = {(ω1, ω2); 0 ≤ ω1 ≤ 1, 0 ≤ ω2 ≤ 1} to be the

unit square and choose P to be the two-dimensional Lebesgue measure according to which P(A) is equal to
the area of A for every Borel subset of Ω. We then set X(ω1, ω2) = N−1(ω1), which is a standard normal
random variable under P (see Example 1.2.6 for a discussion of this probability integral transform). We set
Z(ω1, ω2) to be −1 if 0 ≤ ω2 ≤ 1

2 and to be 1 if 1
2 < ω2 ≤ 1.
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In other words, µX,Y (C) = 1 and µX,Y (Cc) = 0. But C has zero area. It follows that
for any nonnegative function f , we must have

∫ ∞

−∞

∫ ∞

−∞
IC(x, y)f(x, y)dydx = 0.

One way of thinking about this is to observe that if we want to integrate a function
IC(x, y)f(x, y) over the plane R2, we could first fix x and integrate out the y-variable,
but since f(x, y)IC(x, y) is zero except when y = x and y = −x, we will get zero.
When we next integrate out the x-variable, we will be integrating the zero function,
and the end result will be zero. There cannot be a joint density for (X,Y ) because
with this choice of the set C, the left- hand side of (2.2.4) is one but the right-hand
side is zero. Of course, X and Y have marginal densities because they are both
standard normal. Moreover, the joint cumulative distribution function exists (as it
always does). In this case, it is

FX,Y (a, b) = P{X ≤ a and Y ≤ b}
= P{X ≤ a,X ≤ b, and Z = 1}+ P{X ≤ a,−X ≤ b, and Z = −1}
= P{Z = 1} · P{X ≤ min(a, b)}+ P{Z = −1} · P{−b ≤ X ≤ a}
=

1

2
N

(
min(a, b)

)
+

1

2
max{N(a)−N(−b), 0}.

There is no joint density fX,Y (x, y) that permits us to write this function in the form
(2.2.5).

¤

Definition 2.2.11. Two random variables X and Y are said to be jointly normal if
they have the joint density

fX,Y (x, y) =
1

2πσ1σ2

√
1− ρ2

exp

{
− 1

2(1− ρ2)

[
(x− µ1)

2

σ2
1

−2ρ(x− µ1)(y − µ2)

σ1σ2
+

(y − µ2)
2

σ2
2

]}
,

(2.2.17)

where σ1 > 0, σ2 > 0, |ρ| < 1, and µ1, µ2 are real numbers. More generally, a
random column vector X = (X1, . . . , Xn)′, where the superscript ′ denotes transpose,
is jointly normal if it has joint density

fx(x) =
1√

(2π)n det(C)
exp

{
−1

2
(x− µ)C−1(x− µ)′

}
. (2.2.18)

In equation (2.2.18), x = (x1, . . . , xn) is a row vector of dummy variables, µ =

(µ1, . . . , µn) is the row vector of expectations, and C is the positive definite matrix
of covariances.

In the case of (2.2.17), X is normal with expectation µ1 and variance σ2
1, Y is

normal with expectation µ2 and variance σ2
2, and the correlation between X and Y

is ρ. The density factors (equivalently, X and Y are independent) if and only if
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ρ = 0. In the case (2.2.18), the density factors into the product of n normal densities
(equivalently, the components of X are independent) if and only if C is a diagonal
matrix (all the covariances are zero).

Linear combinations of jointly normal random variables (i.e., sums of constants
times the random variables) are jointly normal. Since independent normal random
variables are jointly normal, a general method for creating jointly normal random
variables is to begin with a set of independent normal random variables and take
linear combinations. Conversely, any set of jointly normal random variables can be
reduced to linear combinations of independent normal random variables. We do this
reduction for a pair of correlated normal random variables in Example 2.2.12 below.

Since the distribution of jointly normal random variables is characterized in terms
of means and covariances, and joint normality is preserved under linear combina-
tions, it is not necessary to deal directly with the density when making linear changes
of variables. The following example illustrates this point.

Example 2.2.12.

Let (X,Y ) be jointly normal with the density (2.2.17). Define W = Y − ρσ2

σ1
X.

Then X and W are independent. To verify this, it suffices to show that X and W have
covariance zero since they are jointly normal. We compute

Cov(X,W ) = E
[
(X − EX)(W − EW )

]

= E
[
(X − EX)(Y − EY )

]− E
[
ρσ2

σ1
(X − EX)2

]

= Cov(X,Y )− ρσ2

σ1
σ2

1

= 0.

The expectation of W is µ3 = µ2 − ρσ2µ1

σ1
, and the variance is

σ2
3 = E

[
(W − EW )2

]

= E
[
(Y − EY )2

]− 2ρσ2

σ1
E

[
(X − EX)(Y − EY )

]
+

ρ2σ2
2

σ2
1

E
[
(X − EX)2

]

= (1− ρ2)σ2
2.

The joint density of X and W is

fX,W (x,w) =
1

2πσ1σ3
exp

{
−(x− µ1)

2

2σ2
1

− (w − µ3)
2

2σ2
3

}
.

Note finally that we have decomposed Y into the linear combination

Y =
ρσ2

σ1
X + W (2.2.19)

of a pair of independent normal random variables X and W .

¤



2.3 General Conditional Expectations 63

2.3 General Conditional Expectations

We consider a random variable X defined on a probability space (Ω,F ,P) and a
sub-σ-algebra G of F . If X is G-measurable, then the information in G is sufficient
to determine the value of X. If X is independent of G, then the information in G
provides no help in determining the value of X. In the intermediate case, we can
use the information in G to estimate but not precisely evaluate X. The conditional
expectation of X given G is such an estimate.

We have already discussed conditional expectations in the binomial model. Let Ω

be the set of all possible outcomes of N coin tosses, and assume these coin tosses
are independent with probability p for head and probability q = 1 − p for tail on
each toss. Let P(ω) denote the probability of a sequence of coin tosses under these
assumptions. Let n be an integer, 1 ≤ n ≤ N − 1, and let X be a random variable.
Then the conditional expectation of X under P, based on the information at time n,
is (see Definition 2.3.1 of Chapter 2)

En[X](ω1 . . . ωn) =
∑

ωn+1...ωN

p#H(ωn+1...ωN )q#Tωn+1...ωN X(ω1 . . . ωnωn+1 . . . ωN ).

(2.3.1)
In the special cases n = 0 and n = N , we define

E0X =
∑

ω0...ωN

p#H(ω0...ωN )q#Tω0...ωN X(ω0 . . . ωN ) = EX, (2.3.2)

EN [X](ω0 . . . ωN ) = X(ω0 . . . ωN ). (2.3.3)

In (2.3.2), we have the estimate of X based on no information, and in (2.3.3) we have
the estimate based on full information.

We need to generalize (2.3.1)-(2.3.3) in a way suitable for a continuous-time
model. Toward that end, we examine (2.3.1) within the context of a three-period
example. Consider the general three-period model of Figure 2.3.1. We assume the
probability of head on each toss is p and the probability of tail is q = 1 − p, and we
compute

E2[S3](HH) = pS3(HHH) + qS3(HHT ), (2.3.4)

E2[S3](HT ) = pS3(HTH) + qS3(HTT ), (2.3.5)

E2[S3](TH) = pS3(THH) + qS3(THT ), (2.3.6)

E2[S3](TT ) = pS3(TTH) + qS3(TTT ). (2.3.7)

Recall the σ-algebra F2 of (2.1.3), which is built up from the four fundamental sets
(we call them atoms because they are indivisible within the σ-algebra) AHH , AHT ,
ATH , and ATT of (2.1.2). We multiply (2.3.4) by P(AHH) = p2, multiply (2.3.5) by
P(AHT ) = pq, multiply (2.3.6) by P(ATH) = pq, and multiply (2.3.7) by P(ATT ) = q2.
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The resulting equations may be written as
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Fig. 2.3.1. General three-period model. 

E2[S3](HH)P(AHH) =
∑

ω∈AHH

S3(ω)P(ω), (2.3.8)

E2[S3](HT )P(AHT ) =
∑

ω∈AHT

S3(ω)P(ω), (2.3.9)

E2[S3](TH)P(ATH) =
∑

ω∈ATH

S3(ω)P(ω), (2.3.10)

E2[S3](TT )P(ATT ) =
∑

ω∈ATT

S3(ω)P(ω). (2.3.11)

We could divide each of these equations by the probability of the atom appearing
as the second factor on the left-hand sides and thereby recover the formulas (2.3.4)-
(2.3.7) for the conditional expectations. However, in the continuous-time model,
atoms typically have probability zero, and such a step cannot be performed. We
therefore take an alternate route here to lay the groundwork for the continuous-time
model.

On each of the atoms of F2, the conditional expectation E2[S3] is constant because
the conditional expectation does not depend on the third toss and the atom is created
by holding the first two tosses fixed. It follows that the left-hand sides of (2.3.8)-
(2.3.11) may be written as integrals of the integrand E2[S3] over the atom. For this
purpose, we shall write E2[S3](ω) = E2[S3](ω1ω2ω3), including the third toss in the
argument, even though it is irrelevant. The right-hand sides of these equations are
sums, which axe Lebesgue integrals on a finite probability space. Using Lebesgue
integral notation, we rewrite (2.3.8)-(2.3.11) as

∫

AHH

E2[S3](ω)dP(ω) =

∫

AHH

S3(ω)dP(ω), (2.3.12)
∫

AHT

E2[S3](ω)dP(ω) =

∫

AHT

S3(ω)dP(ω), (2.3.13)
∫

ATH

E2[S3](ω)dP(ω) =

∫

ATH

S3(ω)dP(ω), (2.3.14)
∫

ATT

E2[S3](ω)dP(ω) =

∫

ATT

S3(ω)dP(ω). (2.3.15)
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In other words, on each of the atoms the value of the conditional expectation has been
chosen to be that constant that yields the same average over the atom as the random
variable S3 being estimated.

We turn our attention now to the other sets in F2. The full list appears in (2.1.3),
and every set on the list, except for the empty set, is a finite union of atoms. If we
add equations (2.3.12) and (2.3.13), we obtain

∫

AH

E2[S3](ω)dP(ω) =

∫

AH

S3(ω)dP(ω).

Similarly, but adding various combinations of (2.3.12)-(2.3.15), we see that
∫

A
E2[S3](ω)dP(ω) =

∫

A
S3(ω)dP(ω) (2.3.16)

for every set A ∈ F2, except possibly for A = ∅. However, if A = ∅, equation (2.3.16)
still holds, with both sides equal to zero. We call (2.3.16) the partial-averaging
property of conditional expectations because it says that the conditional expectation
and the random variable being estimated give the same value when averaged over
“parts” of Ω (those “parts” that are sets in the conditioning σ-algebra F2).

We take (2.3.16) as the defining property of conditional expectations. The precise
definition is the following.

Definition 2.3.1. Let (Ω,F ,P) be a probability space, let G be a sub-σ-algebra of
F , and let X be a random variable that is either nonnegative or integrable. The
conditional expectation of X given G, denoted E[X|G], is any random variable that
satisfies

(i) (Measurability) E[X|G] is G-measurable, and

(ii) (Partial averaging)
∫

A
E[X|G](ω)dP(ω) =

∫

A
X(ω)dP(ω) for all A ∈ G. (2.3.17)

If G is the σ-algebra generated by some other random variable W (i.e., G = σ(W )),
we generally write E[X|W ] rather than E[X|σ(W )].

Property (i) in Definition 2.3.1 guarantees that, although the estimate of X based
on the information in G is itself a random variable, the value of the estimate E[X|G]

can be determined from the information in G. Property (i) captures the fact that the
estimate E[X|G] of X is based on the information in G. Note in (2.3.4)-(2.3.7) that
the conditional expectation E2[S3] is constant on the atoms of F2. this is property (i)
for this case.

The second property ensures that E[X|G] is indeed an estimate of X. It gives the
same averages as X over all the sets in G. If G has many sets, which provide a fine
resolution of the uncertainty inherent in ω, then this partial-averaging property over
the “small” sets in G says that E[X|G] is a good estimator of X. If G has only a few
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sets, this partial-averaging property guarantees only that E[X|G] is a crude estimate
of X.

Definition 2.3.1 raises two immediate questions. First, does there always exist a
random variable E[X|G] satisfying properties (i) and (ii)? Second, if there is a random
variable satisfying these properties, is it unique? The answer to the first question
is yes, and the proof of the existence of E[X|G] is based on the Radon-Nikodym
Theorem, Theorem 1.6.7 (see Appendix B). The answer to the second question is a
qualified yes, as we now explain. Suppose Y and Z both satisfy conditions (i) and (ii)
of Definition 2.3.1. Because both Y and Z are G-measurable, their difference Y − Z

is as well, and thus the set A = {Y − Z > 0} is in G. From (2.3.17), we have
∫

A
Y (ω)dP(ω) =

∫

A
X(ω)dP(ω) =

∫

A
Z(ω)dP(ω),

and thus ∫

A

(
Y (ω)− Z(ω)

)
dP(ω) = 0.

The integrand is strictly positive on the set A, so the only way this equation can hold
is for A to have probability zero (i.e., Y ≤ Z almost surely). We can reverse the roles
of Y and Z in this argument and conclude that Z ≤ Y almost surely. Hence Y = Z

almost surely. This means that although different procedures might result in different
random variables when determining E[X|G], these different random variables will
agree almost surely. The set of ω for which the random variables are different has
zero probability.

In this more general context, conditional expectations still have the five fundamen-
tal properties developed in Theorem 2.3.2 of Chapter 2 of Volume I. We restate them
in the present context.

Definition 2.3.2. Let (Ω,F ,P) be a probability space and let G be a sub-σ-algebra of
F .

(i) (Linearity of conditional expectations) If X and Y are integrable random
variables and c1 and c2 are constants, then

E[c1X + c2Y |G] = c1E[X|G] + c2E[Y |G]. (2.3.18)

This equation also holds if we assume that X and Y are nonnegative (rather
than integrable) and c1 and c2 are positive, although both sides may be +∞.

(ii) (Taking out what is known) If X and Y are integrable random variables, Y

and XY are integrable, and X is G-measurable, then

E[XY |G] = XE[Y |G]. (2.3.19)

This equation also holds if we assume that X is positive and Y is nonnegative
(rather than integrable), although both sides may be +∞.
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(iii) (Iterated conditioning) If H is a sub-σ algebra of G (H contains less informa-
tion than G) and X is an integrable random variable, then

E
[
E[X|G]|H]

= E[X|H]. (2.3.20)

This equation also holds if we assume that X is nonnegative (rather than inte-
grable), although both sides may be +∞.

(iv) (Independence) If X is integrable and independent of G, then

E[X|G] = EX. (2.3.21)

This equation also holds if we assume that X is nonnegative (rather than inte-
grable), although both sides may be +∞.

(v) (Conditional Jensen’s inequality) If ϕ(x) is a convex function of a dummy
variable x and X is integrable, then

E
[
ϕ(X)|G] ≥ ϕ

(
E[X|G]

)
. (2.3.22)

Discussion and sketch of proof: We take each of these properties in turn.

(i) Linearity allows us to separate the estimation of random variables into esti-
mation of separate pieces and then add the estimates of the pieces to estimate
the whole. To verify that E[c1X + c2Y |G] is given by the right-hand side of
(2.3.18), we observe that the right-hand side is G-measurable because E[X|G]

and E[Y |G] are G-measurable and then must check the partial-averaging prop-
erty (ii) of Definition 2.3.1. Using the fact that E[X|G] and E[Y |G] themselves
satisfy the partial-averaging property, we have for every A ∈ G that

∫

A

(
c1E[X|G](ω) + c2E[Y |G](ω)

)
dP(ω)

= c1

∫

A
E[X|G](ω)dP(ω) + c2

∫

A
E[Y |G](ω)dP(ω)

= c1

∫

A
X(ω)dP(ω) + c2

∫

A
Y (ω)dP(ω)

=

∫

A

(
c1X(ω) + c2Y (ω)

)
dP(ω),

which shows that c1E[X|G] + c2E[Y |G] satisfies the partial-averaging property
that characterizes E[c1X + c2Y |G] and hence is E[c1X + c2Y |G].

(ii) Taking out what is known permits us to remove X from the estimation problem
if its value can be determined from the information in G. To estimate XY , it
suffices to estimate Y alone and then multiply the estimate by X. To prove
(2.3.19), we observe first that XE[Y |G] is G-measurable because both X and
E[Y |G] are G-measurable. We must check the partial-averaging property.

Let us first consider the case when X is a G-measurable indicator random vari-
able (i.e., X = IB, where B is a set in G). Using the fact that E[Y |G] itself
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satisfies the partial-averaging property, we have for every set A ∈ G that
∫

A
X(ω)E[Y |G](ω)dP(ω) =

∫

A∩B
E[Y |G](ω)dP(ω)

=

∫

A∩B
Y (ω)dP(ω)

=

∫

A
X(ω)Y (ω)dP(ω).

(2.3.23)

Having proved (2.3.23) for G-measurable indicator random variables X, we may
use the standard machine developed in the proof of Theorem 1.5.1 of Chapter 1
to obtain this equation for all G-measurable random variables X for which XY

is integrable. This shows that XE[Y |G] satisfies the partial-averaging condition
that characterizes E[XY |G], and hence XE[Y |G] is the conditional expectation
E[XY |G].

(iii) If we estimate X based on the information in G and then estimate the estimate
based on the smaller amount of information inH, we obtain the random variable
we would have gotten by estimating X directly based on the smaller amount of
information in H. To prove this, we observe first that E[X|H] is H-measurable
by definition. The partial-averaging property that characterizes E

[
E[X|G]|H]

is
∫

A
E

[
E[X|G]|H]

(ω)dP(ω) =

∫

A
E[X|G](ω)dP(ω) for all A ∈ H.

In order to prove (2.3.20), we must show that we can replace E
[
E[X|G]|H]

on
the left-hand side of this equation by E[X|H]. But when A ∈ H, it is also in G,
and the partial-averaging properties for E[X|H] and E[X|G] imply

∫

A
E[X|H](ω)dP(ω) =

∫

A
X(ω)dP(ω) =

∫

A
E[X|G](ω)dP(ω).

This shows that E[X|H] satisfies the partial-averaging property that charac- ter-
izes E

[
E[X|G]|H]

, and hence E[X|H] is E
[
E[X|G]|H]

.

(iv) If X is independent of the information in G, then the best estimate we can give
of X is its expected value. This is also the estimate we would give based on no
information. To prove this, we observe first that EX is G-measurable. Indeed,
EX is not random and so is measurable with respect to every σ-algebra. We
need to verify that EX satisfies the partial-averaging property that characterizes
E[X|G]; i.e.,

∫

A
EXdP(ω) =

∫

A
X(ω)dP(ω) for all A ∈ G. (2.3.24)

Let us consider first the case when X is an indicator random variable indepen-
dent of G (i.e., X = IB, where the set B is independent of G). For all A ∈ G, we
have then∫

A
X(ω)dP(ω) = P(A ∩B) = P(A) · P(B) = P(A)EX =

∫

A
EXdP(ω),
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and (2.3.24) holds. We complete the proof using the standard machine devel-
oped in the proof of Theorem 1.5.1 of Chapter 1.

(v) Using the linearity of conditional expectations, we can repeat the proof of The-
orem 2.2.5 of Chapter 2 to prove the conditional Jensen’s inequality.

We note that E[X|G] is an unbiased estimator of X:

E
(
E[X|G]

)
= EX. (2.3.25)

This equality is just the partial-averaging property (2.3.17) with A = Ω.

Example 2.3.3.

Let X and Y be a pair of jointly normal random variables with joint density
(2.2.17). As in

Example 2.2.12, define W = Y − ρσ2

σ1
X so that X and W are independent and

(2.2.19)
holds:

Y =
ρσ2

σ1
X + W. (2.3.26)

In Example 2.2.12, we saw that W is normal with mean µ3 = µ2− ρσ2µ1

σ1
and variance

σ2
3 = (1 − ρ2)σ2

2. Let us take the conditioning σ-algebra to be G = σ(X). (When G
is generated by a random variable X, it is customary to write E[· · · |X] rather than
E[· · · |σ(X)].) We estimate Y , based on X, using (2.2.19) above and properties (i)
(Linearity) and (iv) (Independence) from Theorem 2.3.2 to get the

linear regression equation

E[Y |X] =
ρσ2

σ1
X + EW =

ρσ2

σ1
(X − µ1) + µ2. (2.3.27)

Note that the right-hand side of (2.3.26) is random but is σ(X)-measurable (i.e., if we
know the information in σ(X), which is the same as knowing the value of X, then we
can evaluate E[Y |X]). Subtracting (2.3.26) from (2.2.19), we see that the error made
by the estimator is

Y − E[Y |X] = W − EW.

The error is random, with expected value zero (the estimator is unbiased), and is
independent of the estimate E[Y |X] (because E[Y |X] is σ(X)-measurable and W is
independent of σ(X)). The independence between the error and the conditioning
random variable X is a consequence of the joint normality in the example. In general,
the error and the conditioning random variable are uncorrelated, but not necessarily
independent; see Exercise 2.8.

¤

The Independence Lemma, Lemma 2.5.3 of Chapter 2 of Volume I, now takes the
following more general form.
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Lemma 2.3.4 (Independence). Let (Ω,F ,P) be a probability space, and let G be
a sub-σ-algebra of F . Suppose the random variables X1, . . . , XK are G-measurable
and the random variables Y1, . . . , YL, are independent of G. Let f(x1, . . . , xK , y1, . . . , yL)

be a function of the dummy variables x1, . . . , xK and y1, . . . , yL, and define

g(x1, . . . , xK) = Ef(x1, . . . , xK , Y1, . . . , YL). (2.3.28)

Then
E

[
f(X1, . . . , XK , Y1, . . . , YL)|G]

= g(X1, . . . , XK). (2.3.29)

As with Lemma 2.5.3 of Volume I, the idea here is that since the information
in G is sufficient to determine the values of X1, . . . , XK , we should hold these ran-
dom variables constant when estimating f(X1, . . . , XK , Y1, . . . , YK). The other ran-
dom variables, Y1, . . . , YL, are independent of G, and so we should integrate them
out without regard to the information in G. These two steps, holding X1, . . . , XK

constant and integrating out Y1, . . . , YL, are accomplished by (2.3.27). We get an esti-
mate that depends on the values of X1, . . . , XK and, to capture this fact, we replaced
the dummy (nonrandom) variables x1, . . . , xK by the random variables X1, . . . , XK

at the last step. Although Lemma 2.5.3 of Volume I has a relatively simple proof,
the proof of Lemma 2.3.4 requires some measure-theoretic ideas beyond the scope
of this text, and will not be given.

Example 2.3.3 continued.
Continuing with the notation of Example 2.3.3, suppose we want to estimate some

function f(x, y) of the random variables X and Y based on knowledge of X. We can-
not use the Independence Lemma directly because X and Y are not independent.
However, we can write Y as Y = ρσ2

σ1
X + W . Because X is σ(X)-measurable, W

is independent of σ(X) and W is normal with mean µ3 and variance σ2
3, the Inde-

pendence Lemma tells us how to compute E[f(X,Y )|X]. We should first replace
the random variable X by a dummy variable x and then take the expectation (i.e.,
integrate with respect to the distribution of W ). Thus, we define

g(x) = Ef

(
x,

ρσ2

σ1
x + W

)

=
1

σ3

√
2π

∫ ∞

−∞
f

(
x,

ρσ2

σ1
x + w

)
exp

{
−(w − µ3)

2

2σ2
3

}
.

Then
E

[
f(X,Y )|X]

= g(X).

Our final answer is random but σ(X)-measurable, as it should be.

¤

We have all the tools required to introduce martingales and Markov processes in
a continuous-time framework. The definitions are provided below. Examples will be
given after we construct Brownian motion and Itô integrals in the next chapters.
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Definition 2.3.5. Let (Ω,F ,P) be a probability space, let T be a fixed positive number,
and let F(t), 0 ≤ t ≤ T , be a filtration of sub-σ-algebras of F . Consider an adapted
stochastic process M(t), 0 ≤ t ≤ T .

(i) If
E[M(t)|F(s)] = M(s) for all 0 ≤ s ≤ t ≤ T ,

we say this process is a martingale. It has no tendency to rise or fall.

(ii) If
E[M(t)|F(s)] ≤ M(s) for all 0 ≤ s ≤ t ≤ T ,

we say this process is a submartingale. It has no tendency to fall; it may have a
tendency to rise.

(iii) If
E[M(t)|F(s)] ≥ M(s) for all 0 ≤ s ≤ t ≤ T ,

we say this process is a supermartingale. It has no tendency to rise; it may have
a tendency to fall.

Definition 2.3.6. Let (Ω,F ,P) be a probability space, let T be a fixed positive number,
and let F(t), 0 ≤ t ≤ T , be a filtration of sub-σ-algebras of F . Consider an adapted
stochastic process X(t), 0 ≤ t ≤ T . Assume that for all 0 ≤ s ≤ t ≤ T and for
every nonnegative, Borel-measurable function f , there is another Borel-measurable
function g such that

E
[
f(X(t))|F(s)

]
= g(X(s)). (2.3.30)

Then we say that the X is a Markov process.

Remark 2.3.7. In Definition 2.3.6, the function f is permitted to depend on t, and the
function g will depend on s. These dependencies are not indicated in (2.3.29) because
we wish there to emphasize how the dependence on the sample point ω works (i.e.,
the right-hand side depends on ω only through the random variable X(s)). If we
indicate the dependence on time by writing f(t, x) rather than f(x), we can write
f(s, x) rather than g(x) (we do not need different symbols f and g because the time
variables t and s indicate we are dealing with different functions of x at the different
times) and can rewrite (2.3.29) as

E
[
f(t,X(t))|F(s)

]
= f(s,X(s)), 0 ≤ s ≤ t ≤ T. (2.3.31)

Ultimately, we shall see that when we regard f(t, x) as a function of two variables
this way, (2.3.30) implies that it satisfies a partial differential equation. This partial
differential equation gives us a way to determine f(s, x) if we know f(t, x). The
Black-Scholes-Merton partial differential equation is a special case of this.

¤
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2.4 Summary

In measure-theoretic probability, information is modeled using σ-algebras. The in-
formation associated with a σ-algebra G can be thought of as follows. A random
experiment is performed and an outcome ω is determined, but the value of ω is not
revealed. Instead, for each set in the σ-algebra G, we are told whether ω is in the set.
The more sets there are on G, the more information this provides. If G is the trivial
σ-algebra containing only ∅ and Ω, this provides no information.

A random variable X is G-measurable if and only if the set {X ∈ B} = {ω ∈
Ω, X(ω) ∈ B} is in G for every Borel subset of R. In this case, the information in G is
enough to determine the value of the random variable X(ω), even though it may not
be enough to determine the value ω of the outcome of the random experiment.

At the other extreme, the information in a σ-algebra G may be irrelevant to the
determination of the value of X. In this case, we say that G and X are independent.
This idea is captured mathematically by Definition 2.2.3, which says that X and G
are independent if, for every set A ∈ G and every Borel subset B of R, we have

P{ω ∈ Ω; ω ∈ A and X(ω) ∈ B} = P(A) · P{ω ∈ Ω; X(ω) ∈ B}.

Two random variables X and Y are independent if and only if the σ algebra generated
by X, defined to be the collection of sets of the form {X ∈ B}, is independent of the
σ-algebra generated by Y . In other words, X and Y are independent if and only if

P{X ∈ B and Y ∈ C} = P{X ∈ B} · P{X ∈ C} for all B ∈ B(R), C ∈ B(R),

where B(R) denotes the σ-algebra of Borel subsets of R. There are several equivalent
ways to describe independence between two random variables having to do with
factoring the

joint cumulative distribution function, factoring the joint moment-generating func-
tion, and factoring the joint density (if there is a joint density). These are set out in
Theorem 2.2.7. Independence implies uncorrelatedness, but uncorrelated random
variables do not need to be independent. Jointly normally distributed random vari-
ables (Definition 2.2.11) are uncorrelated if and only if they are independent, but
normally distributed random variables do not need to be jointly normal.

Often we find ourselves between the two extremes of random variables X that are
G-measurable and random variables X that are independent of G. In such a case, the
information in G is relevant to the determination of the value of X but is not sufficient
to completely determine it. We then want to use the information in G to estimate X.
We denote our estimate by E[X|G] and call this the conditional expectation of X given
G. This is itself a random variable, but one that is G-measurable (i.e., one that we can
evaluate using only the information in G). To be sure this is a good estimate of X, we
require that it satisfy the partial-averaging property (see Definition 2.3.1(ii)):

∫

A
E[X|G](ω)dP(ω) =

∫

A
X(ω)dP(ω) for every A ∈ G.
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Conditional expectations behave in many ways like expectations, except that expec-
tations do not depend on ω and conditional expectations do. The principal properties
of conditional expectations are provided in Theorem 2.3.2, and these are reported
briefly here.

Linearity: E[c1X + c2Y |G] = c1E[X|G] + c2E[Y |G].

Taking out what is known: E[XY |G] = XE[Y |G] if X is G-measurable.
Iterated conditioning: E

[
E[X|G]|H]

= E[X|H] if H is a sub-σ -algebra of G.
Independence: E[X|G] = EX if X is independent of G.
Jensen’s inequality: E[ϕ(X)|G] ≥ ϕ

(
E[X|G]

)
if ϕ is convex.

In continuous-time finance, we work within the framework of a probability space
(Ω,F ,P). We normally have a fixed final time T and then have a filtration, which
is a collection of σ-algebras {F(t); 0 ≤ t ≤ T} indexed by the time variable t. We
interpret F(t) as the information available at time t. For 0 ≤ s ≤ t ≤ T , every set
in F(s) is also in F(t). In other words, information increases over time. Within this
context, an adapted stochastic process is a collection of random variables {X(t); 0 ≤
t ≤ T} also indexed by time such that, for every t, X(t) is F(t)-measurable; the
information at time t is sufficient to evaluate the random variable X(t). We think
of X(t) as the price of some asset at time t and F(t) as the information obtained by
watching all the prices in the market up to time t.

Two important classes of adapted stochastic processes are martingales and Markov
processes. These are defined in Definitions 2.3.5 and 2.3.6, respectively. A martin-
gale has the property that

E[M(t)|F(s)] = M(s) for all 0 ≤ s ≤ t ≤ T .

If E[M(t)|F(s)] ≥ M(s) when 0 ≤ s ≤ t ≤ T , we have a submartingale. If the in-
equality is reversed, we have a supermartingale. A Markov process has the property
that whenever 0 ≤ s ≤ t ≤ T and we are given a function f , there is another function
g such that

E
[
f(X(t))|F(s)

]
= g(X(s)).

The important feature here is that the estimate of f(X(t)) made at time s depends
only on the process value X(s) at time s and not on the path of the process before
time s.

A useful tool for establishing that a process is Markov is the Independence Lemma,
Lemma 2.3.4. The simplest version of this says that if X is a G-measurable random
variable and Y is independent of G, then

E[f(X,Y )|G] = g(X),

where g(x) = Ef(x, Y ).
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2.5 Notes

In the measure-theoretic view of probability theory, a conditional expectation is itself
a random variable, measurable with respect to the conditioning σ-algebra. This point
of view is indispensable for treating the rather complicated conditional expectations
that arise in martingale theory. It was invented by Kolmogorov [104]. The term
martingale was apparently first used by Ville [158], who assigned the name to a
betting strategy. The concept dates back to 1934 work of Levy. The first systematic
treatment of martingales was provided by Doob[53].

2.6 Exercises

Exercise 2.1.

Let (Ω,F ,P) be a general probability space, and suppose a random variable X on
this space is measurable with respect to the trivial σ-algebra F0 = {∅, Ω}. Show that
X is not random (i.e., there is a constant c such that X(ω) = c for all ω ∈ Ω). Such a
random variable is called degenerate.

Exercise 2.2.

Independence of random variables can be affected by changes of measure. To
illustrate this point, consider the space of two coin tosses Ω2 = {HH,HT, TH, TT},
and let stock prices be given by

S0 = 4, S1(H) = 8, S1(T ) = 2,

S2(HH) = 16, S2(HT ) = S2(TH) = 4, S2(TT ) = 1.

Consider two probability measures given by

P̃(HH) = 1
4 , P̃(HT ) = 1

4 , P̃(TH) = 1
4 , P̃(TT ) = 1

4 ,

P(HH) = 4
9 , P(HT ) = 2

9 , P(TH) = 2
9 , P(TT ) = 1

9 .

Define the random variable

X =





1 if S2 = 4,

0 if S2 6= 4.

(i) List all the sets in σ(X).

(ii) List all the sets in σ(S1).

(iii) Show that σ(X) and σ(S1) are independent under the probability measure P̃.

(iv) Show that σ(X) and σ(S1) are not independent under the probability measure P.
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(v) Under P, we have P{S1 = 8} = 2
3 and P{S1 = 2} = 1

3 . Explain intuitively
why, if you are told that X = 1, you would want to revise your estimate of the
distribution of S1.

Exercise 2.3 (Rotating the axes).

Let X and Y be independent standard normal random variables. Let θ be a con-
stant, and define random variables

V = X cos θ + Y sin θ and W = −X sin θ + Y cos θ.

Show that V and W are independent standard normal random variables.

Exercise 2.4.

In Example 2.2.8, X is a standard normal random variable and Z is an independent
random variable satisfying

P{Z = 1} = P{Z = −1} =
1

2
.

We defined Y = XZ and showed that Y is standard normal. We established that
although X and Y are uncorrelated, they are not independent. In this exercise, we
use moment-generating functions to show that Y is standard normal and X and Y are
not independent.

(i) Establish the joint moment-generating function formula

EeuX+vY = e
1
2
(u2+v2) · euv + e−uv

2
.

(ii) Use the formula above to show that EevY = e
1
2
v2

. This is the moment-generating
function for a standard normal random variable, and thus Y must be a standard
normal random variable.

(iii) Use the formula in (i) and Theorem 2.2.7(iv) to show that X and Y are not
independent.

Exercise 2.5.

Let (X,Y ) be a pair of random variables with joint density function

fX,Y (x, y) =





2|x|+y√
2π

exp
{
− (2|x|+y)2

2

}
if y ≥ −|x|,

0 if y < −|x|.

Show that X and Y are standard normal random variables and that they are uncorre-
lated but not independent.

Exercise 2.6.
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Consider a probability space Ω with four elements, which we call a, b, c, and d

(i.e., Ω = {a, b, c, d}). The σ-algebra F is the collection of all subsets of Ω; i.e., the
sets in F are

Ω, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d},
{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},
{a}, {b}, {c}, {d}, ∅.

We define a probability measure P by specifying that

P{a} =
1

6
, P{b} =

1

3
, P{c} =

1

4
, P{d} =

1

4
,

and, as usual, the probability of every other set in F is the sum of the probabilities of
the elements in the set, e.g., P{a, b, c} = P{a}+ P{b}+ P{c} = 3

4 .
We next define two random variables, X and Y , by the formulas

X(a) = 1, X(b) = 1, X(c) = −1, X(d) = −1,

Y (a) = 1, Y (b) = −1, Y (c) = 1, Y (d) = −1.

We then define Z = X + Y .

(i) List the sets in σ(X).

(ii) Determine E[Y |X] (i.e., specify the values of this random variable for a, b, c,
and d). Verify that the partial-averaging property is satisfied.

(iii) Determine E[Z|X]. Again, verify the partial-averaging property.

(iv) Compute E[Z|X] − E[Y |X]. Citing the appropriate properties of conditional
expectation from Theorem 2.3.2, explain why you get X.

Exercise 2.7.

Let Y be an integrable random variable on a probability space (Ω,F ,P) and let G
be a sub-σ-algebra of F . Based on the information in G, we can form the estimate
E[Y |G] of Y and define the error of the estimation Err = Y −E[Y |G]. This is a random
variable with expectation zero and some variance Var(Err). Let X be some other G-
measurable random variable, which we can regard as another estimate of Y . Show
that

Var(Err) ≤ Var(Y −X).

In other words, the estimate E[Y |G] minimizes the variance of the error among all
estimates based on the information in G. (Hint: Let µ = E(Y − X). Compute the
variance of Y −X as

E
[
(Y −X − µ)2

]
= E

[(
(Y − E[Y |G]) + (E[Y |G]−X − µ)

)2
]
.

Multiply out the right-hand side and use iterated conditioning to show the cross-term
is zero.)
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Exercise 2.8.

Let X and Y be integrable random variables on a probability space (Ω,F ,P). Then
Y = Y1 + Y2, where Y1 = E[Y |X] is σ(X)-measurable and Y2 = Y − E[Y |X]. Show
that Y2 and X are uncorrelated. More generally, show that Y2 is uncorrelated with
every σ(X)-measurable random variable.

Exercise 2.9.

Let X be a random variable.

(i) Give an example of a probability space (Ω,F ,P), a random variable X defined
on this probability space, and a function f so that the σ-algebra generated by
f(X) is not the trivial σ-algebra {∅, Ω} but is strictly smaller than the σ-algebra
generated by X.

(ii) Can the σ-algebra generated by f(X) ever be strictly larger than the σ-algebra
generated by X?

Exercise 2.10.

Let X and Y be random variables (on some unspecified probability space (Ω,F ,P)),
assume they have a joint density fX,Y (x, y), and assume E|Y | < ∞. In particular, for
every Borel subset C of R2, we have

P{(X,Y ) ∈ C} =

∫

C
fX,Y (x, y)dxdy.

In elementary probability, one learns to compute E[Y |X = x], which is a nonran-
dom function of the dummy variable x, by the formula

E[Y |X = x] =

∫ ∞

−∞
yfY |X(y|x)dy, (2.6.1)

where fY |X(y|x) is the conditional density defined by

fY |X(y|x) =
fX,Y (x, y)

fX(x)
.

The denominator in this expression, fX(x) =
∫∞
−∞ fX,Y (x, η)dη, is the marginal den-

sity of X, and we must assume it is strictly positive for every x. We introduce the
symbol g(x) for the function E[Y |X = x] defined by (2.6.1); i.e.,

g(x) =

∫ ∞

−∞
yfY |X(y|x)dy =

∫ ∞

−∞

yfX,Y f(x, y)

fX(x)
dy.

In measure-theoretic probability, conditional expectation is a random variable
E[Y |X]. This exercise is to show that when there is a joint density for (X,Y ), this
random variable can be obtained by substituting the random variable X in place of
the dummy variable x in the function g(x). In other words, this exercise is to show
that

E[Y |X] = g(X).
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(We introduced the symbol g(x) in order to avoid the mathematically confusing ex-
pression E[Y |X = X].)

Since g(X) is obviously σ(X)-measurable, to verify that E[Y |X] = g(X), we
need only check that the partial-averaging property is satisfied. For every Borel-
measurable function h mapping R to R and satisfying E|h(X)| < ∞, we have

Eh(X) =

∫ ∞

−∞
h(x)fX(x)dx. (2.6.2)

This is Theorem 1.5.2 in Chapter 1. Similarly, if h is a function of both x and y, then

Eh(X,Y ) =

∫ ∞

−∞

∫ ∞

−∞
h(x, y)fX,Y (x, y)dxdy (2.6.3)

whenever (X,Y ) has a joint density fX,Y (x, y). You may use both (2.6.2) and (2.6.3)
in your solution to this problem.

Let A be a set in σ(X). By the definition of σ(X), there is a Borel subset B of
R such that A = {ω ∈ Ω; X(ω) ∈ B} or, more simply, A = {X ∈ B}. Show the
partial-averaging property ∫

A
g(X)dP =

∫

A
Y dP.

Exercise 2.11.

(i) Let X be a random variable on a probability space (Ω,F ,P), and let W be a
nonnegative σ(X)-measurable random variable. Show there exists a function g

such that W = g(X). (Hint: Recall that every set in σ(X) is of the form {X ∈ B}
for some Borel set B ⊂ R. Suppose first that W is the indicator of such a set,
and then use the standard machine.)

(ii) Let X be a random variable on a probability space (Ω,F ,P), and let Y be a
nonnegative random variable on this space. We do not assume that X and Y

have a joint density. Nonetheless, show there is a function g such that E[Y |X] =

g(X).



Chapter 3

Brownian Motion

3.1 Introduction

In this chapter, we define Brownian motion and develop its basic properties. The
definition of Brownian motion is provided in Section 3.3. Section 3.2 precedes it to
give some intuition. For us, the most important properties of Brownian motion are
that it is a martingale (Theorem 3.3.4) and that it accumulates quadratic variation at
rate one per unit time (Theorem 3.4.3). The notion of quadratic variation is profound.
It makes stochastic calculus different from ordinary calculus. For this reason, we
begin already in Section 3.2 to talk about it.

Sections 3.5-3.7 develop properties of Brownian motion we shall need later but
not in the development of stochastic calculus in Chapter 4. Therefore, the reader can
go to Chapter 4 after completing Section 3.4. The Markov property is the concept
used to relate stochastic calculus to partial differential equations. For Brownian mo-
tion, this property is presented in Section 3.5. The first passage time of Brownian
motion to a level is presented in Section 3.6 and used in Chapter 8 to analyze a per-
petual American put on a geometric Brownian motion. This is in the spirit of the
perpetual American put analysis for the binomial model, which is given in Section
5.4 of Volume I. The reflection principle for Brownian motion developed in Section
3.7 is used in Chapter 7 to price exotic options.

3.2 Scaled Random Walks

3.2.1 Symmetric Random Walk

To create a Brownian motion, we begin with a symmetric random walk, one path of
which is shown in Figure 3.2.1. To construct a symmetric random walk, we repeat-
edly toss a fair coin (p, the probability of H on each toss, and q = 1−p, the probability
of T on each toss, are both equal to 1

2). We denote the successive outcomes of the
tosses by ω = ω1ω2ω3 . . .. In other words, ω is the infinite sequence of tosses, and ωn



80 Brownian Motion

is the outcome of the nth toss. Let

Xj =





1 if ωj = H,

−1 if ωj = T,

(3.2.1)

and define M0 = 0,

Mk =
k∑

j=1

Xj , k = 1, 2, . . . . (3.2.2)

The process Mk, k = 0, 1, 2, . . . is a symmetric random walk. With each toss, it either
steps up one unit or down one unit, and each of the two possibilities is equally likely.

1     2      3      4      5 
0
M

1
M

2
M

3
M

4
M

5
M

1

-1

-2

Fig. 3.2.1. Five steps of a random walk.

3.2.2 Increments of the Symmetric Random Walk

A random walk has independent increments. This means that if we choose nonnega-
tive integers 0 = k0 < k1 < · · · < km, the random variables

Mk1
= (Mk1

−Mk0
), (Mk2

−Mk1
), . . . , (Mkm

−Mkm−1
)

are independent. Each of these random variables,

Mki+1
−Mki

=

ki+1∑

j=ki+1

Xj , (3.2.3)

is called an increment of the random walk. It is the change in the position of the ran-
dom walk between times ki and ki+1. Increments over nonoverlapping time intervals
are independent because they depend on different coin tosses.

Moreover, each increment Mki+1
−Mki

has expected value 0 and variance ki+1−ki.
It is easy to see that the expected value is zero because the expected value of each Xj

appearing on the right-hand side of (3.2.3) is zero. We also have Var(Xj) = EX2
j = 1,

and since the different Xj are independent, we have from (3.2.3) that

Var(Mki+1
−Mki

) =

ki+1∑

j=ki+1

Var(Xj) =

ki+1∑

j=ki+1

1 = ki+1 − ki. (3.2.4)
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The variance of the symmetric random walk accumulates at rate one per unit time,
so that the variance of the increment over any time interval k to ` for nonnegative
integers k < ` is `− k.

3.2.3 Martingale Property for the Symmetric Random Walk

To see that the symmetric random walk is a martingale, we choose nonnegative inte-
gers k < ` and compute

E[M`|Fk] = E
[
(M` −Mk) + Mk|Fk

]

= E[M` −Mk|Fk] + E[Mk|Fk]

= E[M` −Mk|Fk] + Mk

= E[M` −Mk] + Mk = Mk.

(3.2.5)

Here we have used the notation E[· · · |Fk] of Chapter 2 to denote the conditional
expectation based on the information at time k, which in this case is knowledge of
the first k coin tosses. The second equality is a result of the linearity of conditional
expectations (Theorem 2.3.2(i)). The third equality is because Mk depends only on
the first k coin tosses (it is Fk-measurable, where, in the language of Definition 2.1.5,
Fk is the σ-algebra of information corresponding to the first k coin tosses). The fourth
equality follows from independence (Theorem 2.3.2(iv)).

3.2.4 Quadratic Variation of the Symmetric Random Walk

Finally, we consider the quadratic variation of the symmetric random walk. The
quadratic variation up to time k is defined to be

[M,M ]k =
k∑

j=1

(Mj −Mj−1)
2 = k. (3.2.6)

Note that this is computed path-by-path. The quadratic variation up to time k along
a path is computed by taking all the one-step increments Mj −Mj−1 along that path
(these are equal to Xj , which is either 1 or −1, depending on the path), squaring these
increments, and then summing them. Since (Mj −Mj−1)

2 = 1, regardless of whether
Mj −Mj−1 is 1 or −1, the sum in (3.2.6) is equal to

∑k
j=1 1 = k, as reported in that

equation.
We note that [M,M ]k is the same as Var(Mk) (set ki+1 = k and ki = 0 in (3.2.4)),

but the computations of these two quantities are quite different. Var(Mk) is computed
by taking an average over all paths, taking their probabilities into account. If the
random walk were not symmetric (i.e., if p were different from q), this would affect
Var(Mk). By contrast, [M,M ]k is computed along a single path, and the probabilities
of up and down steps do not enter the computation. One can compute the variance
of a random walk only theoretically because it requires an average over all paths,
realized and unrealized. However, from tick-by-tick price data, one can compute
the quadratic variation along the realized path rather explicitly. For a random walk,
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there is the somewhat unusual feature that [M,M ]k does not depend on the particular
path chosen, but we shall see later that the quadratic variation for a random process
generally does depend on the path along which it is computed.

3.2.5 Scaled Symmetric Random Walk

To approximate a Brownian motion, we speed up time and scale down the step size
of a symmetric random walk. More precisely, we fix a positive integer n and define
the scaled symmetric random walk

W (n)(t) =
1√
n

Mnt, (3.2.7)

provided nt is itself an integer. If nt is not an integer, we define W (n)(t) by linear
interpolation between its values at the nearest points s and u to the left and right of
t for which ns and nu are integers. We shall obtain a Brownian motion in the limit
as n → ∞. Figure 3.2.2 shows a simulated path of W (100) up to time 4; this was
generated by 400 coin tosses with a step up or down of size 1

10 on each coin toss.

Like the random walk, the scaled random walk has independent increments. If
0 = t0 < t1 < · · · < tm are such that each ntj is an integer, then

(
W (n)(t1)−W (n)(t0)

)
,
(
W (n)(t2)−W (n)(t1)

)
, . . . ,

(
W (n)(tm)−W (n)(tm−1)

)

are independent. These random variables depend on different coin tosses. For exam-
ple, W (100)(0.20) −W (100)(0) depends on the first 20 coin tosses and W (100)(0.70) −
W (100)(0.20) depends on the next 50 tosses. Furthermore, if 0 ≤ s ≤ t are such that
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ns and nt are integers, then

E
(
W (n)(t)−W (n)(s)

)
= 0, Var

(
W (n)(t)−W (n)(s)

)
= t− s. (3.2.8)

This is because W (n)(t) − W (n)(s) is the sum of n(t − s) independent random vari-
ables, each with expected value zero and variance 1

n . For example, W (100)(0.70) −
W (100)(0.20) is the sum of 50 independent random variables, each of which takes the
value 1

10 or− 1
10 . Each of these random variables has expected value zero and variance

1
100 , so the variance of W (100)(0.70)−W (100)(0.20) is 50 · 1

100 = 0.50.
Let 0 ≤ s ≤ t be given, and decompose W (n)(t) as

W (n)(t) =
(
W (n)(t)−W (n)(s)

)
+ W (n)(s).

If s and t are chosen so that ns and nt are integers, then the first term on the right-hand
side is independent of F(s), the σ-algebra of information available at time s (which
is knowledge of the first ns coin tosses), and W (n)(s) is F(s)-measurable (i.e., it
depends only on the first ns coin tosses). We may prove the martingale property for
the scaled random walk as we did for the random walk in (3.2.5):

E
[
W (n)(t)|F(s)

]
= W (n)(s) (3.2.9)

for 0 ≤ s ≤ t such that ns and nt are integers.
Finally, we consider the quadratic variation of the scaled random walk. For

W (100), the quadratic variation up to a time, say 1.37, is defined to be

[
W (100),W (100)

]
(1.37) =

137∑

j=1

[
W (100)

(
j

100

)
−W (100)

(
j − 1

100

)]2

=
137∑

j=1

[
1

10
Xj

]2

=
137∑

j=1

1

100
= 1.37.

In general, for t ≥ 0 such that nt is an integer,

[
W (n),W (n)

]
(t) =

nt∑

j=1

[
W (n)

(
j

n

)
−W (n)

(
j − 1

n

)]2

=
nt∑

j=1

[
1√
n

Xj

]2

=
nt∑

j=1

1

n
= t.

(3.2.10)

If we go from time 0 to time t along the path of the scaled random walk, evaluating
the increment over each time step and squaring these increments before summing
them, we obtain t, the length of the time interval over which we are doing the com-
putation. This is a path-by-path computation, not an average over all possible paths,
and could in principle depend on the particular path along which we do the compu-
tation. However, along each path we get the same answer t. Note that Var W (n)(t) is
also t (the second equation in (3.2.8) with s = 0), but this latter quantity is an average
over all possible paths.
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3.2.6 Limiting Distribution of the Scaled Random Walk

In Figure 3.2.2 we see a single sample path of the scaled random walk. In other
words, we have fixed a sequence of coin tosses ω = ω1ω2 . . . and drawn the path of
the resulting process as time t varies. Another way to think about the scaled random
walk is to fix the time t and consider the set of all possible paths evaluated at that time
t. In other words, we can fix t and think about the scaled random walk corresponding
to different values of ω, the sequence of coin tosses. For example, set t = 0.25 and
consider the set of possible values of W (100)(0.25) = 1

10M25. This random variable is
generated by 25 coin tosses, and since the unsealed random walk M25 can take the
value of any odd integer between −25 and 25, the scaled random walk W (100)(0.25)

can take any of the values

−2.5,−2.3,−2.1, . . . ,−0.3,−0.1, 0.1, 0.3, . . . , 2.1, 2.3, 2.5.

In order for W (100)(0.25) to take the value 0.1, we must get 13 heads and 12 tails in
the 25 tosses. The probability of this is

P{W (100)(0.25) = 0.1} =
25!

13!12!

(
1

2

)25

= 0.1555. (3.2.11)

We plot this information in Figure 3.2.3 by drawing a histogram bar centered at 0.1
with area 0.1555. Since this bar has width 0.2, its height must be 0.1555

0.2 = 0.7775. Fig-
ure 3.2.3 shows similar histogram bars for all possible values of W (100)(0.25) between
−1.5 and 1.5.
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The random variable W (100)(0.25) has expected value zero and variance 0.25. Su-
perimposed on the histogram in Figure 3.2.3 is the normal density with this mean and
variance. We see that the distribution of W (100)(0.25) is nearly normal. If we were
given a continuous bounded function g(x) and asked to compute Eg

(
W (100)(0.25)

)
,

a good approximation would be obtained by multiplying g(x) by the normal density
shown in Figure 3.2.3 and integrating:

Eg
(
W (100)(0.25)

) ≈ 2√
2π

∫ ∞

−∞
g(x)e−2x2

dx. (3.2.12)

The Central Limit Theorem asserts that the approximation in (3.2.12) is valid. We
provide the version of it that applies to our context.

Theorem 3.2.1 (Central limit). Fix t ≤ 0. As n → ∞, the distribution of the scaled
random walk W (n)(t) evaluated at time t converges to the normal distribution with
mean zero and variance t.

OUTLINE OF PROOF: One can identify distributions by identifying their moment-
generating functions. For the normal density

f(x) =
1√
2πt

e−
x2

2t

with mean zero and variance t, the moment-generating function is

ϕ(u) =

∫ ∞

−∞
euxf(x)dx

=
1√
2πt

∫ ∞

−∞
exp

{
ux− x2

2t

}
dx

= e
1
2
u2t · 1√

2πt

∫ ∞

−∞
exp

{
−(x− ut)2

2t

}
dx

= e
1
2
u2t

(3.2.13)

because 1√
2πt

e−
(x−ut)2

2t is a normal density with mean ut and variance t and hence
integrates to 1.

If t is such that nt is an integer, then the moment-generating function for W (n)(t)

is

ϕn(u) = EeuW (n)(t) = E exp

{
u√
n

Mnt

}

= E exp





u√
n

nt∑

j=1

Xj



 = E

nt∏

j=1

exp

{
u√
n

Xj

}
.

(3.2.14)

Because the random variables are independent, the right-hand side of (3.2.14) may
be written as

nt∏

j=1

E exp

{
u√
n

Xj

}
=

nt∏

j=1

(
1

2
e

u√
n +

1

2
e−

u√
n

)
=

(
1

2
e

u√
n +

1

2
e−

u√
n

)nt

.
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We need to show that, as n →∞,

ϕn(u) =

(
1

2
e

u√
n +

1

2
e−

u√
n

)nt

converges to the moment-generating function ϕ(u) = e
1
2
u2t in (3.2.13). To do this, it

suffices to consider the logarithm of ϕn(u) and show that

log ϕn(u) = nt log

(
1

2
e

u√
n +

1

2
e−

u√
n

)

converges to log ϕ(u) = 1
2u2t.

For this final computation, we make the change of variable x = 1√
n

so that

lim
n→∞ log ϕn(u) = t lim

x↓0
log

(
1
2eux + 1

2e−ux
)

x2
.

If we were to substitute x = 0 into the expression on the right-hand side, we would
obtain 0

0 , and in this situation, we may use L’Hopital’s rule. The derivative of the
numerator with respect to x is

∂

∂x
log

(
1

2
eux +

1

2
e−ux

)
=

u
2eux − u

2e−ux

1
2eux + 1

2e−ux
,

and the derivative of the denominator is
∂

∂x
x2 = 2x.

Therefore,

lim
n→∞ log ϕn(u) = t lim

x↓0

u
2eux − u

2e−ux

2x
(

1
2eux + 1

2e−ux
) =

t

2
lim
x↓0

u
2eux − u

2e−ux

x
,

where we have used the fact that limx↓0
(

1
2eux + 1

2e−ux
)

= 1. If we were to substitute
x = 0 into the expression on the right-hand side, we would again obtain 0

0 . In this
situation, we apply L’Hopital’s rule again. The derivative of the numerator is

∂

∂x

(u

2
eux − u

2
e−ux

)
=

u2

2
eux +

u2

2
e−ux,

and the derivative of the denominator is ∂
∂xx = 1. Hence,

lim
n→∞ log ϕn(u) =

t

2
lim
x↓0

(
u2

2
eux +

u2

2
e−ux

)
=

1

2
u2t,

as desired.

3.2.7 Log-Normal Distribution as the Limit of the Binomial Model

The Central Limit Theorem, Theorem 3.2.1, can be used to show that the limit of a
properly scaled binomial asset-pricing model leads to a stock price with a log-normal
distribution. We present this limiting argument here under the assumption that the
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interest rate r is zero. The case of a nonzero interest rate is outlined in Exercise
3.8. These results show that the binomial model is a discrete-time version of the
geometric Brownian motion model, which is the basis for the Black-Scholes-Merton
option-pricing formula.

Let us build a model for a stock price on the time interval from 0 to t by choosing
an integer n and constructing a binomial model for the stock price that takes n steps
per unit time. We assume that n and t are chosen so that nt is an integer. We take
the up factor to be un = 1 + σ√

n
and the down factor to be dn = 1 − σ√

n
. Here σ is

a positive constant that will turn out to be the volatility of the limiting stock price
process. The risk-neutral probabilities are then (see (1.1.8) of Chapter 1 of Volume
I)

p̃ =
1 + r − dn

un − dn
=

σ/
√

n

2σ/
√

n
=

1

2
, q̃ =

un − 1− r

un − dn
=

σ/
√

n

2σ/
√

n
=

1

2
.

The stock price at time t is determined by the initial stock price S(0) and the result
of the first nt coin tosses. The sum of the number of heads Hnt and number of tails
Tnt in the first nt coin tosses is nt, a fact that we write as

nt = Hnt + Tnt.

The random walk Mnt is the number of heads minus the number of tails in these nt

coin tosses:
Mnt = Hnt − Tnt.

Adding these two equations and dividing by 2, we see that

Hnt =
1

2
(nt + Mnt).

Subtracting them and dividing by 2, we see further that

Tnt =
1

2
(nt−Mnt).

In the model with up factor un and down factor dn, the stock price at time t is

Sn(t) = S(0)uHnt
n dTnt

n = S(0)

(
1 +

σ√
n

) 1
2
(nt+Mnt) (

1− σ√
n

) 1
2
(nt−Mnt)

. (3.2.15)

We wish to identify the distribution of this random variable as n →∞.

Theorem 3.2.2. As n → ∞, the distribution of Sn(t) in (3.2.15) converges to the
distribution of

S(t) = S(0) exp

{
σW (t)− 1

2
σ2t

}
, (3.2.16)

where W (t) is a normal random variable with mean zero and variance t.

The distribution of S(t) in (3.2.16) is called log-normal. More generally, any
random variable of the form ceX , where c is a constant and X is normally distributed,
is said to have a log-normal distribution. In the case at hand, X = σW (t) − 1

2σ2t is
normal with mean −1

2σ2t and variance σ2t.
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PROOF OF THEOREM 3.2.2: It suffices to show that the distribution of

log Sn(t) = log S(0) +
1

2
(nt + Mnt) log

(
1 +

σ√
n

)
+

1

2
(nt−Mnt) log

(
1− σ√

n

)

(3.2.17)
converges to the distribution of

log S(t) = log S(0) + σW (t)− 1

2
σ2t,

where W (t) is a normal random variable with mean zero and variance t. To do this,
we need the Taylor series expansion of f(x) = log(1 + x). We compute f ′(x) = (1 +

x)−1 and f ′′(x) = −(1 + x)−2 and evaluate them to obtain f ′(0) = 1 and f ′′(0) = −1.
According to Taylor’s Theorem,

log(1 + x) = f(0) + f ′(0)x +
1

2
f ′′(0)x2 + O(x3) = x− 1

2
x2 + O(x3),

where O(x3) indicates a term of order x3. We apply this to (3.2.17) first with x = σ√
n

and then with x = − σ√
n

. Our intention is to then let n → ∞, and so we need to keep
track of which terms have powers of n in the denominator and which terms do not.
The former ones will have limit zero and the latter ones will not. We use the O(·)
notation to do this. Not every term of the form O(n−

3
2 ) in the following equation is

the same; their only common feature is that they have n
3
2 in their denominators. In

particular, from (3.2.17) we have

log S(t) = log S(0) +
1

2
(nt + Mnt)

(
σ√
n
− σ2

2n
+ O(n−

3
2 )

)

+
1

2
(nt−Mnt)

(
− σ√

n
− σ2

2n
+ O(n−

3
2 )

)

= log S(0) + nt

(
−σ2

2n
+ O(n−

3
2 )

)
+ Mnt

(
σ√
n

+ O(n−
3
2 )

)

= log S(0) +
1

2
σ2t + O(n−

1
2 ) + σW (n)(t) + O(n−1)W (n)(t).

The term W (n)(t) = 1√
n
Mnt appears in two places in the last line. By the Central

Limit Theorem, Theorem 3.2.1, its distribution converges to the distribution of a
normal random variable with mean zero and variance t, a random variable we call
W (t). However, in one of its appearances, W (n)(t) is multiplied by a term that has
n in the denominator, and this will have limit zero. The term O(n−

1
2 ) also has limit

zero as n → ∞. We conclude that as n → ∞ the distribution of log S(t) approaches
the distribution of log S(0)− 1

2σ2t + σW (t), which is what we set out to prove.

3.3 Brownian Motion

3.3.1 Definition of Brownian Motion

We obtain Brownian motion as the limit of the scaled random walks W (n)(t) of (3.2.7)
as n →∞. The Brownian motion inherits properties from these random walks. This
leads to the following definition.
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Definition 3.3.1. Let (Ω,F ,P) be a probability space. For each ω ∈ Ω, suppose there
is a continuous function W (t) of t ≥ 0 that satisfies W (0) = 0 and that depends on
ω. Then W (t), t ≥ 0, is a Brownian motion if for all 0 = t0 < t1 < · · · < tm the
increments

W (t1) = W (t1)−W (t0),W (t2)−W (t1), . . . , W (tm)−W (tm−1) (3.3.1)

are independent and each of these increments is normally distributed with

E[W (ti+1)−W (ti)] = 0, (3.3.2)

Var[W (ti+1)−W (ti)] = ti+1 − ti. (3.3.3)

One difference between Brownian motion W (t) and a scaled random walk, say
W (100)(t), is that the scaled random walk has a natural time step 1

100 and is linear
between these time steps, whereas the Brownian motion has no linear pieces. The
other difference is that, while the scaled random walk W (100)(t) is only approximately
normal for each t (see Figure 3.2.3), the Brownian motion is exactly normal. This
is a consequence of the Central Limit Theorem, Theorem 3.2.1. Not only is W (t) =

W (t) − W (0) normally distributed for each t, but the increments W (t) − W (s) are
normally distributed for all 0 ≤ s < t.

There are two ways to think of ω in Definition 3.3.1. One is to think of ω as the
Brownian motion path. A random experiment is performed, and its outcome is the
path of the Brownian motion. Then W (t) is the value of this path at time t, and
this value of course depends on which path resulted from the random experiment.
Alternatively, one can think of ω as something more primitive than the path itself,
akin to the outcome of a sequence of coin tosses, although now the coin is being
tossed “infinitely fast.” Once the sequence of coin tosses has been performed and the
result ω obtained, then the path of the Brownian motion can be drawn. If the tossing
is done again and a different ω is obtained, then a different path will be drawn.

In either case, the sample space Ω is the set of all possible outcomes of a random
experiment, F is the σ-algebra of subsets of Ω whose probabilities are defined, and
P is a probability measure. For each A ∈ F , the probability of A is a number P(A)

between zero and one. The distributional statements about Brownian motion pertain
to P.

For example, we might wish to determine the probability of the set A containing
all ω ∈ Ω that result in a Brownian motion path satisfying 0 ≤ W (0.25) ≤ 0.2. Let
us first consider this matter for the scaled random walk W (100). If we were asked
to determine the set {ω : 0 ≤ W (100)(0.25) ≤ 0.2}, we would note that in order for
the scaled random walk W (100) to fall between 0 and 0.2 at time 0.25, the unsealed
random walk M25 = 10W (100)(0.25) must fall between 0 and 2 after 25 tosses. Since
M25 can only be an odd number, it falls between 0 and 2 if and only if it is equal to
1 or, equivalently, if and only if W (100)(0.25) = 0.1. To achieve this, the coin tossing
must result in 13 heads and 12 tails in the first 25 tosses. Therefore, A is the set of all
infinite sequences of coin tosses with the property that in the first 25 tosses there are
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13 heads and 12 tails. The probability that one of these sequences occurs, given by
(3.2.11), is P(A) = 0.1555.

For the Brownian motion W , there is also a set of outcomes ω to the random
experiment that results in a Brownian motion path satisfying 0 ≤ W (0.25) ≤ 0.2. We
choose not to describe this set as concretely as we just did for the scaled random walk
W (100). Nonetheless, there is such a set of ω ∈ Ω, and the probability of this set is

P{0 ≤ W (0.25) ≤ 0.2} =
2√
2π

∫ 0.2

0
e−2x2

dx.

In place of the area in the histogram bar centered at 0.1 in Figure 3.2.3, which is
0.1555, we now have the area under the normal curve between 0 and 0.2 in that
figure. These two areas are nearly the same.

3.3.2 Distribution of Brownian Motion

Because the increments

W (t1) = W (t1)−W (t0),W (t2)−W (t1), . . . , W (tm)−W (tm−1)

of (3.3.1) are independent and normally distributed, the random variables W (t1),
W (t2), . . . , W (tm) are jointly normally distributed. The joint distribution of jointly
normal random variables is determined by their means and covariances. Each of the
random variables W (ti) has mean zero. For any two times, 0 ≤ s < t, the covariance
of W (s) and W (t) is

E
[
W (s)W (t)

]
= E

[
W (s)

(
W (t)−W (s)

)
+ W 2(s)

]

= E[W (s)] · E[W (t)−W (s)] + E[W 2(s)]

= 0 + Var[W (s)] = s,

where we have used the independence of W (s) and W (t)−W (s) in the second equal-
ity. Hence, the covariance matrix for Brownian motion (i.e., for the m-dimensional
random vector

(
W (t1),W (t2), . . . , W (tm)

)
) is




E
[
W 2(t1)

]
E [W (t1)W (t2)] · · · E [W (t1)W (tm)]

E [W (t2)W (t1)] E
[
W 2(t2)

] · · · E [W (t2)W (tm)]

...
...

...

E [W (tm)W (t1)] E [W (tm)W (t2)] · · · E
[
W 2(tm)

]




=




t1 t1 · · · t1

t1 t2 · · · t2

...
...

...

t1 t2 · · · tm




.

(3.3.4)
The moment-generating function of this random vector can be computed using

the moment-generating function (3.2.13) for a zero-mean normal random variable
with variance t and the independence of the increments in (3.3.1). To assist in this
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computation, we note first that

u3W (t3) + u2W (t2) + u1W (t1)

= u3

(
W (t3)−W (t2)

)
+ (u2 + u3)

(
W (t2)−W (t1)

)
+ (u1 + u2 + u3)W (t1)

and more generally

umW (tm) + um−1W (tm−1) + um−2W (tm−2) + · · ·+ u1W (t1)

= um

(
W (tm)−W (tm−1)

)
+ (um−1 + um)

(
W (tm−1)−W (tm−2)

)

+ (um−2 + um−1 + um)
(
W (tm−2)−W (tm−3)

)
+ · · ·

· · ·+ (u1 + u2 + · · ·+ um)W (t1).

We use these facts to compute the moment-generating function of the random vector(
W (t1),W (t2), . . . , W (tm)

)
:

ϕ(u1, u2, . . . , um)

= E exp
{
umW (tm) + um−1W (tm−1) + · · ·+ u1W (t1)

}

= E exp
{
um

(
W (tm)−W (tm−1

)
(um−1 + um)

(
W (tm−1)−W (tm−2)

)
+

+ (u1 + u2 + · · ·+ um)W (t1)
}

= E exp
{
um

(
W (tm)−W (tm−1

}
E exp

{
(um−1 + um)

(
W (tm−1)−W (tm−2)

)}

· · ·E exp
{
(u1 + u2 + · · ·+ um)W (t1)

}

= exp

{
1

2
u2

m(tm − tm−1)

}
· exp

{
1

2
(um−1 + um)2(tm−1 − tm−2)

}

· · · exp

{
1

2
(u1 + u2 + · · ·+ um)2t1

}
.

In conclusion, the moment-generating function for Brownian motion (i.e., for the
m-dimensional random vector

(
W (t1),W (t2), . . . , W (tm)

)
) is

ϕ(u1, u2, . . . , um)

= E exp
{
umW (tm) + um−1W (tm−1) + · · ·+ u1W (t1)

}

= exp

{
1

2
(u1 + u2 + · · ·+ um)2t1 +

1

2
(u2 + u3 + · · ·+ um)2(t2 − t1)+

· · ·+ 1

2
(um−1 + um)2(tm−1 − tm−2) +

1

2
u2

m(tm − tm−1)

}
.

(3.3.5)

The distribution of the Brownian increments in (3.3.1) can be specified by specify-
ing the joint density or the joint moment-generating function of the random variables
W (t1),W (t2), . . . , W (tm). This leads to the following theorem.

Theorem 3.3.2 (Alternative characterizations of Brownian motion). Let (Ω,F ,P) be
a probability space. For each ω ∈ Ω, suppose there is a continuous function W (t) of
t ≤ 0 that satisfies W (0) = 0 and that depends on ω. The following three properties
are equivalent.

(i) For all 0 = t0 < t1 < · · · < tm, the increments

W (t1) = W (t1)−W (t0),W (t2)−W (t1), . . . , W (tm)−W (tm−1)
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are independent and each of these increments is normally distributed with mean
and variance given by (3.3.2) and (3.3.3).

(ii) For all 0 = t0 < t1 < · · · < tm, the random variables W (t1),W (t2), . . . , W (tm)

are jointly normally distributed with means equal to zero and covariance matrix
(3.3.4).

(iii) For all 0 = t0 < t1 < · · · < tm, the random variables W (t1),W (t2), . . . , W (tm)

have the joint moment-generating function (3.3.5).

If any of (i), (ii), or (iii) holds (and hence they all hold), then W (t), t ≥ 0, is a
Brownian motion.

3.3.3 Filtration for Brownian Motion

In addition to the Brownian motion itself, we will need some notation for the amount
of information available at each time. We do that with a filtration.

Definition 3.3.3. Let (Ω,F ,P) be a probability space on which is defined a Brownian
motion W (t), t ≥ 0. A filtration for the Brownian motion is a collection of σ-algebras
F(t), t ≥ 0, satisfying:

(i) (Information accumulates) For 0 ≤ s < t, every set in F(s) is also in F(t).
In other words, there is at least as much information available at the later time
F(t) as there is at the earlier time F(s).

(ii) (Adaptivity) For each t ≥ 0, the Brownian motion W (t) at time t is F(t)-
measurable. In other words, the information available at time t is sufficient
to evaluate the Brownian motion W (t) at that time.

(iii) (Independence of future increments) For 0 ≤ t < u, the increment W (u) −
W (t) is independent of F(t). In other words, any increment of the Brownian
motion after time t is independent of the information available at time t.

Let ∆(t), t ≥ 0, be a stochastic process. We say that ∆(t) is adapted to the filtration
F(t) if for each t ≥ 0 the random variable ∆(t) is F(t)- measurable1.

Properties (i) and (ii) in the definition above guarantee that the information avail-
able at each time t is at least as much as one would learn from observing the Brownian
motion up to time t. Property (iii) says that this information is of no use in predicting
future movements of the Brownian motion.

In the asset-pricing models we build, property (iii) leads to the efficient market
hypothesis. There are two possibilities for the filtration F(t) for a Brownian motion.
One is to let F(t) contain only the information obtained by observing the Brown-
ian motion itself up to time t. The other is to include in F(t) information obtained

1The adapted processes we encounter will serve as integrands, and for this one needs them to be jointly
measurable in t and ω so that their integrals are defined and are themselves adapted processes. This is a
technical requirement that we shall ignore in this text.



3.4 Quadratic Variation 93

by observing the Brownian motion and one or more other processes. However, if
the information in F(t) includes observations of processes other than the Brownian
motion W , this additional information is not allowed to give clues about the future
increments of W because of property (iii).

3.3.4 Martingale Property for Brownian Motion

Theorem 3.3.4. Brownian motion is a martingale.

Proof. Let 0 ≤ s ≤ t be given. Then

E
[
W (t)|F(s)

]
= E

[(
W (t)−W (s)

)
+ W (s)|F(s)

]

= E
[
W (t)−W (s)|F(s)

]
+ E

[
W (s)|F(s)

]

= E
[
W (t)−W (s)

]
+ W (s)

= W (s).

The justifications for the steps in this equality are the same as the justifications for
(3.2.5).

3.4 Quadratic Variation

We computed the quadratic variation of the scaled random walk W (n) up to time T

in (3.2.10), and this quadratic variation turned out to be T . This was computed by
taking each of the steps of the scaled random walk between times 0 and T , squaring
them, and summing them.

For Brownian motion, there is no natural step size. If we are given T > 0, we
could simply choose a step size, say T

n for some large n, and compute the quadratic
variation up to time T with this step size. In other words, we could compute

n−1∑

j=0

[
W

(
(j + 1)T

n

)
−W

(
jT

n

)]2

. (3.4.1)

We are interested in this quantity for small step sizes, and so as a last step we could
evaluate the limit as n → ∞. If we do this, we will get T , the same final answer as
for the scaled random walk in (3.2.10). This is proved in Theorem 3.4.3 below.

The paths of Brownian motion are unusual in that their quadratic variation is not
zero. This makes stochastic calculus different from ordinary calculus and is the
source of the volatility term in the Black-Scholes-Merton partial differential equa-
tion. These matters will be discussed in the next chapter.

3.4.1 First-Order Variation

Before proving that Brownian motion accumulates T units of quadratic variation be-
tween times 0 and T , we digress slightly to discuss first-order variation (as opposed
to quadratic variation, which is second-order variation). Consider the function f(t)
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in Figure 3.4.1. We wish to compute the amount of up and down oscillation under-
gone by this function between times 0 and T , with the down moves adding to rather
than subtracting from the up moves. We call this the first-order variation FVT (f).
For the function f shown, it is

FVT (f) = [f(t1)− f(0)]− [f(t2)− f(t1)] + [f(T )− f(t2)]

=

∫ t1

0
f ′(t)dt +

∫ t2

t1

(− f ′(t)
)
dt +

∫ T

t2

f ′(t)dt

=

∫ T

0
|f ′(t)|dt.

(3.4.2)

The middle term
−[f(t2)− f(t1)] = f(t1)− f(t2)

is included in a way that guarantees that the magnitude of the down move of the
function f(t) between times t1 and t2 is added to rather than subtracted from the
total.

In general, to compute the first-order variation of a function up to time T , we first
choose a partition Π = {t0, t1, . . . , tn} of [0, T ], which is a set of times

0 = t0 < t1 < · · · < tn = T.

These will serve to determine the step size. We do not require the partition points
t0 = 0, t1, t2, . . . , tn = T to be equally spaced, although they are allowed to be. The
maximum step size of the partition will be denoted ‖Π‖ = maxj=0,...,n−1(tj+1 − tj).
We then define

FVT (f) = lim
‖Π‖→0

n−1∑

j=0

|f(tj+1)− f(tj)|. (3.4.3)
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The limit in (3.4.3) is taken as the number n of partition points goes to infinity and
the length of the longest subinterval tj+1 − tj goes to zero.

Our first task is to verify that the definition (3.4.3) is consistent with the formula
(3.4.2) for the function shown in Figure 3.4.1. To do this, we use the Mean Value
Theorem, which applies to any function f(t) whose derivative f ′(t) is defined every-
where. The Mean Value Theorem says that in each subinterval [tj , tj+1] there is a
point t∗j such that

f(tj+1)− f(tj)

tj+1 − tj
= f ′(t∗j). (3.4.4)

In other words, somewhere between tj and tj+1, the tangent line is parallel to the
chord connecting the points

(
tj , f(tj)

)
and

(
tj+1, f(tj+1)

)
(see Figure 3.4.2).

Multiplying (3.4.4) by tj+1 − tj , we obtain

f(tj+1)− f(tj) = f ′(t∗j)(tj+1 − tj).

The sum on the right-hand side of (3.4.3) may thus be written as

n−1∑

j=0

|f ′(t∗j)|(tj+1 − tj),

which is a Riemann sum for the integral of the function |f ′(t)|. Therefore,

FVT (f) = lim
‖Π‖→0

n−1∑

j=0

|f ′(t∗j)|(tj+1 − tj) =

∫ T

0
|f ′(t)|dt,

and we have rederived (3.4.2).
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3.4.2 Quadratic Variation

Definition 3.4.1. Let f(t) be a function defined for 0 ≤ t ≤ T . The quadratic varia-
tion of f up to time T is

[f, f ](T ) = lim
‖Π‖→0

n−1∑

j=0

[
f(tj+1)− f(tj)

]2
, (3.4.5)

where Π = {t0, t1, . . . , tn} and 0 = t0 < t1 < · · · < tn = T .

Remark 3.4.2. Suppose the function f has a continuous derivative. Then
n−1∑

j=0

[
f(tj+1)− f(tj)

]2
=

n−1∑

j=0

|f ′(t∗j)|2(tj+1 − tj)
2 ≤ ‖Π‖ ·

n−1∑

j=0

|f ′(t∗j)|2(tj+1 − tj),

and thus

[f, f ](T ) = lim
‖Π‖→0


‖Π‖ ·

n−1∑

j=0

|f ′(t∗j)|2(tj+1 − tj)




= lim
‖Π‖→0

‖Π‖ · lim
‖Π‖→0

n−1∑

j=0

|f ′(t∗j)|2(tj+1 − tj)

= lim
‖Π‖→0

‖Π‖ ·
∫ T

0
|f ′(t)|2dt = 0.

In the last step of this argument, we use the fact that f ′(t) is continuous to ensure that∫ T
0 |f ′(t)|2dt is finite. If

∫ T
0 |f ′(t)|2dt is infinite, then

lim
‖Π‖→0


‖Π‖ ·

n−1∑

j=0

|f ′(t∗j)|2(tj+1 − tj)




leads to a 0 · ∞ situation, which can be anything between 0 and ∞.

¤
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Most functions have continuous derivatives, and hence their quadratic variations
are zero. For this reason, one never considers quadratic variation in ordinary calculus.
The paths of Brownian motion, on the other hand, cannot be differentiated with re-
spect to the time variable. For functions that do not have derivatives, the Mean Value
Theorem can fail and Remark 3.4.2 no longer applies. Consider, for example, the ab-
solute value function f(t) = |t| in Figure 3.4.3. The chord connecting

(
t1, f(t1)

)
and(

t2, f(t2)
)

has slope 1
5 , but nowhere between t1 and t2 does the derivative of f(t) = |t|

equal 1
5 . Indeed, this derivative is always −1 for t < 0, is always 1 for t > 0, and is

undefined at t = 0, where the the graph of the function f(t) = |t| has a “point.” Figure
3.2.2 suggests correctly that the paths of Brownian motion are very “pointy.” Indeed,
for a Brownian motion path W (t), there is no value of t for which d

dtW (t) is defined.

Theorem 3.4.3. Let W be a Brownian motion. Then [W,W ](T ) = T for all T ≥ 0

almost surely.

We recall that the terminology almost surely means that there can be some paths
of the Brownian motion for which the assertion [W,W ](T ) = T is not true. However,
the set of all such paths has zero probability. The set of paths for which the assertion
of the theorem is true has probability one.

PROOF OF THEOREM 3.4.3: Let Π = {t0, t1, . . . , tn} be a partition of [0, T ]. Define
the sampled quadratic variation corresponding to this partition to be

QΠ =
n−1∑

j=0

(
W (tj+1)−W (tj)

)2
.

We must show that this sampled quadratic variation, which is a random variable
(i.e., it depends on the path of the Brownian motion along which it is computed)
converges to T as ‖Π‖ → 0. We shall show that it has expected value T , and its
variance converges to zero. Hence, it converges to its expected value T , regardless of
the path along which we are doing the computation2.

The sampled quadratic variation is the sum of independent random variables.
Therefore, its mean and variance are the sums of the means and variances of these
random variables. We have

E
[(

W (tj+1)−W (tj)
)2

]
= Var

[
W (tj+1)−W (tj)

]
= tj+1 − tj , (3.4.6)

which implies

EQΠ =
n−1∑

j=0

E
[(

W (tj+1)−W (tj)
)2

]
=

n−1∑

j=0

(tj+1 − tj) = T,

2The convergence we prove is actually convergence in mean square, also called L2-convergence. When
this convergence takes place, there is a subsequence along which the convergence is almost sure (i.e., the
convergence takes place for all paths except for a set of paths having probability zero). We shall not dwell on
subtle differences among types of convergence of random variables.
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as desired. Moreover,

Var
[(

W (tj+1)−W (tj)
)2

]

= E
[((

W (tj+1)−W (tj)
)2 − (tj+1 − tj)

)2]

= E
[(

W (tj+1)−W (tj)
)4]

− 2(tj+1 − tj)E
[(

W (tj+1)−W (tj)
)2

]
+ (tj+1 − tj)

2.

The fourth moment of a normal random variable with zero mean is three times its
variance squared (see Exercise 3.3). Therefore,

E
[(

W (tj+1)−W (tj)
)4]

= 3(tj+1 − tj)
2

Var
[(

W (tj+1)−W (tj)
)2]

= 3(tj+1 − tj)
2 − 2(tj+1 − tj)

2 + (tj+1 − tj)
2

= 2(tj+1 − tj)
2,

(3.4.7)

and

Var(QΠ) =
n−1∑

j=0

Var
[(

W (tj+1)−W (tj)
)2]

=
n−1∑

j=0

2(tj+1 − tj)
2

≤
n−1∑

j=0

2‖Π‖(tj+1 − tj) = 2‖Π‖T.

In particular, lim‖Π‖→0 Var(QΠ) = 0, and we conclude that lim‖Π‖→0 QΠ = EQΠ =

T .

Remark 3.4.4. In the proof above, we derived the equations (3.4.6) and (3.4.7):

E
[(

W (tj+1)−W (tj)
)2]

= tj+1 − tj

and
Var

[(
W (tj+1)−W (tj)

)2]
= 2(tj+1 − tj)

2.

It is tempting to argue that when tj+1 − tj is small, (tj+1 − tj)
2 is very small, and

therefore
(
W (tj+1) − W (tj)

)2, although random, is with high probability near its
mean tj+1 − tj . We could therefore claim that

(
W (tj+1)−W (tj)

)2 ≈ tj+1 − tj . (3.4.8)

This approximation is trivially true because, when tj+1 − tj is small, both sides are
near zero. It would also be true if we squared the right-hand side, multiplied the
right-hand side by 2, or made any of several other significant changes to the right-
hand side. In other words, (3.4.8) really has no content. A better way to try to capture
what we think is going on is to write

(
W (tj+1)−W (tj)

)2

tj+1 − tj
≈ 1 (3.4.9)
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instead of (3.4.8). However,
(
W (tj+1)−W (tj)

)2

tj+1 − tj

is in fact not near 1, regardless of how small we make tj+1− tj . It is the square of the
standard normal random variable

Yj+1 =
W (tj+1)−W (tj)√

tj+1 − tj
,

and its distribution is the same, no matter how small we make tj+1 − tj .
To understand better the idea behind Theorem 3.4.3, we choose a large value of n

and take tj = jT

n , j = 0, 1, . . . , n. Then tj+1 − tj = T
n for all j and

(
W (tj+1)−W (tj)

)2
= T · Y 2

j+1

n
.

Since the random variables Y1, Y2, . . . , Yn are independent and identically distributed,
the Law of Large Numbers implies that

∑n−1
j=0

Y 2
j+1

n converges to the common mean
EY 2

j+1 as n →∞. This mean is 1, and hence
∑n−1

j=0

(
W (tj+1)−W (tj)

)2 converges to
T . Each of the terms

(
W (tj+1) −W (tj)

)2 in this sum can be quite different from its
mean tj+1 − tj = T

n , but when we sum many terms like this, the differences average
out to zero.

We write informally
dW (t)dW (t) = dt, (3.4.10)

but this should not be interpreted to mean either (3.4.8) or (3.4.9). It is only when we
sum both sides of (3.4.9) and call upon the Law of Large Numbers to cancel errors
that we get a correct statement. The statement is that on an interval [0, T ], Brownian
motion accumulates T units of quadratic variation.

If we compute the quadratic variation of Brownian motion over the time interval
[0, T1], we get [W,W ](T1) = T1. If we compute the quadratic variation over [0, T2],
where 0 < T1 < T2, we get [W,W ](T2) = T2. Therefore, if we partition the interval
[T1, T2], square the increments of Brownian motion for each of the subintervals in the
partition, sum the squared increments, and take the limit as the maximal step size
approaches zero, we will get the limit [W,W ](T2)− [W,W ](T1) = T2 − T1. Brownian
motion accumulates T2 − T1 units of quadratic variation over the interval [T1, T2].
Since this is true for every interval of time, we conclude that

Brownian motion accumulates quadratic variation at rate one per unit time.

We write (3.4.10) to record this fact. In particular, the dt on the right-hand side of
(3.4.10) is multiplied by an understood 1.

As mentioned earlier, the quadratic variation of Brownian motion is the source
of volatility in asset prices driven by Brownian motion. We shall eventually scale
Brownian motion, sometimes in time- and path-dependent ways, in order to vary the
rate at which volatility enters these asset prices.
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¤

Remark 3.4.5. Let Π = {t0, t1, . . . , tn} be a partition of [0, T ] (i.e., 0 = t0 < t1 <

· · · < tn = T ). In addition to computing the quadratic variation of Brownian motion

lim
‖Π‖→0

n−1∑

j=0

(
W (tj+1)−W (tj)

)2
= T, (3.4.11)

we can compute the cross variation of W (t) with t and the quadratic variation of t

with itself, which are

lim
‖Π‖→0

n−1∑

j=0

(
W (tj+1)−W (tj)

)
(tj+1 − tj) = 0, (3.4.12)

lim
‖Π‖→0

n−1∑

j=0

(tj+1 − tj)
2 = 0. (3.4.13)

To see that 0 is the limit in (3.4.12), we observe that
∣∣(W (tj+1)−W (tj)

)
(tj+1 − tj)

∣∣ ≤ max
0≤k≤n−1

|W (tk+1)−W (tk)|(tj+1 − tj),

and so ∣∣∣∣∣∣

n−1∑

j=0

(
W (tj+1)−W (tj)

)
(tj+1 − tj)

∣∣∣∣∣∣
≤ max

0≤k≤n−1
|W (tk+1)−W (tk)| · T.

Since W is continuous, max0≤k≤n−1 |W (tk+1) − W (tk)| has limit zero as ‖Π‖, the
length of the longest subinterval, goes to zero. To see that 0 is the limit in (3.4.13),
we observe that

n−1∑

j=0

(tj+1 − tj)
2 ≤ max

0≤k≤n−1
(tk+1 − tk) ·

n−1∑

j=0

(tj+1 − tj) = ‖Π‖ · T,

which obviously has limit zero as ‖Π‖ → 0.
Just as we capture (3.4.11) by writing (3.4.10), we capture (3.4.12) and (3.4.13)

by writing
dW (t)dt = 0, dtdt = 0. (3.4.14)

¤

3.4.3 Volatility of Geometric Brownian Motion

Let α and σ > 0 be constants, and define the geometric Brownian motion

S(t) = S(0) exp

{
σW (t) +

(
α− 1

2
σ2

)
t

}
.

This is the asset-price model used in the Black-Scholes-Merton option-pricing for-
mula. Here we show how to use the quadratic variation of Brownian motion to iden-
tify the volatility σ from a path of this process.
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Let 0 ≤ T1 < T2 be given, and suppose we observe the geometric Brownian motion
S(t) for T1 ≤ t ≤ T2. We may then choose a partition of this interval, T1 = t0 < t2 <

· · · < tm = T2, and observe “log returns”

log
S(tj+1)

S(tj)
= σ

(
W (tj+1)−W (tj)

)
+

(
α− 1

2
σ2

)
(tj+1 − tj)

over each of the subintervals [tj , tj+1]. The sum of the squares of the log returns,
sometimes called the realized volatility, is

m−1∑

j=0

(
log

S(tj+1)

S(tj)

)2

= σ2
m−1∑

j=0

(
W (tj+1)−W (tj)

)2
+

(
α− 1

2
σ2

) m−1∑

j=0

(tj+1 − tj)
2

+ 2σ

(
α− 1

2
σ2

) m−1∑

j=0

(
W (tj+1)−W (tj)

)
(tj+1 − tj).

(3.4.15)

When the maximum step size ‖Π‖ = maxj=0,...,m−1(tj+1−tj) is small, then the first
term on the right-hand side of (3.4.15) is approximately equal to its limit, which is
σ2 times the amount of quadratic variation accumulated by Brownian motion on the
interval [T1, T2], which is T2 − T1. The second term on the right-hand side of (3.4.15)
is (α − 1

2σ2)2 times the quadratic variation of t, which was shown in Remark 3.4.5
to be zero. The third term on the right-hand side of (3.4.15) is 2σ(α − 1

2σ2)2 times
the cross variation of W (t) and t, which was also shown in Remark 3.4.5 to be zero.
We conclude that when the maximum step size ‖Π‖ is small, the right-hand side of
(3.4.15) is approximately equal to σ2(T2 − T1), and hence

1

T2 − T1

m−1∑

j=0

(
log

S(tj+1)

S(tj)

)2

≈ σ2. (3.4.16)

If the asset price S(t) really is a geometric Brownian motion with constant volatil-
ity σ, then σ can be identified from price observations by computing the left-hand
side of (3.4.16) and taking the square root. In theory, we can make this approxima-
tion as accurate as we like by decreasing the step size. In practice, there is a limit to
how small the step size can be. Between trades, there is no information about prices,
and when a trade takes place, it is sometimes at the bid price and sometimes at the
ask price. On small time intervals, the difference in prices due to the bid-ask spread
can be as large as the difference due to price fluctuations during the time interval.

3.5 Markov Property

In this section, we show that Brownian motion is a Markov process and discuss its
transition density.

Theorem 3.5.1. Let W (t), t ≥ 0, be a Brownian motion and let F(t), t ≥ 0, be a
filtration for this Brownian motion (see Definition 3.3.3). Then W (t), t ≥ 0, is a
Markov process.
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Proof. According to Definition 2.3.6, we must show that whenever 0 ≤ s ≤ t and f is
a Borel-measurable function, there is another Borel-measurable function g such that

E
[
f
(
W (t)

)|F(s)
]

= g
(
W (s)

)
. (3.5.1)

To do this, we write

E
[
f
(
W (t)

)|F(s)
]

= E
[
f
(
W (t)−W (s) + W (s)

)|F(s)
]
. (3.5.2)

The random variable W (t) − W (s) is independent of F(s), and the random vari-
able W (s) is F(s)-measurable. This permits us to apply the Independence Lemma,
Lemma 2.3.4. In order to compute the expectation on the right-hand side of (3.5.2),
we replace W (s) by a dummy variable x to hold it constant and then take the un-
conditional expectation of the remaining random variable (i.e., we define g(x) =

Ef
(
W (t)−W (s) + x

)
). But W (t)−W (s) is normally distributed with mean zero and

variance t− s. Therefore,

g(x) =
1√

2π(t− s)

∫ ∞

−∞
f(ω + x)e−

ω2

2(t−s) dw. (3.5.3)

The Independence Lemma states that if we now take the function g(x) defined by
(3.5.3) and replace the dummy variable x by the random variable W (s), then equation
(3.5.1) holds.

We may make the change of variable τ = t− s and y = w + x in (3.5.3) to obtain

g(x) =
1√
2πτ

∫ ∞

−∞
f(y)e−

(y−x)2

2τ dy.

We define the transition density p(τ, x, y) for Brownian motion to be

p(τ, x, y) =
1√
2πτ

e−
(y−x)2

2τ ,

so that we may further rewrite (3.5.3) as

g(x) =

∫ ∞

−∞
f(y)p(τ, x, y)dy (3.5.4)

and (3.5.1) as

E
[
f
(
W (t)

)|F(s)
]

=

∫ ∞

−∞
f(y)p

(
τ,W (s), y

)
dy. (3.5.5)

This equation has the following interpretation. Conditioned on the information in
F(s) (which contains all the information obtained by observing the Brownian motion
up to and including time s), the conditional density of W (t) is p

(
τ,W (s), y

)
. This

is a density in the variable y. This density is normal with mean W (s) and variance
τ = t− s. In particular, the only information from F(s) that is relevant is the value of
W (s). The fact that only W (s) is relevant is the essence of the Markov property.
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3.6 First Passage Time Distribution

In Chapter 5 of Volume I, we studied the first passage time for a random walk, first
using the optional sampling theorem for martingales to obtain the distribution in Sec-
tion 5.2 and then rederiving the distribution using the reflection principle in Section
5.3. Here we develop the first approach; the second is presented in the next section.
In Sections 5.2 and 5.3 of Volume I, we observed after deriving the distribution of
the first passage time for the symmetric random walk that our answer could easily
be modified to obtain the first passage distribution for an asymmetric random walk.
In this section, we work only with Brownian motion, the continuous-time counter-
part of the symmetric random walk. The case of Brownian motion with drift, the
continuous-time counterpart of an asymmetric random walk, is treated in Exercise
3.7. We revisit this problem in Chapter 7, where it is solved using Girsanov’s The-
orem. The resulting formulas often provide explicit pricing and hedging formulas
for exotic options. Examples of the application of these formulas to such options are
given in Chapter 7.

Just as we began in Section 5.2 of Volume I with a martingale that had the random
walk in the exponential function, we must begin here with a martingale containing
Brownian motion in the exponential function. We fix a constant σ. The so-called
exponential martingale corresponding to σ, which is

Z(t) = exp

{
σW (t)− 1

2
σ2t

}
, (3.6.1)

plays a key role in much of the remainder of this text.

Theorem 3.6.1 (Exponential martingale). Let W (t), t ≥ 0, be a Brownian motion
with a filtration F(t), t ≥ 0, and let σ be a constant. The process Z(t), t ≥ 0, of
(3.6.1) is a martingale.

Proof. For 0 ≤ s ≤ t, we have

E[Z(t)|F(s)] = E
[
exp

{
σW (t)− 1

2
σ2t

}∣∣∣∣F(s)

]

= E
[
exp

{
σ
(
(W (t)−W (s)

)} · exp

{
σW (s)− 1

2
σ2t

}∣∣∣∣F(s)

]

= exp

{
σW (s)− 1

2
σ2t

}
· E[

exp
{
σ
(
W (t)−W (s)

)}|F(s)
]
,

(3.6.2)

where we have used “taking out what is known” (Theorem 2.3.2(ii)) for the last step.
We next use “independence” (Theorem 2.3.2(iv)) to write

E
[
exp

{
σ
(
W (t)−W (s)

)}|F(s)
]

= E
[
exp

{
σ
(
W (t)−W (s)

)}]
.

Because W (t)−W (s) is normally distributed with mean zero and variance t− s, this
expected value is exp{1

2σ2(t − s)} (see (3.2.13)). Substituting this into (3.6.2), we
obtain the martingale property

E[Z(t)|F(s)] = exp

{
σW (s)− 1

2
σ2s

}
= Z(s).
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Let m be a real number, and define the first passage time to level m

τm = min{t ≥ 0; W (t) = m}. (3.6.3)

This is the first time the Brownian motion W reaches the level m. If the Brownian
motion never reaches the level m, we set τm = ∞. A martingale that is stopped
(“frozen” would be a more apt description) at a stopping time is still a martingale and
thus must have constant expectation. (The text following Theorem 4.3.2 of Volume I
discusses this in more detail.) Because of this fact,

1 = Z(0) = EZ(t ∧ τm) = E
[
exp

{
σW (t ∧ τm)− 1

2
σ2(t ∧ τm)

}]
, (3.6.4)

where the notation t ∧ τm denotes the minimum of t and τm.
For the next step, we assume that σ > 0 and m > 0. In this case, the Brownian

motion is always at or below level m for t ≤ τm and so

0 ≤ exp{σW (t ∧ τm)} ≤ eσm. (3.6.5)

If τm < ∞, the term exp{−1
2σ2(t ∧ τm)} is equal to exp{−1

2σ2τm} for large enough
t. On the other hand, if τm = ∞, then the term exp{−1

2σ2(t ∧ τm)} is equal to
exp{−1

2σ2t}, and as t → ∞, this converges to zero. We capture these two cases
by writing

lim
t→∞ exp

{
−1

2
σ2(t ∧ τm)

}
= I{τm<∞} exp

{
−1

2
σ2τm

}
,

where the notation I{τm<∞} is used to indicate the random variable that takes the value
1 if τm < ∞ and otherwise takes the value zero. If τm < ∞, then exp{σW (t ∧ τm)} =

exp{σW (τm)} = eσm when t becomes large enough. If τm = ∞, then we do not
know what happens to exp{σW (t ∧ τm)} as t → ∞, but we at least know that this
term is bounded because of (3.6.5). That is enough to ensure that the product of
exp{σW (t ∧ τm)} and exp{−1

2σ2τm} has limit zero in this case. In conclusion, we
have

lim
n→∞ exp

{
σW (t ∧ τm)− 1

2
σ2(t ∧ τm)

}
= Irm<∞ exp

{
σm− 1

2
σ2τm

}
.

We can now take the limit in (3.6.4)3 to obtain

1 = E
[
Irm<∞ exp

{
σm− 1

2
σ2τm

}]

or, equivalently,

E
[
I{τm<∞} exp

{
−1

2
σ2τm

}]
= e−σm. (3.6.6)

3The interchange of limit and expectation implicit in this step is justified by the Dominated Convergence
Theorem, Theorem 1.4.9.
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Equation (3.6.6) holds when m and σ are positive. We may not substitute σ = 0

into this equation, but since it holds for every positive σ, we may take the limit on
both sides as σ ↓ 0. This yields4 E

[
I{τm<∞}

]
= 1 or, equivalently,

P{τm < ∞} = 1. (3.6.7)

Because τm is finite with probability one (we say τm is finite almost surely), we may
drop the indicator of this event in (3.6.6) to obtain

E
[
exp

{
−1

2
σ2τm

}]
= e−σm. (3.6.8)

We have done the hard work in the proof of the following theorem.

Theorem 3.6.2. For m ∈ R, the first passage time of Brownian motion to level m is
finite almost surely, and the Laplace transform of its distribution is given by

Ee−ατm = e−|m|
√

2α for all α > 0. (3.6.9)

Proof. We consider first the case when m is positive. Let α be a positive constant,
and set σ =

√
2α, so that 1

2σ2 = α. Then (3.6.8) becomes (3.6.9). If m is negative,
then because Brownian motion is symmetric, the first passage times τm and τ|m| have
the same distribution. Equation (3.6.9) for negative m follows.

Remark 3.6.3. Differentiation of (3.6.9) with respect to α results in

E[τme−ατm ] =
|m|√
2α

e−|m|
√

2α for all α > 0.

Letting α ↓ 0, we obtain Eτm = ∞ so long as m 6= 0.

3.7 Reflection Principle

3.7.1 Reflection Equality

In this section, we repeat for Brownian motion the reflection principle argument of
Section 5.3 of Volume I for the random walk. The reader may wish to review that
section before reading this one.

We fix a positive level m and a positive time t. We wish to “count” the Brownian
motion paths that reach level m at or before time t (i.e., those paths for which the first
passage time τm to level m is less than or equal to t). There are two types of such
paths: those that reach level m prior to t but at time t are at some level w below m,
and those that exceed level m at time t. There are also Brownian motion paths that
are exactly at level m at time t, but unlike the case of the random walk in Section 5.3
of Volume I, the probability of this for Brownian motion is zero. We may thus ignore
this possibility.

As Figure 3.7.1 illustrates, for each Brownian motion path that reaches level m

prior to time t but is at a level w below m at time t, there is a “reflected path” that is at
4Here we use the Monotone Convergence Theorem, Theorem 1.4.5.
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level 2m−w at time t. This reflected path is constructed by switching the up and down
moves of the Brownian motion from time τm onward. Of course, the probability that
a Brownian motion path ends at exactly w or at exactly 2m − w is zero. In order to
have nonzero probabilities, we consider the paths that reach level m prior to time t

and are at or below level w at time t, and we consider their reflections, which are at
or above 2m− w at time t. This leads to the key reflection equality

P{τm ≤ t,W (t) ≤ w} = P{W (t) ≥ 2m− w}, w ≤ m,m > 0. (3.7.1)

3.7.2 First Passage Time Distribution

We draw two conclusions from (3.7.1). The first is the distribution for the random
variable τm.

Theorem 3.7.1. For all m 6= 0, the random variable τm has cumulative distribution
function

P{τm ≤ t} =
2√
2π

∫ ∞

|m|√
t

e−
y2

2 dy, t ≥ 0, (3.7.2)

and density

fτm(t) =
d

dt
P{τm ≤ t} =

|m|
t
√

2πt
e−

m2

2t , t ≥ 0. (3.7.3)
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Proof. We first consider the case m > 0. We substitute w = m into the reflection
formula (3.7.1) to obtain

P{τm ≤ t,W (t) ≤ m} = P{W (t) ≥ m}.

On the other hand, if W (t) ≥ m, then we are guaranteed that τm ≤ t. In other words,

P{τm ≤ t,W (t) ≥ m} = P{W (t) ≥ m}.

Adding these two equations, we obtain the cumulative distribution function for τm:

P{τm ≤ t} = P{τm ≤ t,W (t) ≤ m}+ P{τm ≤ t,W (t) ≥ m}

= 2P{W (t) ≥ m} =
2√
2πt

∫ ∞

m
e−

x2

2t dx.

We make the change of variable y = x√
t

in the integral, and this leads to (3.7.2) when
m is positive. If m is negative, then τm and τ|m| have the same distribution, and (3.7.2)
provides the cumulative distribution function of the latter. Finally, (3.7.3) is obtained
by differentiating (3.7.2) with respect to t.

Remark 3.7.2. From (3.7.3), we see that

Ee−ατm =

∫ ∞

0
e−αmfτm(t)dt =

∫ ∞

0

|m|
t
√

2πt
e−αm−m2

2t dt for all α > 0. (3.7.4)

Theorem 3.6.2 provides the apparently different Laplace transform formula (3.6.9).
These two formulas are in fact the same, and the steps needed to verify this are
provided in Exercise 3.9.

¤

3.7.3 Distribution of Brownian Motion and Its Maximum

We define the maximum to date for Brownian motion to be

M(t) = max
0≤s≤t

W (s). (3.7.5)

This stochastic process is used in pricing barrier options. For the value of t in Figure
3.7.1, the random variable M(t) is indicated. For positive m, we have M(t) ≥ m

if and only if τm ≤ t. This observation permits us to rewrite the reflection equality
(3.7.1) as

P{M(t) ≥ m,W (t) ≤ w} = P{W (t) ≥ 2m− w}, w ≤ m,m > 0. (3.7.6)

From this, we can obtain the joint distribution of W (t) and M(t).

Theorem 3.7.3. For t > 0, the joint density of
(
M(t),W (t)

)
is

fM(t),W (t)(m,w) =
2(2m− w)

t
√

2πt
e−

(2m−w)2

2t , w ≤ m,m > 0. (3.7.7)
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Proof. Because

P{M(t) ≥ m,W (t) ≤ w} =

∫ ∞

m

∫ w

−∞
fM(t),W (t)(x, y)dydx

and
P{W (t) ≥ 2m− w} =

1√
2πt

∫ ∞

2m−w
e−

z2

2t dz,

we have from (3.7.6) that
∫ ∞

m

∫ w

−∞
fM(t),W (t)(x, y)dydx =

1√
2πt

∫ ∞

2m−w
e−

z2

2t dz.

We differentiate first with respect to m to obtain

−
∫ w

−∞
fM(t),W (t)(m, y)dy = − 2√

2πt
e−

(2m−w)2

2t .

We next differentiate with respect to w to see that

−fM(t),W (t)(m,w) = −2(2m− w)

t
√

2πt
e−

(2m−w)2

2t .

This is (3.7.7).

When simulating Brownian motion to price exotic options, it is often convenient to
first simulate the value of the Brownian motion at some time T > 0 and then simulate
the maximum of the Brownian motion between times 0 and t. This second step
requires that we know the distribution of the maximum of the Brownian motion M(t)

on [0, t] conditioned on the value of W (t). This conditional distribution is provided
by the following corollary.

Corollary 3.7.4. The conditional distribution of M(t) given W (t) = w is

fM(t)|W (t)(m|w) =
2(2m− w)

t
e−

2m(m−w)
t , w ≤ m,m > 0.

Proof. The conditional density is the joint density divided by the marginal density of
the conditioning random variable. The conditional density we seek here is

fM(t)|W (t)(m|w) =
fM(t),W (t)(m,w)

fW (t)(w)

=
2(2m− w)

t
√

2πt
·
√

2πte−
(2m−w)2

2t
+w2

2t

=
2(2m− w)

t
e−

2m(m−w)
t .

3.8 Summary

Brownian motion is a continuous stochastic process W (t), t ≥ 0, that has indepen-
dent, normally distributed increments. In this text, we adopt the con- vention that
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Brownian motion starts at zero at time zero, although one could add a constant a to
our Brownian motion and obtain a “Brownian motion starting at a”. For either Brow-
nian motion starting at 0 or Brownian motion starting at a, if 0 = t0 < t1 < · · · < tm,
then the increments

W (t1)−W (t0),W (t2)−W (t1), . . . , W (tm)−W (tm−1)

are independent and normally distributed with

E
[
W (ti+1)−W (ti)

]
= 0, Var

[
W (ti+1)−W (ti)

]
= ti+1 − ti.

This is Definition 3.3.1. Associated with Brownian motion there is a filtration F(t),
t ≥ 0, such that for each t ≥ 0 and u ≥ t, W (t) is F(t)-measurable and W (u)−W (t)

is independent of F(t).
Brownian motion is both a martingale and a Markov process. Its transition density

is
p(τ, x, y) =

1√
2πτ

e−
(y−x)2

2τ .

This is the density in the variable y for the random variable W (s + τ) given that
W (s) = x.

A profound property of Brownian motion is that it accumulates quadratic variation
at rate one per unit time (Theorem 3.4.3). If we choose a time interval [T1, T2], choose
partition points T1 = t0 < t1 < · · · < tm = T2, and compute

∑m−1
j=0

(
W (tj+1) −

W (tj)
)2, we get an answer that depends on the path along which the computation

is done. However, if we let the number of partition points approach infinity and the
length of the longest subinterval tj+1−tj approach zero, this quantity has limit T2−T1,
the length of the interval over which the quadratic variation is being computed. We
write dW (t)dW (t) = dt to symbolize the fact that the amount of quadratic variation
Brownian motion accumulates in an interval is equal to the length of the interval,
regardless of the path along which we do the computation.

If we compute
∑m−1

j=0

(
W (tj+1)−W (tj)

)
(tj+1 − tj) or

∑m−1
j=1 (tj+1 − tj)

2 and pass
to the limit, we get zero (Remark 3.4.5). We symbolize this by writing dW (t)dt =

dtdt = O.
The first passage time of Brownian motion,

τm = min{t ≥ 0; W (t) = m},
is the first time the Brownian motion reaches the level m. For m 6= 0, we have
P{τm < ∞} = 1 (equation (3.6.7)) (i.e., the Brownian motion eventually reaches
every nonzero level), but Eτm = ∞ (Remark 3.6.3). The random variable τm is a
stopping time, has density (Theorem 3.7.1)

fτm(t) =
|m|

t
√

2πt
,

and this density has Laplace transform (Theorem 3.6.2; see also Exercise 3.9)

Ee−ατm = e−|m|
√

2α for all α > 0.
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The reflection principle used to determine the density fτm(t) can also be used to
determine the joint density of W (t) and its maximum to date M(t) = max0≤s≤t W (s).
This joint density is (Theorem 3.7.3)

fM(t),W (t)(m,w) =
2(2m− w)

t
√

2πt
e−

(2m−w)2

2t , w ≤ m,m > 0.

3.9 Notes

In 1828, Robert Brown observed irregular movement of pollen suspended in wa-
ter. This motion is now known to be caused by the buffeting of the pollen by water
molecules, as explained by Einstein [62]. Bachelier [6] used Brownian motion (not
geometric Brownian motion) as a model of stock prices, even though Brownian mo-
tion can take negative values. Levy [107], [108] discovered many of the nonintuitive
properties of Brownian motion. The first mathematically rigorous construction of
Brownian motion is credited to Wiener [159], [160], and Brownian motion is some-
times called the Wiener process.

Brownian motion and its properties are presented in numerous texts, including
Billingsley [10]. The development in these notes is a summary of that found in
Karatzas and Shreve [101]. The properties of Brownian motion and many formulas
useful for pricing exotic options are developed in Borodin and Salminen [18].

Convergence of discrete-time and/or discrete-state models to continuous-time mod-
els, a topic touched upon in Section 3.2.7, is treated by Amin and Khanna [3], Cox,
Ross and Rubinstein [42], Duffie and Protter [60], and Willinger and Taqqu [162],
among others.

3.10 Exercises

Exercise 3.1.

According to Definition 3.3.3(iii), for 0 ≤ t < u, the Brownian motion increment
W (u)−W (t) is independent of the σ-algebra F(t). Use this property and property (i)
of that definition to show that, for 0 ≤ t < u1 < u2, the increment W (u2)−W (u1) is
also independent of F(t).

Exercise 3.2.

Let W (t), t ≥ 0, be a Brownian motion, and let F(t), t ≥ 0, be a filtration for this
Brownian motion. Show that W 2(t) − t is a martingale. (Hint: For 0 ≤ s ≤ t, write
W 2(t) as

(
W (t)−W (s)

)2
+ 2W (t)W (s)−W 2(s).)

Exercise 3.3 (Normal kurtosis).

The kurtosis of a random variable is defined to be the ratio of its fourth central
moment to the square of its variance. For a normal random variable, the kurtosis is
3. This fact was used to obtain (3.4.7). This exercise verifies this fact.
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Let X be a normal random variable with mean µ, so that X − µ has mean zero.
Let the variance of X, which is also the variance of X − µ, be σ2. In (3.2.13), we
computed the moment-generating function of X −µ to be ϕ(u) = Eeu(X−µ) = e

1
2
u2σ2

,
where u is a real variable. Differentiating this function with respect to u, we obtain

ϕ′(u) = E
[
(X − µ)eu(X−µ)

]
= σ2ue

1
2
σ2u2

and, in particular, ϕ′(0) = E(X − µ) = 0. Differentiating again, we obtain

ϕ′′(u) = E
[
(X − µ)2eu(X−µ)

]
= (σ2 + σ4u2)e

1
2
σ2u2

and, in particular, ϕ′′(0) = E[(X−µ)2] = σ2. Differentiate two more times and obtain
the normal kurtosis formula E[(X − µ)4] = 3σ4.

Exercise 3.4 (Other variations of Brownian motion).

Theorem 3.4.3 asserts that if T is a positive number and we choose a partition Π

with points 0 = t0 < t1 < t2 < · · · < tn = T , then as the number n of partition points
approaches infinity and the length of the longest subinterval ‖Π‖ approaches zero,
the sample quadratic variation

n−1∑

j=0

(
W (tj+1)−W (tj)

)2

approaches T for almost every path of the Brownian motion W . In Remark 3.4.5, we
further showed that

∑n−1
j=0

(
W (tj+1) − W (tj)

)
(tj+1 − tj) and

∑n−1
j=0 (tj+1 − tj)

2 have
limit zero. We summarize these facts by the multiplication rules

dW (t)dW (t) = dt, dW (t)dt = 0, dtdt = 0. (3.10.1)

(i) Show that as the number m of partition points approaches infinity and the length
of the longest subinterval approaches zero, the sample first variation

n−1∑

j=0

∣∣W (tj+1)−W (tj)
∣∣

approaches ∞ for almost every path of the Brownian motion W.

Hint:
n−1∑

j=0

(
W (tj+1)−W (tj)

)2 ≤ max
0≤k≤n−1

∣∣W (tk+1)−W (tk)
∣∣ ·

n−1∑

j=0

∣∣W (tj+1)−W (tj)
∣∣.

(ii) Show that as the number n of partition points approaches infinity and the length
of the longest subinterval approaches zero, the sample cubic variation

n−1∑

j=0

∣∣W (tj+1)−W (tj)
∣∣3

approaches zero for almost every path of the Brownian motion W .



112 Brownian Motion

Exercise 3.5 (Black-Scholes-Merton formula).

Let the interest rate r and the volatility σ > 0 be constant. Let

S(t) = S(0)e(r− 1
2
σ2)t+σW (t)

be a geometric Brownian motion with mean rate of return r, where the initial stock
price S(0) is positive. Let K be a positive constant. Show that, for T > 0,

E
[
e−rT

(
S(T )−K

)+
]

= S(0)N
(
d+(T, S(0))

)−Ke−rT N
(
d−(T, S(0))

)
,

where
d±(T, S(0)) =

1

σ
√

T

[
log

S(0)

K
+

(
r ± σ2

2

)
T

]
,

and N is the cumulative standard normal distribution function

N(y) =
1√
2π

∫ y

−∞
e−

1
2
z2

dz =
1√
2π

∫ ∞

−y
e−

1
2
z2

dz.

Exercise 3.6.

Let W (t) be a Brownian motion and let F(t), t ≥ 0, be an associated filtration.

(i) For µ ∈ R, consider the Brownian motion with drift µ:

X(µ) = µt + W (t).

Show that for any Borel-measurable function f(y), and for any 0 ≤ s < t, the
function

g(x) =
1√

2π(t− s)

∫ ∞

−∞
f(y) exp

{
−(y − x− µ(t− s))2

2(t− s)

}
dy

satisfies E
[
f
(
X(t)

)|F(s)
]

= g
(
X(s)

)
and hence X has the Markov prop- erty.

We may rewrite g(x) as g(x) =
∫∞
−∞ f(y)p(τ, x, y)dy, where τ = t− s and

p(τ, x, y) =
1√
2πτ

exp

{
−(y − x− µτ)2

2τ

}

is the transition density for Brownian motion with drift µ.

(ii) For ν ∈ R and σ > 0, consider the geometric Brownian motion

S(t) = S(0)eσW (t)+νt.

Set τ = t− s and

p(τ, x, y) =
1

σy
√

2πτ
exp

{
(log y

x − ντ)2

2σ2τ

}
.

Show that for any Borel-measurable function f(y) and for any 0 ≤ s < t the
function g(x) =

∫∞
0 h(y)p(τ, x, y)dy satisfies E

[
f
(
S(t)

)|F(s)
]

= g
(
S(s)

)
and

hence S has the Markov property and p(τ, x, y) is its transition density.
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Exercise 3.7.

Theorem 3.6.2 provides the Laplace transform of the density of the first passage
time for Brownian motion. This problem derives the analogous formula for Brownian
motions with drift. Let W be a Brownian motion. Fix m > 0 and µ ∈ R. For
0 ≤ t < ∞, define

X(t) = µt + W (t),

τm = min{t ≥ 0; X(t) = m}.
As usual, we set τm = ∞ if X(t) never reaches the level m. Let σ be a positive
number and set

Z(t) = exp

{
σX(t)−

(
σµ +

1

2
σ2

)
t

}
.

(i) Show that Z(t), t ≥ 0, is a martingale,

(ii) Use (i) to conclude that

E
[
exp

{
σX(t ∧ τm)−

(
σµ +

1

2
σ2

)
(t ∧ τm)

}]
= 1, t ≥ 0.

(iii) Now suppose µ ≥ 0. Show that, for σ > 0,

E
[
exp

{
σm−

(
σµ +

1

2
σ2

)
τm

}
I{τm<∞}

]
= 1.

Use this fact to show P{τm < ∞} = 1 and to obtain the Laplace transform

Ee−ατm = emµ−m
√

2α+µ2 for all α > 0.

(iv) Show that if µ > 0, then Eτm < ∞. Obtain a formula for Eτm. (Hint: Differen-
tiate the formula in (iii) with respect to α.)

(v) Now suppose µ < 0. Show that, for σ > −2µ,

E
[
exp

{
σm−

(
σµ +

1

2
σ2

)
τm

}
I{τm<∞}

]
= 1.

Use this fact to show that P{τm < ∞} = e−2x|µ|, which is strictly less than one,
and to obtain the Laplace transform

Ee−ατm = emµ−m
√

2α+µ2 for all α > 0.

Exercise 3.8.

This problem presents the convergence of the distribution of stock prices in a
sequence of binomial models to the distribution of geometric Brownian motion. In
contrast to the analysis of Subsection 3.2.7, here we allow the interest rate to be
different from zero.

Let σ > 0 and r ≥ 0 be given. For each positive integer n, we consider a binomial
model taking n steps per unit time. In this model, the interest rate per period is r

n ,
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the up factor is un = eσ/
√

n, and the down factor is dn = e−σ/
√

n. The risk-neutral
probabilities are then

p̃n =
r
n + 1− e−σ/

√
n

eσ/
√

n − e−σ/
√

n
, q̃n =

eσ/
√

n − r
n − 1

eσ/
√

n − e−σ/
√

n
.

Let t be an arbitrary positive rational number, and for each positive integer n for
which nt is an integer, define

Mnt,n =
nt∑

k=1

Xk,n,

where X1,n, . . . , Xn,n are independent, identically distributed random variables with

P̃{Xk,n = 1} = p̃n, P̃{Xk,n = −1} = q̃n, k = 1, . . . , n.

The stock price at time t in this binomial model, which is the result of nt steps from
the initial time, is given by (see (3.2.15) for a similar equation)

Sn(t) = S(0)u
1
2
(nt+Mnt,n)

n d
1
2
(nt−Mnt,n)

n

= S(0) exp

{
σ

2
√

n
(nt + Mnt,n)

}
exp

{
− σ

2
√

n
(nt−Mnt,n)

}

= S(0) exp

{
σ√
n

Mnt,n

}
.

This problem shows that as n → ∞, the distribution of the sequence of random
variables σ√

n
Mnt,n appearing in the exponent above converges to the normal dis-

tribution with mean (r − 1
2σ2)t and variance σ2t. Therefore, the limiting distri-

bution of Sn(t) is the same as the distribution of the geometric Brownian motion
S(0) exp{σW (t) + (r − 1

2σ2)t} at time t.

(i) Show that the moment-generating function ϕn(u) of 1√
n
Mnt,n is given by

ϕn(u) =

[
e

u√
n

(
r
n + 1− e−σ/

√
n

eσ/
√

n − e−σ/
√

n

)
− e−

u√
n

(
r
n + 1− eσ/

√
n

eσ/
√

n − e−σ/
√

n

)]nt

.

(ii) We want to compute
limn→∞ϕn(u) = lim

x↓0
ϕ 1

x2
(u),

where we have made the change of variable x = 1√
n

. To do this, we will compute
log ϕ 1

x2
(u) and then take the limit as x ↓ 0. Show that

log ϕ 1

x2
(u) =

t

x2
log

[
(rx2 + 1) sinh ux + sinh(σ − u)x

sinh σx

]

(the definitions are sinh z = ez−e−z

2 , cosh z = ez+e−z

2 ), and use the formula

sinh(A−B) = sinh A cosh B − cosh A sinh B

to rewrite this as

log ϕ 1

x2
(u) =

t

x2
log

[
cosh ux +

(rx2 + 1− cosh σx) sinh ux

sinh σx

]
.
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(iii) Use the Taylor series expansions

cosh z = 1 +
1

2
z2 + O(z4), sinh z = z + O(z3),

to show that

cosh ux+
(rx2 + 1− cosh σx) sinh ux

sinh σx

= 1 +
1

2
u2x2 +

rux2

σ
− 1

2
ux2σ + O(x4).

(3.10.2)

The notation O(xj) is used to represent terms of the order xj .

(iv) Use the Taylor series expansion log(1+x) = x+O(x2) to compute limx↓0 log ϕ 1

x2
(u).

Now explain how you know that the limiting distribution for σ√
n
Mnt,n is normal

with mean (r − 1
2σ2)t and variance σ2t.

Exercise 3.9 (Laplace transform of first passage density).

The solution to this problem is long and technical. It is included for the sake of
completeness, but the reader may safely skip it.

Let m > 0 be given, and define

f(t,m) =
m

t
√

2πt
exp

{
−m2

2t

}
.

According to (3.7.3) in Theorem 3.7.1, f(t,m) is the density in the variable t of the
first passage time τm = min{t ≥ 0; W (t) = m}, where W is a Brownian motion
without drift. Let

g(α, m) =

∫ ∞

0
e−αtf(t,m)dt, α > 0,

be the Laplace transform of the density f(t,m). This problem verifies that g(α, m) =

e−m
√

2α, which is the formula derived in Theorem 3.6.2.

(i) For k ≥ 1, define

ak(m) =
1√
2π

∫ ∞

0
t−k/2 exp

{
−αt− m2

2t

}
dt,

so g(α, m) = ma3(m). Show that

gm(α, m) = a3(m)−m2a5(m),

gmm(α, m) = −3ma5(m) + m3a7(m).

(ii) Use integration by parts to show that

a5(m) = −2α

3
a3(m) +

m2

3
a7(m).

(iii) Use (i) and (ii) to show that g satisfies the second-order ordinary differential
equation

gmm(α, m) = 2αg(α, m).
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(iv) The general solution to a second-order ordinary differential equation of the form

ay′′(m) + by′(m) + cy(m) = 0

is
y(m) = A1e

λ1m + A2e
λ2m,

where λ1 and λ2 are roots of the characteristic equation

aλ2 + bλ + c = 0.

Here we are assuming that these roots are distinct. Find the general solution of
the equation in (iii) when α > 0. This solution has two undetermined parameters
A1 and A2, and these may depend on α.

(v) Derive the bound

g(α, m) ≤ m√
2π

∫ m

0

√
m

t
t−3/2 exp

{
−m2

2t

}
dt +

1√
2πm

∫ ∞

m
e−αtdt

and use it to show that, for every α > 0,

lim
m↓∞

g(α,m) = 0.

Use this fact to determine one of the parameters in the general solution to the
equation in (iii).

(vi) Using first the change of variable s = t/m2 and then the change of variable
y = 1/

√
s, show that

lim
m↓0

g(α, m) = 1.

Use this fact to determine the other parameter in the general solution to the
equation in (iii).



Chapter 4

Stochastic Calculus

4.1 Introduction

This chapter defines Itô integrals and develops their properties. These are used to
model the value of a portfolio that results from trading assets in continuous time.
The calculus used to manipulate these integrals is based on the Itô-Doeblin formula
of Section 4.4 and differs from ordinary calculus. This difference can be traced to the
fact that Brownian motion has a nonzero quadratic variation and is the source of the
volatility term in the Black-Scholes-Merton partial differential equation. The Black-
Scholes-Merton equation is presented in Section 4.5. This is in the spirit of Sections
1.1 and 1.2 of Volume I in which we priced options by determining the portfolio
that would hedge a short position. In particular, there is no discussion of risk-neutral
pricing in this chapter. That topic is taken up in Chapter 5.

Section 4.6 extends stochastic calculus to multiple processes. Section 4.7 dis-
cusses the Brownian bridge, which plays a useful role in Monte Carlo methods for
pricing. We do not treat Monte Carlo methods in this text; we include the Brownian
bridge only because it is a natural application of the stochastic calculus developed in
the earlier sections.

4.2 Itô’s Integral for Simple Integrands

We fix a positive number T and seek to make sense of
∫ T

0
∆(t)dW (t). (4.2.1)

The basic ingredients here are a Brownian motion W (t), t ≥ 0, together with a fil-
tration F(t), t ≥ 0, for this Brownian motion. We will let the integrand ∆(t) be an
adapted stochastic process. Our reason for doing this is that ∆(t) will eventually be
the position we take in an asset at time t, and this typically depends on the price path
of the asset up to time t. Anything that depends on the path of a random process is
itself random. Requiring ∆(t) to be adapted means that we require ∆(t) to be F(t)-
immeasurable for each t ≥ 0. In other words, the information available at time t

is sufficient to evaluate ∆(t) at that time. When we are standing at time 0 and t is
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strictly positive, ∆(t) is unknown to us. It is a random variable. When we get to time
t, we have sufficient information to evaluate ∆(t); its randomness has been resolved.

Recall that increments of the Brownian motion after time t are independent of
F(t), and since ∆(t) isF(t)-immeasurable, it must also be independent of these future
Brownian increments. Positions we take in assets may depend on the price history of
those assets, but they must be independent of the future increments of the Brownian
motion that drives those prices.

The problem we face when trying to assign meaning to the Itô integral (4.2.1) is
that Brownian motion paths cannot be differentiated with respect to time. If g(t) is a
differentiable function, then we can define

∫ T

0
∆(t)dg(t) =

∫ T

0
∆(t)g′(t)dt,

where the right-hand side is an ordinary (Lebesgue) integral with respect to time.
This will not work for Brownian motion.

4.2.1 Construction of the Integral

To define the integral (4.2.1), Itô devised the following way around the nondifferen-
tiability of the Brownian paths. We first define the Itô integral for simple integrands
∆(t) and then extend it to nonsimple integrands as a limit of the integral of simple
integrands. We describe this procedure.

Let Π = {t0, t1, . . . , tn} be a partition of [0, T ]; i.e.,

0 = t0 ≤ t1 ≤ · · · ≤ tn = T.

Assume that ∆(t) is constant in t on each subinterval [tj , tj+1). Such a process ∆(t)

is a simple process.

Figure 4.2.1 shows a single path of a simple process ∆(t). We shall always choose
these simple processes, as shown in this figure, to take a value at a partition time tj

and then hold it up to but not including the next partition time tj+1. Although it is
not apparent from Figure 4.2.1, the path shown depends on the same ω on which the
path of the Brownian motion W (t) (not shown) depends. If one were to choose a
different ω, there would be a different path of the Brownian motion and possibly a
different path of ∆(t). However, the value of ∆(t) can depend only on the information
available at time t. Since there is no information at time 0, the value of ∆(0) must
be the same for all paths, and hence the first piece of ∆(t), for 0 ≤ t < t1, does not
really depend on ω. The value of ∆(t) on the second interval, [t1, t2) can depend on
observations made during the first time interval [0, t1).
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We shall think of the interplay between the simple process ∆(t) and the Brownian
motion W (t) in (4.2.1) in the following way. Regard W (t) as the price per share of an
asset at time t. (Since Brownian motion can take negative as well as positive values,
it is not a good model of the price of a limited-liability asset such as a stock. For the
sake of this illustration, we ignore that issue.) Think of t0, t1, . . . , tn−1 as the trading
dates in the asset, and think of ∆(t0), ∆(t1), . . . , ∆(tn−1) as the position (number of
shares) taken in the asset at each trading date and held to the next trading date. The
gain from trading at each time t is given by

I(t) = ∆(t0)[W (t)−W (t0)] = ∆(0)W (t), 0 ≤ t ≤ t1,

I(t) = ∆(0)W (t1) + ∆(t1)[W (t)−W (t1)], t1 ≤ t ≤ t2,

I(t) = ∆(0)W (t1) + ∆(t1)[W (t2)−W (t1)] + ∆(t2)[W (t)−W (t2)], t2 ≤ t ≤ t3,

and so on. In general, if tk ≤ t ≤ tk+1, then

I(t) =
k−1∑

j=0

∆(tj)
[
W (tj+1)−W (tj)

]
+ ∆(tk)[W (t)−W (tk)]. (4.2.2)

The process I(t) in (4.2.2) is the Itô integral of the simple process ∆(t), a fact that we
write as

I(t) =

∫ T

0
∆(u)dW (u).

In particular, we can take t = tn = T , and (4.2.2) provides a definition for the Itô
integral (4.2.1). We have managed to define this integral not only for the upper limit
of integration T but also for every upper limit of integration t between 0 and T .
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4.2.2 Properties of the Integral

The Itô integral (4.2.2) is defined as the gain from trading in the martingale W (t).
A martingale has no tendency to rise or fall, and hence it is to be expected that I(t),
thought of as a process in its upper limit of integration t, also has no tendency to rise
or fall. We formalize this observation by the next theorem and proof.

Theorem 4.2.1. The Itô integral defined by (4.2.2) is a martingale.

Proof. Let 0 ≤ s ≤ t ≤ T be given. We shall assume that s and t are in different
subintervals of the partition Π (i.e., there are partition points tell and tk such that
t` < tk, s ∈ [t`, t`+1), and t ∈ [tk, tk+1)). If s and t are in the same subinterval, the
following proof simplifies. Equation (4.2.2) may be rewritten as

I(t) =
`−1∑

j=0

∆(tj)[W (tj+1)−W (tj)] + ∆(t`)[W (t`+1)−W (t`)]

+
k−1∑

j=`+1

∆(tj)[W (tj+1)−W (tj)] + ∆(tk)[W (t)−W (tk)].

(4.2.3)

We must show that E[I(t)|F(s)] = I(s). We take the conditional expectation of
each of the four terms on the right-hand side of (4.2.3). Every random variable in the
first sum

∑`−1
j=0 ∆(tj)[W (tj+1) − W (tj)] is F(s)-measurable because the latest time

appearing in this sum is t` and t` ≤ s. Therefore,

E




`−1∑

j=0

∆(tj)[W (tj+1)−W (tj)]

∣∣∣∣∣∣
F(s)


 =

`−1∑

j=0

∆(tj)[W (tj+1)−W (tj)]. (4.2.4)

For the second term on the right-hand side of (4.2.3), we “take out what is known”
(Theorem 2.3.2(ii)) and use the martingale property of W to write

E
[
∆(t`)

(
W (t`+1)−W (t`)

)|F(s)
]

= ∆(t`)
(
E[W (t`+1)|F(s)]−W (t`)

)

= ∆(t`)
(
W (s)−W (t`)

)
.

(4.2.5)

Adding (4.2.4) and (4.2.5), we obtain I(s).
It remains to show that the conditional expectations of the third and fourth terms

on the right-hand side of (4.2.3) are zero. We will then have E[I(t)|F(s)] = I(s).
The summands in the third term are of the form ∆(tj)[W (tj+1) − W (tj)], where

tj ≥ t`+1 > s. This permits us to use the following iterated conditioning trick, which
is based on properties (iii) (iterated conditioning) and (ii) (taking out what is known)
of Theorem 2.3.2:

E
{

∆(tj)
(
W (tj+1)−W (tj)

)∣∣F(s)
}

= E
{
E

[
∆(tj)

(
W (tj+1)−W (tj)

)|F(tj)
]∣∣F(s)

}

= E
{

∆(tj)
(
E[W (tj+1)|F(tj)]−W (tj)

)∣∣F(s)
}

= E
{

∆(tj)
(
W (tj)−W (tj)

)∣∣F(s)
}

= 0.

At the end, we have used the fact that W is a martingale. Because the conditional
expectation of each of the summands in the third term on the right-hand side of (4.2.3)
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is zero, the conditional expectation of the whole term is zero:

E





k−1∑

j=`+1

∆(tj)
[
W (tj+1)−W (tj)

]
∣∣∣∣∣∣
F(s)



 = 0.

The fourth term on the right-hand side of (4.2.3) is treated like the summands in the
third term, with the result that

E
{

∆(tk)
(
W (t)−W (tk)

)∣∣F(s)
}

= E
{
E

[
∆(tk)

(
W (t)−W (tk)

)|F(tk)
]∣∣F(s)

}

= E
{

∆(tk)
(
E[W (t)|F(tk)]−W (tk)

)∣∣F(s)
}

= E
{

∆(tk)
(
W (tk)−W (tk)

)∣∣F(s)
}

= 0.

This concludes the proof.

Because I(t) is a martingale and I(0) = 0, we have EI(t) = 0 for all t ≥ 0. It
follows that Var I(t) = EI2(t), a quantity that can be evaluated by the formula in the
next theorem.

Theorem 4.2.2 (Itô isometry). The Itô integral defined by (4.2.2) satisfies

EI2(t) = E
∫ t

0
∆2(u)du. (4.2.6)

Proof. To simplify the notation, we set Dj = W (tj+1) − W (tj) for j = 0, . . . , k − 1

and Dk = W (t)−W (tk) so that (4.2.2) may be written as I(t) =
∑k

j=0 ∆(tj)Dj and

I2(t) =
k∑

j=0

∆2(tj)D
2
j + 2

∑

0≤i<j≤k

∆(ti)∆(tj)DiDj .

We first show that the expected value of each of the cross terms is zero. For i < j, the
random variable ∆(ti)∆(tj)Di is F(tj)-measurable, while the Brownian increment
Dj is independent of F(tj). Furthermore, EDj = 0. Therefore,

E[∆(ti)∆(tj)DiDj ] = E[∆(ti)∆(tj)Di] · EDj = E[∆(ti)∆(tj)Di] · 0 = 0.

We next consider the square terms ∆2(tj)D
2
j . The random variable ∆2(tj) is F(tj)-

measurable, and the squared Brownian increment Dj
2 is independent of F(tj). Fur-

thermore, ED2
j = tj+1 − tj for j = 0, . . . , k − 1 and ED2

k = t− tk. Therefore,

EI2(t) =
k∑

j=0

E[∆2(tj)D
2
j ] =

k∑

j=1

E∆2(tj) · ED2
j

=
k−1∑

j=1

E∆2(tj)(tj+1 − tj) + E∆2(tk)(t− tk).

(4.2.7)

But ∆(tj) is constant on the interval [tj , tj+1), and hence ∆2(tj)(tj+1−tj) =
∫ tj+1

tj
∆2(u)du.
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Similarly, ∆2(tk)(t− tk) =
∫ t
tk

∆2(u)du. We may thus continue (4.2.7) to obtain

EI2(t) =
k−1∑

j=0

E
∫ tj+1

tj

∆2(u)du + E
∫ t

tk

∆2(u)du

= E




k−1∑

j=0

∫ tj+1

tj

∆2(u)du +

∫ t

tk

∆2(u)du


 = E

∫ t

0
∆2(u)du.

Finally, we turn to the quadratic variation of the Itô integral I(t) thought of as a
process in its upper limit of integration t. Brownian motion accumulates quadratic
variation at rate one per unit time. However, Brownian motion is scaled in a time-
and path-dependent way by the integrand ∆(u) as it enters the Itô integral I(t) =∫ t
0 ∆(u)dB(u). Because increments are squared in the computation of quadratic vari-

ation, the quadratic variation of Brownian motion will be scaled by ∆2(u) as it enters
the Itô integral. The following theorem gives the precise statement.

Theorem 4.2.3. The quadratic variation accumulated up to time t by the Itô integral
(4.2.2) is

[I, I](t) =

∫ t

0
∆2(u)du. (4.2.8)

Proof. We first compute the quadratic variation accumulated by the Itô integral on
one of the subintervals [tj , tj+1] on which ∆(u) is constant. For this, we choose
partition points

tj = s0 < s1 < · · · < sm = tj+1

and consider
m−1∑

i=0

[I(si+1)− I(si)]
2 =

m−1∑

i=0

[
∆(tj)

(
W (si+1)−W (si)

)]2

= ∆2(tj)
m−1∑

i=0

(
W (si+1)−W (si)

)2
.

(4.2.9)

As m → ∞ and the step size maxi=0,...,m−1(si+1 − si) approaches zero, the term∑m−1
i=0

(
W (si+1)−W (si)

)2 converges to the quadratic variation accumulated by Brow-
nian motion between times tj and tj+1, which is tj+1 − tj . Therefore, the limit of
(4.2.9), which is the quadratic variation accumulated by the Itô integral between times
tj and tj+1, is

∆2(tj)(tj+1 − tj) =

∫ tj+1

tj

∆2(u)du,

where again we have used the fact that ∆(u) is constant for tj ≤ u < tj+1. Analo-
gously, the quadratic variation accumulated by the Itô integral between times tk and
t is

∫ t
tk

∆2(u)du. Adding up all these pieces, we obtain (4.2.8).
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In Theorems 4.2.2 and 4.2.3, we finally see how the quadratic variation and the
variance of a process can differ. The quadratic variation is computed path-by-path,
and the result can depend on the path. If along one path of the Brownian motion
we choose large positions ∆(u), the Itô integral will have a large quadratic variation.
Along a different path, we could choose small positions ∆(u) and the Itô integral
would have a small quadratic variation. The quadratic variation can be regarded as a
measure of risk, and it depends on the size of the positions we take. The variance of
I(t) is an average over all possible paths of the quadratic variation. Because it is the
expectation of something, it cannot be random. As an average over all possible paths,
realized and unrealized, it is a more theoretical concept than quadratic variation.
We emphasize here that what we are calling variance is not the empirical variance.
Empirical (or sample) variance is computed from a realized path and is an estimator
of the theoretical variance we are discussing. The empirical variance is sometimes
carelessly called variance, which creates the possibility of confusion.

Finally, we recall the equation (3.4.10), dW (t)dW (t) = dt, of Remark 3.4.4. We
interpret this equation as the statement that Brownian motion accumulates quadratic
variation at rate one per unit time. It is another way of writing [W,W ](t) = t, t ≥ 0.
The Itô integral formula I(t) =

∫ t
0 ∆(u)dW (u) can be written in differential form as

dI(t) = ∆(t)dW (t), and we can then use (3.4.10) to square dI(t):

dI(t)dI(t) = ∆2(t)dW (t)dW (t) = ∆2(t)dt. (4.2.10)

This equation says that the Itô integral I(t) accumulates quadratic variation at rate
∆2(t) per unit time. The rate of accumulation is typically both time- and path-
dependent. Equation (4.2.10) is another way of reporting the result of Theorem 4.2.3.

Remark 4.2.4. (on notation). The notations

I(t) =

∫ t

0
∆(u)dW (u) (4.2.11)

and
dI(t) = ∆(t)dW (t) (4.2.12)

mean almost the same thing, although the second is probably more intuitive. Equa-
tion (4.2.11) has the precise meaning given by (4.2.2). Equation (4.2.12) has the
imprecise meaning that when we move forward a little bit in time from time t, the
change in the Itô integral I is ∆(t) times the change in the Brownian motion W . It
also has a precise meaning, which one obtains by integrating both sides, remembering
to put in a constant of integration I(0):

I(t) = I(0) +

∫ t

0
∆(u)dW (u). (4.2.13)

We say that (4.2.12) is the differential form of (4.2.13) and that (4.2.13) is the integral
form of (4.2.12). These two equations mean exactly the same thing.

The only difference between (4.2.11) and (4.2.13), and hence the only difference
between (4.2.11) and (4.2.12), is that (4.2.11) specifies the initial condition I(0) = 0,
whereas (4.2.12) and (4.2.13) permit I(0) to be any arbitrary constant.
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¤

4.3 Itô’s Integral for General Integrands

In this section, we define the Itô integral
∫ T
0 ∆(t)dW (t) for integrands ∆(t) that are

allowed to vary continuously with time and also to jump. In particular, we no longer
assume that ∆(t) is a simple process as shown in Figure 4.2.1. We do assume that
∆(t), t ≥ 0, is adapted to the filtration F(t), t ≥ 0. We also assume the square-
integrability condition

E
∫ T

0
∆2(t)dt < ∞. (4.3.1)

In order to define
∫ T
0 ∆(t)dW (t), we approximate ∆(t) by simple processes. Figure

4.3.1 suggests how this can be done. In that figure, the continuously varying ∆(t)

is shown as a solid line and the approximating simple integrand is dashed. Notice
that ∆(t) is allowed to jump. The approximating simple integrand is constructed by
choosing a partition 0 = t0 < t1 < t2 < t3 < t4, setting the approximating simple
process equal to ∆(tj) at each tj , and then holding the simple process constant over
the subinterval [tj , tj+1). As the maximal step size of the partition approaches zero,
the approximating integrand will become a better and better approximation of the
continuously varying one.

In general, then, it is possible to choose a sequence ∆n(t) of simple processes
such that as n → ∞ these processes converge to the continuously varying ∆(t). By
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“converge,” we mean that

lim
n→∞E

∫ T

0
|∆n(t)−∆(t)|2dt = 0. (4.3.2)

For each ∆n(t), the Itô integral
∫ t
0 ∆n(u)dW (u) has already been defined for 0 ≤

t ≤ T . We define the Itô integral for the continuously varying integrand ∆(t) by the
formula1 ∫ t

0
∆(u)dW (u) = lim

n→∞

∫ t

0
∆n(u)dW (u), 0 ≤ t ≤ T. (4.3.3)

This integral inherits the properties of Itô integrals of simple processes. We summa-
rize these in the next theorem.

Theorem 4.3.1. Let T be a positive constant and let ∆(t), 0 ≤ t ≤ T , be an adapted
stochastic process that satisfies (4.3.1). Then I(t) =

∫ t
0 ∆(u)dW (u) defined by (4.3.3)

has the following properties.

(i) (Continuity) As a function of the upper limit of integration t, the paths of I(t)

are continuous.

(ii) (Adaptivity) For each t, I(t) is F(t)-measurable.

(iii) (Linearity) If I(t) =
∫ t
0 ∆(u)dW (u) and J(t) =

∫ t
0 Γ(u)dW (u), then I(t) ±

J(t) =
∫ t
0

(
∆(u) ± Γ(u)

)
dW (u); furthermore, for every constant c, cI(t) =∫ t

0 c∆(u)dW (u).

(iv) (Martingale) I(t) is a martingale,

(v) (Itô isometry) EI2(t) = E
∫ t
0 c∆2(u)du.

(vi) (Quadratic variation) [I, I](t) =
∫ t
0 c∆2(u)du.

Example 4.3.2.

We compute
∫ t
0 W (t)dW (t). To do that, we choose a large integer n and approxi-

mate the integrand ∆(t) = W (t) by the simple process

∆n(t) =





W (0) = 0 if 0 ≤ t < T
n ,

W (T
n ) if T

n ≤ t < 2T
n ,

...

W
(

(n−1)T
n

)
if (n−1)T

n ≤ t < T,

1For each t, the limit in (4.3.3) exists because In(t) =
∫ t

0
∆n(u)dW (u) is a Cauchy sequence in

L2(Ω,F ,P). This is because of Itô’s isometry (Theorem 4.2.2), which yields E
(
In(t) − Im(t)

)2 =
E

∫ t

0
|∆n(u) − ∆m(u)|2du. As a consequence of (4.3.2), the right-hand side has limit zero as n and m

approach infinity.
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as shown in Figure 4.3.2. Then limn→∞ E
∫ T
0 |∆n(t)−W (t)|2dt = 0. By definition,

∫ t

0
W (t)dW (t) = lim

n→∞

∫ t

0
∆n(t)dW (t)

= lim
n→∞

n−1∑

j=0

W

(
jT

n

)[
W

(
(j + 1)T

n

)
−W

(
jT

n

)]
.

(4.3.4)

To simplify notation, we denote Wj = W
(

jT
n

)
. As a precursor to evaluating the

limit in (4.3.4), we work out equation (4.3.5) below. The second equality in (4.3.5) is
obtained by making the change of index k = j + 1 in the first sum. The third equality
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uses the fact that W0 = W (0) = 0. We have

1

2

n−1∑

j=0

(Wj+1 −Wj)
2 =

1

2

n−1∑

j=0

W 2
j+1 −

n−1∑

j=0

WjWj+1 +
1

2

n−1∑

j=0

W 2
j

=
1

2

n∑

k=1

W 2
k −

n−1∑

j=0

WjWj+1 +
1

2

n−1∑

j=0

W 2
j

=
1

2
W 2

n +
1

2

n−1∑

k=0

W 2
k −

n−1∑

j=0

WjWj+1 +
1

2

n−1∑

j=0

W 2
j

=
1

2
W 2

n +
n−1∑

j=0

W 2
j −

n−1∑

j=0

WjWj+1

=
1

2
W 2

n +
n−1∑

j=0

Wj(Wj −Wj+1).

(4.3.5)

From (4.3.5), we conclude that
n−1∑

j=0

Wj(Wj+1 −Wj) =
1

2
W 2

n −
1

2

n−1∑

j=0

(Wj+1 −Wj)
2.

In the original notation, this is
n−1∑

j=0

W

(
jT

n

)[
W

(
(j + 1)T

n

)
−W

(
jT

n

)]

=
1

2
W 2(T )− 1

2

n−1∑

j=0

[
W

(
(j + 1)T

n

)
−W

(
jT

n

)]2

.

Letting n →∞ in (4.3.4) and using this equation, we get
∫ T

0
W (t)dW (t) =

1

2
W 2(T )− 1

2
[W,W ](T ) =

1

2
W 2(T )− 1

2
T. (4.3.6)

We contrast (4.3.6) with ordinary calculus. If g is a differentiable function with
g(0) = 0, then

∫ T

0
g(t)dg(t) =

∫ T

0
g(t)g′(t)dt =

1

2
g2(t)

∣∣∣∣
T

0

=
1

2
g2(T ).

The extra term −1
2T in (4.3.6) comes from the nonzero quadratic variation of Brow-

nian motion and the way we constructed the Itô integral, always evaluating the inte-
grand at the left-hand endpoint of the subinterval (see the right-hand side of (4.3.4)).
If we were instead to evaluate at the midpoint, replacing the right-hand side of (4.3.4)
by

lim
n→∞

n−1∑

j=0

W

(
(j + 1

2)T

n

)[
W

(
(j + 1)T

n

)
−W

(
jT

n

)]
, (4.3.7)

then we would not have gotten this term (see Exercise 4.4). The integral obtained by
making this replacement is called the Stratonovich integral, and the ordinary rules of
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calculus apply to it. However, it is inappropriate for finance. In finance, the integrand
represents a position in an asset and the integrator represents the price of that asset.
We cannot decide at 1:00 p.m. which position we took at 9:00 a.m. We must decide
the position at the beginning of each time interval, and the Itô integral is the limit of
the gain achieved by that kind of trading as the time between trades approaches zero.

For functions g(t) that have a derivative, integrals such as
∫ t
0 g(t)dg(t) are not sensi-

tive to this distinction (i.e., the Itô integral and Stratonovich integral approximations
have the same limit, which is 1

2g2(T )). For functions that have a nonzero quadratic
variation, integrals are sensitive to where in the subintervals the approximating inte-
grands are evaluated.

The upper limit of integration T in (4.3.6) is arbitrary and can be replaced by any
t ≥ 0. In other words,

∫ t

0
W (u)dW (u) =

1

2
W 2(t)− 1

2
t, t ≥ 0. (4.3.8)

Theorem 4.3.1(iv) guarantees that
∫ t
0 W (u)dW (u) is a martingale and hence has con-

stant expectation. At t = 0, this martingale is 0, and hence its expectation must
always be zero. This is indeed the case because EW 2(t) = t. If the term −1

2t were
not present, we would not have a martingale.

¤

4.4 Itô-Doeblin Formula

The addition of Doeblin’s name to what has traditionally been called the Itô formula
is explained in the Notes, Section 4.9.

4.4.1 Formula for Brownian Motion

We want a rule to “differentiate” expressions of the form f
(
W (t)

)
, where f(x) is a

differentiate function and W (t) is a Brownian motion. If W (t) were also differentiate,
then the chain rule from ordinary calculus would give

d

dt
f
(
W (t)

)
= f ′

(
W (t)

)
W ′(t),

which could be written in differential notation as

df
(
W (t)

)
= f ′

(
W (t)

)
W ′(t)dt = f ′

(
W (t)

)
dW (t).

Because W has nonzero quadratic variation, the correct formula has an extra term,
namely,

df
(
W (t)

)
= f ′

(
W (t)

)
dW (t) +

1

2
f ′′

(
W (t)

)
dt. (4.4.1)

This is the Itô-Doeblin formula in differential form. Integrating this, we obtain the
Itô-Doeblin formula in integral form:

f
(
W (t)

)− f
(
W (0)

)
=

∫ t

0
f ′

(
W (u)

)
dW (u) +

1

2

∫ t

0
f ′′

(
W (u)

)
du. (4.4.2)
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The mathematically meaningful form of the Itô-Doeblin formula is the integral
form (4.4.2). This is because we have precise definitions for both terms appearing
on the right-hand side. The first,

∫ t
0 f ′

(
W (u)

)
dW (u), is an Itô integral, defined in

the previous section. The second,
∫ t
0 f ′′

(
W (u)

)
du, is an ordinary (Lebesgue) integral

with respect to the time variable.
For pencil and paper computations, the more convenient form of the Itô-Doeblin

formula is the differential form (4.4.1). There is an intuitive meaning but no precise
definition for the terms df

(
W (t)

)
, dW (t), and dt appearing in this formula. The

intuitive meaning is that df
(
W (t)

)
is the change in f

(
W (t)

)
when t changes a “little

bit” dt, dW (t) is the change in the Brownian motion when t changes a “little bit” dt,
and the whole formula is exact only when the “little bit” is “infinitesimally small.”
Because there is no precise definition for “little bit” and ”infinitesimally small,” we
rely on (4.4.2) to give precise meaning to (4.4.1).

The relationship between (4.4.1) and (4.4.2) is similar to that developed in or-
dinary calculus to assist in changing variables in an integral. If asked to com-
pute the indefinite integral

∫
f(u)f ′(u)du, we might make the change of variable

v = f(u) and write dv = f ′(u)du, so that the indefinite integral becomes Jvdv, which
is 1

2v2 + C = 1
2f2(u) + C, where C is a constant of integration. The final formula

∫
f(u)f ′(u)du =

1

2
f2(u) + C

is correct, as can be verified by differentiating 1
2f2(u)+C to get f(u)f ′(u). We do not

attempt to give precise definitions to the terms dv and du appearing in the equation
dv = f ′(u)du used in deriving it.

We formalize the preceding discussion with a theorem that provides a formula
slightly more general than (4.4.2) in that it allows f to be a function of both t and x.

Theorem 4.4.1 (Itô-Doeblin formula for Brownian motion). Let f(t, x) be a func-
tion for which the partial derivatives ft(t, x), fx(t, x), and fxx(t, x) are defined and
continuous, and let W (t) be a Brownian motion. Then, for every T ≥ 0,

f
(
T, W (T )

)
= f

(
0,W (0)

)
+

∫ T

0
ft

(
t,W (t)

)
dt

+

∫ T

0
fx

(
t,W (t)

)
dW (t) +

1

2

∫ T

0
fxx

(
t,W (t)

)
dt.

(4.4.3)

SKETCH OF PROOF: . We first show why (4.4.3) holds when f(x) = 1
2x2. In this

case, f ′(x) = x and f ′′(x) = 1. Let xj+1 and xj be numbers. Taylor’s formula implies

f(xj+1)− f(xj) = f ′(xj)(xj+1 − xj) +
1

2
f ′′(xj)(xj+1 − xj)

2. (4.4.4)

In this case, Taylor’s formula to second order is exact (there is no remainder term)
because f ′′′ and all higher derivatives of f are zero. We return to this matter later.

Fix T > 0, and let Π = {t0, t1, . . . , tn} be a partition of [0, T ] (i.e., 0 = t1 < t2 <

· · · < tn = T ). We are interested in the difference between f
(
W (0)

)
and f

(
W (T )

)
.
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This change in f
(
W (t)

)
between times t = 0 and t = T can be written as the sum of

the changes in f
(
W (t)

)
over each of the subintervals [tj , tj+1]. We do this and then

use Taylor’s formula (4.4.4) with xj = W (tj) and xj+1 = W (tj+1) to obtain

f
(
W (T )

)− f
(
W (0)

)
=

n−1∑

j=0

[
f
(
W (tj+1)

)− f
(
W (tj)

)]

=
n−1∑

j=0

f ′
(
W (tj)

)[
W (tj+1)−W (tj)

]
+

1

2

n−1∑

j=0

f ′′
(
W (tj)

)[
W (tj+1)−W (tj)

]2
.

(4.4.5)

For the function f(x) = 1
2x2, the right-hand side of (4.4.5) is

n−1∑

j=0

W (tj)
[
W (tj+1)−W (tj)

]
+

1

2

n−1∑

j=0

[
W (tj+1)−W (tj)

]2
. (4.4.6)

If we let ‖Π‖ → 0, the left-hand side of (4.4.5) is unaffected and the terms on the
right-hand side converge to an Itô integral and one-half of the quadratic variation of
Brownian motion, respectively:

f
(
W (T )

)− f
(
W (0)

)

= lim
‖Π‖→0

n−1∑

j=0

W (tj)
[
W (tj+1)−W (tj)

]
+ lim
‖Π‖→0

1

2

n−1∑

j=0

[
W (tj+1)−W (tj)

]2

=

∫ T

0
W (t)dW (t) +

1

2
T

=

∫ T

0
f ′

(
W (t)

)
dW (t) +

1

2

∫ T

0
f ′′

(
W (t)

)
dt.

(4.4.7)

This is the Itô-Doeblin formula in integral form for the function f(x) = 1
2x2.

If instead of the quadratic function f(x) = 1
2x2 we had a general function f(x), then

in (4.4.5) we would have also gotten a sum of terms containing
[
W (tj+1)−W (tj)

]3.
But according to Exercise 3.4 of Chapter 3,

∑n−1
j=0

∣∣W (tj+1)−W (tj)
∣∣3 has limit zero

as ‖Π‖ → 0. Therefore, this term would make no contribution to the final answer.

If we take a function f(t, x) of both the time variable t and the variable x, then
Taylor’s Theorem says that

f(tj+1, xj+1)− f(tj , xj)

= ft(tj , xj)(tj+1 − tj) + fx(tj , xj)(xj+1 − xj)

=
1

2
fxx(tj , xj)(xj+1 − xj)

2 + ftx(tj , xj)(tj+1 − tj)(xj+1 − xj)

=
1

2
ftt(tj , xj)(tj+1 − tj)

2 + higher-order terms.

(4.4.8)
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We replace xj by W (tj), replace xj+1 by W (tj+1), and sum:

f
(
T, W (T )

)− f
(
0,W (0)

)

=
n−1∑

j=0

[
f
(
tj+1,W (tj+1)

)− f
(
tj ,W (tj)

)]

=
n−1∑

j=0

ft

(
tj ,W (tj)

)
(tj+1 − tj) +

n−1∑

j=0

fx

(
tj ,W (tj)

)(
W (tj+1)−W (tj)

)

+
1

2

n−1∑

j=0

fxx

(
tj ,W (tj)

)(
W (tj+1)−W (tj)

)2

+
n−1∑

j=0

ftx

(
tj ,W (tj)

)
(tj+1 − tj)

(
W (tj+1)−W (tj)

)

+
1

2

n−1∑

j=0

ftt

(
tj ,W (tj)

)
(tj+1 − tj)

2 + higher-order terms.

(4.4.9)

When we take the limit as ‖Π‖ → 0, the left-hand side of (4.4.9) is unaffected. The
first term on the right-hand side of (4.4.9) contributes the ordinary (Lebesgue) inte-
gral

lim
‖Π‖→0

n−1∑

j=0

ft

(
tj ,W (tj)

)
(tj+1 − tj) =

∫ T

0
ft

(
t,W (t)

)
dt

to the final answer. As ‖Π‖ → 0, the second term contributes the Itô integral
∫ T
0 fx

(
t,W (t)

)
dW (t).

The third term contributes another ordinary (Lebesgue) integral, 1
2

∫ T
0 fxx

(
t,W (t)

)
dt,

similar to the way we obtained this integral in (4.4.7). In other words, in the third
term we can replace

(
W (tj+1)−W (tj)

)
by tj+1− tj . This is not an exact substitution,

but when we sum the terms this substitution gives the correct limit as ‖Π‖ → 0. See
Remark 3.4.4 for more discussion of this point. With this substitution, the third term
on the right-hand side of (4.4.9) contributes 1

2

∫ T
0 fxx

(
t,W (t)

)
dt. These limits of the

first three terms appear on the right-hand side of (4.4.3). The fourth and fifth terms
contribute zero. Indeed, for the fourth term, we observe that

lim
‖Π‖→0

∣∣∣∣∣∣

n−1∑

j=0

ftx

(
tj ,W (tj)

)
(tj+1 − tj)

(
W (tj+1)−W (tj)

)
∣∣∣∣∣∣

≤ lim
‖Π‖→0

n−1∑

j=0

∣∣ftx

(
tj ,W (tj)

)∣∣ · (tj+1 − tj) · |W (tj+1)−W (tj)|

≤ lim
‖Π‖→0

max
0≤k≤n−1

|W (tk+1)−W (tk)| · lim
‖Π‖→0

n−1∑

j=0

∣∣ftx

(
tj ,W (tj)

)∣∣ (tj+1 − tj)

= 0 ·
∫ T

0

∣∣ftx

(
t,W (t)

)∣∣ dt = 0.

(4.4.10)
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The fifth term is treated similarly:

lim
‖Π‖→0

∣∣∣∣∣∣
1

2

n−1∑

j=0

ftt

(
tj ,W (tj)

)
(tj+1 − tj)

2

∣∣∣∣∣∣

≤ lim
‖Π‖→0

1

2

n−1∑

j=0

∣∣ftt

(
tj ,W (tj)

)∣∣ · (tj+1 − tj)
2

≤ 1

2
lim

‖Π‖→0
max

0≤k≤n−1
(tk+1 − tk) · lim

‖Π‖→0

n−1∑

j=0

∣∣ftt

(
tj ,W (tj)

)∣∣ (tj+1 − tj)

=
1

2
· 0 ·

∫ T

0
ftt

(
t,W (t)

)
dt = 0.

(4.4.11)

The higher-order terms likewise contribute zero to the final answer.

Remark 4.4.2. The fact that the sum (4.4.10) of terms containing the product (tj+1−
tj)

(
W (tj+1)−W (tj)

)
has limit zero can be informally recorded by the formula dtdW (t) =

0. Similarly, the sum (4.4.11) of terms containing (tj+1− tj)
2 also has limit zero, and

this can be recorded by the formula dtdt = 0. We can write these terms if we like in
the Itô-Doeblin formula, so that in differential form it becomes

df
(
t,W (t)

)
= ft

(
t,W (t)

)
dt + fx

(
t,W (t)

)
dW (t) +

1

2
fxx

(
t,W (t)

)
dW (t)dW (t)

= ftx

(
t,W (t)

)
dtdW (t) +

1

2
ftt

(
t,W (t)

)
dtdt,

but

dW (t)dW (t) = dt, dtdW (t) = dW (t)dt = 0, dtdt = 0, (4.4.12)

and the Itô-Doeblin formula in differential form simplifies to

df
(
t,W (t)

)
= ft

(
t,W (t)

)
dt + fx

(
t,W (t)

)
dW (t) +

1

2
fxx

(
t,W (t)

)
dt. (4.4.13)

In Figure 4.4.1, we illustrate the Taylor series approximation of the difference
f
(
W (tj+1)

)− f
(
W (tj)

)
for a function f(x) that does not depend on t. The first-order

approximation, which is f ′
(
W (tj)

)(
W (tj+1)−W (tj)

)
, has an error due to the convex-

ity of the function f(x). Most of this error is removed by adding in the second-order
term 1

2f ′′
(
W (tj)

)(
W (tj+1) − W (tj)

)2, which captures the curvature of the function
f(x) at x = W (tj).



4.4 Itô-Doeblin Formula 133

In other words,

f
(
W (tj+1)

)− f
(
W (tj)

)
= f ′

(
W (tj)

)(
W (tj+1)−W (tj)

)
+ small error, (4.4.14)

and
f
(
W (tj+1)

)− f
(
W (tj)

)
= f ′

(
W (tj)

)(
W (tj+1)−W (tj)

)

+
1

2
f ′′

(
W (tj)

)(
W (tj+1)−W (tj)

)2
+ smaller error.

(4.4.15)

In both (4.4.14) and (4.4.15), as ‖Π‖ → 0, the errors approach zero. However, be-
fore we let ‖Π‖ → 0, we must first sum these equations over j, and the smaller we
make ‖Π‖, the more terms there are in the sum. When we sum both sides of (4.4.14),
the errors accumulate, and although the error in each summand approaches zero as
‖Π‖ → 0, the sum of the errors does not. When we use the more accurate approx-
imation (4.4.15), this does not happen; the limit of the sum of the smaller errors is
zero. We need the extra accuracy of (4.4.15) because the paths of Brownian motion
are so volatile (i.e., they have nonzero quadratic variation). This extra term makes
stochastic calculus different from ordinary calculus.

The Itô-Doeblin formula often simplifies the computation of Itô integrals. For
example, with f(x) = 1

2x2, this formula says that
1

2
W 2(T ) = f

(
W (T )

)− f
(
W (0)

)

=

∫ T

0
f ′

(
W (t)

)
dW (t) +

1

2

∫ t

0
f ′′

(
W (t)

)
dt

=

∫ T

0
W (t)dW (t) +

1

2
T.

Rearranging terms, we have formula (4.3.6) and have obtained it without going
through the approximation of the integrand by simple processes as we did in Ex-
ample 4.3.2.
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4.4.2 Formula for Itô Processes

We extend the Itô-Doeblin formula to stochastic processes more general than Brow-
nian motion. The processes for which we develop stochastic calculus are the Itô pro-
cesses defined below. Almost all stochastic processes, except those that have jumps,
are Itô processes.

Definition 4.4.3. Let W (t), t ≥ 0, be a Brownian motion, and let F(t), t ≥ 0, be an
associated filtration. An Itô process is a stochastic process of the form

X(t) = X(0) +

∫ t

0
∆(u)dW (u) +

∫ t

0
Θ(u)du, (4.4.16)

where X(0) is nonrandom and ∆(u) and Θ(u) are adapted stochastic processes2.

In order to understand the volatility associated with Itô processes, we must deter-
mine the rate at which they accumulate quadratic variation.

Lemma 4.4.4. The quadratic variation of the Itô process (4.4.16) is

[X,X](t) =

∫ t

0
∆2(u)du. (4.4.17)

Proof. We introduce the notation I(t) =
∫ t
0 ∆(u)dW (u), R(t) =

∫ t
0 Θ(u)du. Both

these processes are continuous in their upper limit of integration t. To determine the
quadratic variation of X on [0, t], we choose a partition Π = {t0, t1, . . . , tn} of [0, t]

(i.e., 0 = t0 < t1 < · · · < tn = t) and we write the sampled quadratic variation

n−1∑

j=0

[
X(tj+1)−X(tj)

]2
=

n−1∑

j=0

[
I(tj+1)− I(tj)

]2
+

n−1∑

j=0

[
R(tj+1)−R(tj)

]2

+ 2
n−1∑

j=0

[
I(tj+1)− I(tj)

][
R(tj+1)−R(tj)

]
.

As ‖Π‖ → 0, the first term on the right-hand side,
∑n−1

j=0

[
I(tj+1) − I(tj)

]2, con-
verges to the quadratic variation of I on [0, t], which according to Theorem 4.3.1(vi)

2We assume that E
∫ t

0
∆2(u)du and

∫ t

0
|Θ2(u)|du are finite for every t > 0 so that the

integrals on the right-hand side of (4.4.16) are defined and the Itô integral is a martingale.
We shall always make such integrability assumptions, but we do not always explicitly state
them.
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is [I, I](t) =
∫ t
0 ∆2(u)du. The absolute value of the second term is bounded above by

max
0≤k≤n−1

|R(tk+1)−R(tk)| ·
n−1∑

j=0

|R(tj+1)−R(tj)|

= max
0≤k≤n−1

|R(tk+1)−R(tk)| ·
n−1∑

j=0

∣∣∣∣∣
∫ tj+1

tj

Θ(u)du

∣∣∣∣∣

≤ max
0≤k≤n−1

|R(tk+1)−R(tk)| ·
n−1∑

j=0

∫ tj+1

tj

|Θ(u)|du

= max
0≤k≤n−1

|R(tk+1)−R(tk)| ·
∫ t

0
|Θ(u)|du,

and as ‖Π‖ → 0, this has limit 0 · ∫ t
0 |Θ(u)|du = 0 because R(t) is continuous. The

absolute value of the third term is bounded above by

2 max
0≤k≤n−1

|I(tk+1)− I(tk)| ·
n−1∑

j=0

|R(tj+1)−R(tj)|

≤ max
0≤k≤n−1

|R(tk+1)−R(tk)| ·
n−1∑

j=0

|R(tj+1)−R(tj)| ·
∫ t

0
|Θ(u)|du,

and this has limit 0 · ∫ t
0 |Θ(u)|2du = 0 as ‖Π‖ → 0 because I(t) is continuous. We

conclude that [X,X](t) = [I, I](t) =
∫ t
0 ∆2(u)du.

The conclusion of Lemma 4.4.4 is most easily remembered by first writing (4.4.16)
in the differential notation

dX(t) = ∆(t)dW (t) + Θ(t)dt (4.4.18)

and then using the differential multiplication table (4.4.12) to compute

dX(t)dX(t) = ∆2(t)dW (t)dW (t) + 2∆(t)Θ(t)dW (t)dt + Θ2(t)dtdt

= ∆2(t)dt.
(4.4.19)

This says that, at each time t, the process X is accumulating quadratic variation at
rate ∆2(t) per unit time, and hence the total quadratic variation accumulated on the
time interval [0, t] is [X,X](t) =

∫ t
0 ∆2(u)du. This quadratic variation is solely due to

the quadratic variation of the Itô integral I(t) =
∫ t
0 ∆(u)dW (u). The ordinary integral

R(t) =
∫ t
0 Θ(u)du has zero quadratic variation and thus contributes nothing to the

quadratic variation of X.
Notice in this connection that having zero quadratic variation does not necessarily

mean that R(t) is nonrandom. Because Θ(u) can be random, R(t) can also be random.
However, R(t) is not as volatile as I(t). At each time t, we have a good estimate of
the next increment of R(t). For small time steps h > 0,

R(t + h) ≈ R(t) + Θ(t)h,
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and we know both R(t) and Θ(t) at time t. This is like investing in a money market
account at a variable interest rate. At each time, we have a good estimate of the return
over the near future because we know today’s interest rate. Nonetheless, the return
is random because the interest rate (Θ in this analogy) can change. In contrast, I is
more volatile. At time t, one estimate of I(t + h) is

I(t + h) ≈ I(t) + ∆(t)
(
W (t + h)−W (t)

)
,

but we do not know W (t+h)−W (t) at time t. In fact, W (t+h)−W (t) is independent
of the information available at time t. This is like investing in a stock.

So far we have discussed integrals with respect to time, such as R(t) =
∫ t
0 Θ(u)du

appearing in (4.4.16) and Itô integrals (integrals with respect to Brownian motion)
such as I(t) =

∫ t
0 ∆(u)dW (u), also appearing in (4.4.16). In addition, we shall need

integrals with respect to Itô processes (i.e., integrals of the form
∫ t
0 Γ(u)dX(u), where

Γ is some adapted process). We define such an integral by separating dX(t) into a
dW (t) term and a dt term as in (4.4.18).

Definition 4.4.5. Let X(t), t ≥ 0, be an Itô process as described in Definition 4.4.3,
and let Γ(t), t ≥ 0, be an adapted process. We define the integral with respect to an
Itô process3

∫ t

0
Γ(u)dX(u) =

∫ t

0
Γ(u)∆(u)dW (u) +

∫ t

0
Γ(u)Θ(u)du. (4.4.20)

We again work through the sketch of the proof of Theorem 4.4.1, but with the Itô
process X(t) replacing the Brownian motion W (t). In place of (4.4.9), we now have

f
(
T, X(T )

)− f
(
0, X(0)

)

=
n−1∑

j=0

ft

(
tj , X(tj)

)
(tj+1 − tj) +

n−1∑

j=0

fx

(
tj , X(tj)

)(
X(tj+1)−X(tj)

)

+
1

2

n−1∑

j=0

fxx

(
tj , X(tj)

)(
X(tj+1)−X(tj)

)2

+
n−1∑

j=0

ftx

(
tj , X(tj)

)
(tj+1 − tj)

(
X(tj+1)−X(tj)

)

+
1

2

n−1∑

j=0

ftt

(
tj , X(tj)

)
(tj+1 − tj)

2 + higher-order terms.

(4.4.21)

The last two sums on the right-hand side have zero limits as ‖Π‖ → 0 for the same
reasons the analogous terms have zero limits in the sketch of the proof of Theorem
4.4.1 (see (4.4.10) and (4.4.11)). The higher-order terms likewise have limit zero.
The limit of the first term on the right-hand side of (4.4.21) is

∫ T
0 ft

(
t,X(t)

)
dt. The

limit of the second term is∫ T

0
fx

(
t,X(t)

)
dX(t) =

∫ T

0
fx

(
t,X(t)

)
∆(t)dW (t) +

∫ T

0
fx

(
t,X(t)

)
Θ(t)dt.

3We assume that E
∫ t

0
Γ2(u)∆2(u)du and

∫ t

0
|Γ(u)Θ(u)|du are finite for every t > 0 so that the integrals

on the right-hand side of (4.4.20) are defined.
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Finally, the limit of the third term on the right-hand side of (4.4.19) is

1

2

∫ T

0
fxx

(
t,X(t)

)
d[X,X](t) =

1

2

∫ T

0
fxx

(
t,X(t)

)
∆2(t)dt

because the Itô process X(t) accumulates quadratic variation at rate ∆2(t) per unit
time (Lemma 4.4.4). These considerations lead to the following generalization of
Theorem 4.4.1.

Theorem 4.4.6 (Itô-Doeblin formula for an Itô process). Let X(t), t ≥ 0, be an Itô
process as described in Definition 4.4.3, and let f(t, x) be a function for which the
partial derivatives ft(t, x), fx(t, x), and fxx(t, x) are defined and continuous. Then,
for every T ≥ 0,

f
(
T, X(T )

)
= f

(
0, X(0)

)
+

∫ T

0
ft

(
t,X(t)

)
dt +

∫ T

0
fx

(
t,X(t)

)
dX(t)

+
1

2

∫ T

0
fxx

(
t,X(t)

)
d[X,X](t)

= f
(
0, X(0)

)
+

∫ T

0
ft

(
t,X(t)

)
dt +

∫ T

0
fx

(
t,X(t)

)
∆(t)dW (t)

+

∫ T

0
fx

(
t,X(t)

)
Θ(t)dt +

1

2

∫ T

0
fxx

(
t,X(t)

)
∆2(t)dt.

(4.4.22)

Remark 4.4.7. (Summary of stochastic calculus). Theorem 4.4.6 is stated in math-
ematically precise language. Every term on the right-hand side has a solid defini-
tion, and in the end the right-hand side reduces to a sum of a nonrandom quantity
f
(
0, X(0)

)
, three ordinary (Lebesgue) integrals with respect to time, and an Itô inte-

gral.
However, it is easier to remember and use the result of this theorem if we recast it

in differential notation. We may rewrite (4.4.22) as

df
(
t,X(t)

)
= ft

(
t,X(t)

)
dt + fx

(
t,X(t)

)
dX(t) +

1

2
fxx

(
t,X(t)

)
dX(t)dX(t). (4.4.23)

The guiding principle here is that we write out the Taylor series expansion of f
(
t,X(t)

)

with respect to all its arguments, which in this case are t and X(t). We take this Taylor
series expansion out to first order for every argument that has zero quadratic varia-
tion, which in this case is t, and we take the expansion out to second order for every
argument that has nonzero quadratic variation, which in this case is X(t).

We may reduce (4.4.23) to an expression that involves only dt and dW (t) by using
the differential form (4.4.18) of the Itô process (i.e., dX(t) = ∆(t)dW (t) + Θ(t)dt)
and the formula (4.4.19) for the rate at which X(t) accumulates quadratic variation
(i.e., dX(t)dX(t) = ∆2(t)dt). This is obtained by squaring the formula for dX(t) and
using the multiplication table (4.4.12). Making these substitutions in (4.4.23), we
obtain

df
(
t,X(t)

)
= ft

(
t,X(t)

)
dt + fx

(
t,X(t)

)
∆(t)dW (t)

+ fx

(
t,X(t)

)
Θ(t)dt +

1

2
fxx

(
t,X(t)

)
∆2(t)dt.

(4.4.24)



138 Stochastic Calculus

Itô calculus is little more than repeated use of this formula in a variety of situations.

¤

4.4.3 Examples

We conclude this section with three examples illustrating Remark 4.4.7. Many more
examples are developed in subsequent sections and in the exercises.

Example 4.4.8. (Generalized geometric Brownian motion).

Let W (t), t ≥ 0, be a Brownian motion, let F(t), t ≥ 0, be an associated filtration,
and let α(t) and σ(t) be adapted processes. Define the Itô process

X(t) =

∫ t

0
σ(s)dW (s) +

∫ t

0

(
α(s)− 1

2
σ2(s)

)
ds. (4.4.25)

Then
dX(t) = σ(t)dW (t) +

(
α(t)− 1

2
σ2(t)

)
dt,

and
dX(t)dX(t) = σ2(t)dW (t)dW (t) = σ2(t)dt.

Consider an asset price process given by

S(t) = S(0)eX(t) = S(0) exp

{∫ t

0
σ(s)dW (s) +

∫ t

0

(
α(s)− 1

2
σ2(s)

)
ds

}
, (4.4.26)

where S(0) is nonrandom and positive. We may write S(t) = f
(
X(t)

)
, where f(x) =

S(0)ex, f ′(x) = S(0)ex, and f ′′(x) = S(0)ex. According to the Itô-Doeblin formula

dS(t) = df
(
X(t)

)

= f ′
(
X(t)

)
dX(t) +

1

2
f ′

(
X(t)

)
dX(t)dX(t)

= S(0)eX(t)dX(t) +
1

2
S(0)eX(t)dX(t)dX(t)

= S(t)dX(t) +
1

2
S(t)dX(t)dX(t)

= α(t)S(t)dt + σ(t)S(t)dW (t).

(4.4.27)

The asset price S(t) has instantaneous mean rate of return α(t) and volatility σ(t).
Both the instantaneous mean rate of return and the volatility are allowed to be time-
varying and random.

This example includes all possible models of an asset price process that is always
positive, has no jumps, and is driven by a single Brownian motion. Although the
model is driven by a Brownian motion, the distribution of S(t) does not need to be
log-normal because α(t) and σ(t) are allowed to be time-varying and random. If α

and σ are constant, we have the usual geometric Brownian motion model, and the
distribution of S(t) is log-normal.
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In the case of constant α and σ, (4.4.26) becomes

S(t) = S(0) exp

{
σW (t) +

(
α− 1

2
σ2

)
t

}
. (4.4.28)

One can incorrectly argue from this formula that since Brownian motion is a mar-
tingale (i.e., it has no overall tendency to rise or fall), the mean rate of return for
S(t) must be α − 1

2σ2. The error in this argument is that although W (t) is a martin-
gale, S(0)eσW (t) is not. The convexity of the function eσx imparts an upward drift to
S(0)eσW (t). In order to correct for this, one must subtract 1

2σ2t in the exponential; the
process S(0) exp{σW (t)− 1

2σ2t} is a martingale (see Theorem 3.6.1). If we now add
at in the exponential, we get S(t), a process with mean rate of return α.

The Itô-Doeblin formula automatically keeps track of these effects, even when α

and σ are time-varying and random. If α = 0, then (4.4.27) yields

dS(t) = α(t)S(t)dW (t).

Integration of both sides yields

S(t) = S(0) +

∫ t

0
σ(s)S(s)dW (s).

The right-hand side is the nonrandom constant S(0) plus an Itô integral, which is a
martingale, and hence (in the case α = 0)

S(t) = S(0 exp

{∫ t

0
σ(s)dW (s)− 1

2

∫ t

0
σ2(s)ds

}
) (4.4.29)

is a martingale. In other words, the term σ(t)S(t)dW (t) on the right-hand side of
(4.4.27) contributes no drift, just pure volatility, to the asset price.

When α(t) is a nonzero random process, (4.4.27) shows that it plays the role of the
mean rate of return. In the case of time-varying and random α(t), we will call this the
instantaneous mean rate of return since it depends on the time (and the sample path)
where it is evaluated.

¤

The preceding example supplies the heart of the proof of the following theorem.

Theorem 4.4.9 (Itô integral of a deterministic integrand). Let W (s), s ≥ 0, be a
Brownian motion, and let ∆(s) be a nonrandom function of time. Define I(t) =∫ t
0 ∆(s)dW (s). For each t ≥ 0, the random variable I(t) is normally distributed with

expected value zero and variance
∫ t
0 ∆2(s)ds.

Proof. The mean and variance of I(t) are easy to determine. Since I(t) is a martingale
and I(0) = 0, we must have EI(t) = I(0) = 0. Itô’s isometry (Theorem 4.3.1(v))
implies that

Var I(t) = EI2(t) =

∫ t

0
∆2(s)ds.
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We do not need to take the expected value of
∫ t
0 ∆2(s)ds on the right-hand side of this

formula because ∆(s) is not random.
The challenge is to show that I(t) is normally distributed. We shall do this by es-

tablishing that I(t) has the moment-generating function of a normal random variable
with mean zero and variance

∫ t
0 ∆2(s)ds, which is (see (3.2.13))

EeuI(t) = exp

{
1

2
u2

∫ t

0
∆2(s)ds

}
for all u ∈ R. (4.4.30)

Because ∆(s) is not random, (4.4.30) is equivalent to

E exp

{
uI(t)− 1

2
u2

∫ t

0
∆2(s)ds

}
= 1,

which may be rewritten as

E exp

{∫ t

0
u∆(s)dW (s)− 1

2

∫ t

0

(
(u∆(s))

)2
ds

}
= 1. (4.4.31)

But the process

exp

{∫ t

0
u∆(s)dW (s)− 1

2

∫ t

0

(
(u∆(s))

)2
ds

}

is a martingale. Indeed, it is a generalized geometric Brownian motion with mean
rate of return α = 0; see (4.4.29) with σ(s) = u∆(s). Furthermore, this process takes
the value 1 at t = 0, and hence its expectation is always 1. This gives us (4.4.31).

Note that (4.4.31) always holds, regardless of whether ∆(s) is random. However,
we need to assume that ∆(s) is nonrandom in order to obtain the moment-generating
function formula (4.4.30) from (4.4.31). When ∆(s) is random, there is no reason
that the distribution of

∫ t
0 ∆(s)dW (s) should be normal.

Example 4.4.10. (Vasicek interest rate model).

Let W (t), t ≥ 0, be a Brownian motion. The Vasicek model for the interest rate
process R(t) is

dR(t) =
(
α− βR(t)

)
dt + σdW (t), (4.4.32)

where α, β, and σ are positive constants. Equation (4.4.32) is an example of a stochas-
tic differential equation. It defines a random process, R(t) in this case, by giving a
formula for its differential, and the formula involves the random process itself and
the differential of a Brownian motion.

The solution to the stochastic differential equation (4.4.32) can be determined in
closed form and is

R(t) = e−βtR(0) +
α

β
(1− e−βt) + σe−βt

∫ t

0
eβsdW (s), (4.4.33)

a claim that we now verify. In particular, we compute the differential of the right-
hand side of (4.4.33). To do this, we use the Itô-Doeblin formula with

f(t, x) = e−βtR(0) +
α

β
(1− e−βt) + σe−βtx



4.4 Itô-Doeblin Formula 141

and X(t) =
∫ t
0 eβsdW (s). Then the right-hand side of (4.4.33) is f

(
t,X(t)

)
. The

technique we are using is to separate the right-hand side into two parts: an ordinary
function of two variables t and x, which has no randomness in it, and an Itô process
X(t), which contains all the randomness. For the Itô-Doeblin formula, we shall need
the following partial derivatives of f(t, x):

ft(t, x) = −βe−βtR(0) + αe−βt − σβe−βtx = α− βf(t, x)

fx(t, x) = σe−βt,

fxx(t, x) = 0.

We shall also need the differential of X(t), which is dX(t) = eβtdW (t). We shall not
need dX(t)dX(t) = e2βtdt because fxx(t, x) = 0. The Itô-Doeblin formula states that

df
(
t,X(t)

)
= ft

(
t,X(t)

)
dt + fx

(
t,X(t)

)
dX(t) +

1

2
fxx

(
t,X(t)

)
dX(t)dX(t)

=
(
α− βf

(
t,X(t)

))
dt + σdW (t).

This shows that f
(
t,X(t)

)
satisfies the stochastic differential equation (4.4.32) that

defines R(t). Moreover, f
(
0, X(0)

)
= R(0). Because f

(
t,X(t)

)
satisfies the equation

defining R(t) and has the same initial condition as R(t), it must be the case that
f
(
t,X(t)

)
= R(t) for all t ≥ 0.

Theorem 4.4.9 implies that the random variable
∫ t
0 eβsdW (s) appearing on the

right-hand side of (4.4.33) is normally distributed with mean zero and variance
∫ t

0
e2βsds =

1

2β
(e2βt − 1).

Therefore, R(t) is normally distributed with mean e−βtR(0)+ α
β (1−e−βt) and variance

σ2

2β (1 − e−2βt). In particular, no matter how the parameters α > 0, β > 0, and σ > 0

are chosen, there is positive probability that R(t) is negative, an undesirable property
for an interest rate model.

The Vasicek model has the desirable property that the interest rate is mean-reverting.
When R(t) = α

β , the drift term (the dt term) in (4.4.32) is zero. When R(t) > α
β , this

term is negative, which pushes R(t) back toward α
β . When R(t) < α

β , this term is
positive, which again pushes R(t) back toward α

β . If R(0) = α
β , then ER(t) = α

β for
all t ≥ 0. If R(0) 6= α

β , then limt→∞R(t) = α
β .

¤

Example 4.4.11. (Cox-Ingersoll-Ross (CIR) interest rate model).

Let W (t), t ≥ 0, be a Brownian motion. The Cox-Ingersoll-Ross model for the
interest rate process R(t) is

dR(t) =
(
α− βR(t)

)
dt + σ

√
R(t)dW (t), (4.4.34)

where α, β, and σ are positive constants. Unlike the Vasicek equation (4.4.32),
the CIR equation (4.4.34) does not have a closed-form solution. The advantage of
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(4.4.34) over the Vasicek model is that the interest rate in the CIR model does not
become negative. If R(t) reaches zero, the term multiplying dW (t) vanishes and the
positive drift term αdt in equation (4.4.34) drives the interest rate back into positive
territory. Like the Vasicek model, the CIR model is mean-reverting.

Although one cannot derive a closed-form solution for (4.4.34), the distribution
of R(t) for each positive t can be determined. That computation would take us too
far afield. We instead content ourselves with the derivation of the expected value and
variance of R(t). To do this, we use the function f(t, x) = eβtx and the Itô-Doeblin
formula to compute

d
(
eβtR(t)

)
= df

(
t, R(t)

)

= ft

(
t, R(t)

)
dt + fx

(
t, R(t)

)
dR(t) +

1

2
fxx

(
t, R(t)

)
dR(t)dR(t)

= βeβtR(t)dt + eβt
(
α− βR(t)

)
dt + eβtσ

√
R(t)dW (t)

= αeβtdt + σeβt
√

R(t)dW (t).

(4.4.35)

Integration of both sides of (4.4.35) yields

eβtR(t) = R(0) + α

∫ t

0
eβudu + σ

∫ t

0
eβu

√
R(u)dW (u)

= R(0) +
α

β
(eβt − 1) + σ

∫ t

0
eβu

√
R(u)dW (u).

Recalling that the expectation of an Itô integral is zero, we obtain

eβtER(t) = R(0) +
α

β
(eβt − 1)

or, equivalently,

ER(t) = e−βtR(0) +
α

β
(1− e−βt). (4.4.36)

This is the same expectation as in the Vasicek model.
To compute the variance of R(t), we set X(t) = eβtR(t), for which we have already

computed

dX(t) = αeβtdt + σeβt
√

R(t)dW (t) = αeβtdt + σe
βt
2

√
X(t)dW (t)

and EX(t) = R(0)+α
β (eβt−1). According to the Itô-Doeblin formula (with f(x) = x2,

f ′(x) = 2x, and f ′′(x) = 2),

d
(
X2(t)

)
= 2X(t)dX(t) + dX(t)dX(t)

= 2αeβtX(t)dt + 2σe
βt
2 X

3
2 (t)dW (t) + σ2eβtX(t)dt.

(4.4.37)

Integration of (4.4.37) yields

X2(t) = X2(0) + (2α + σ2)

∫ t

0
eβuX(u)du + 2σ

∫ t

0
e

βu
2 X

3
2 (u)dW (u).
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Taking expectations, using the fact that the expectation of an Itô integral is zero and
the formula already derived for EX(t), we obtain

EX2(t) = X2(0) + (2α + σ2)

∫ t

0
eβuEX(u)du

= R2(0) + (2α + σ2)

∫ t

0
eβu

(
R(0) +

α

β
(eβu − 1)

)
du

= R2(0) +
2α + σ2

β

(
R(0)− α

β

)
(eβt − 1) +

2α + σ2

2β
· α

β
(e2βt − 1).

Therefore,

ER2(t) = e−2βtEX2(t)

= e−2βtR2(0) +
2α + σ2

β

(
R(0)− α

β

)
(e−βt − e−2βt) +

α(2α + σ2)

2β2
(1− e−2βt).

Finally,

Var
(
R(t)

)
= ER2(t)− (

ER(t)
)2

= e−2βtR2(0) +
2α + σ2

β

(
R(0)− α

β

)
(e−βt − e−2βt)

+
α(2α + σ2)

2β2
(1− e−2βt)− e−2βtR2(0)

− 2α

β
R(0)(e−βt − e−2βt)− α2

β2
(1− e−βt)2

=
σ2

β
R(0)

(
e−βt − e−2βt

)
+

ασ2

2β2

(
1− 2e−βt + e−2βt

)
.

(4.4.38)

In particular,

lim
t→∞Var

(
R(t)

)
=

ασ2

2β2
.

4.5 Black-Scholes-Merton Equation

The addition of Merton’s name to what has traditionally been called the Black-
Scholes equation is explained in the Notes, Section 4.9.

In this section, we derive the Black-Scholes-Merton partial differential equation
for the price of an option on an asset modeled as a geometric Brownian motion. The
idea behind this derivation is the same as in the binomial model of Chapter 1 of
Volume I, which is to determine the initial capital required to perfectly hedge a short
position in the option.

4.5.1 Evolution of Portfolio Value

Consider an agent who at each time t has a portfolio valued at X(t). This portfolio
invests in a money market account paying a constant rate of interest r and in a stock
modeled by the geometric Brownian motion

dS(t) = αS(t)dt + σS(t)dW (t). (4.5.1)
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Suppose at each time t, the investor holds ∆(t) shares of stock. The position ∆(t) can
be random but must be adapted to the filtration associated with the Brownian motion
W (t), t ≥ 0. The remainder of the portfolio value, X(t)−∆(t)S(t), is invested in the
money market account.

The differential dX(t) for the investor’s portfolio value at each time t is due to
two factors, the capital gain ∆(t)dS(t) on the stock position and the interest earnings
r
(
X(t)−∆(t)S(t)

)
dt on the cash position. In other words,

dX(t) = ∆(t)dS(t) + r
(
X(t)−∆(t)S(t)

)
dt

= ∆(t)
(
αS(t)dt + σS(t)dW (t)

)
+ r

(
X(t)−∆(t)S(t)

)
dt

= rX(t)dt + ∆(t)(α− r)S(t)dt + ∆(t)σS(t)dW (t).

(4.5.2)

The three terms appearing in the last line of (4.5.2) can be understood as follows:

(i) an average underlying rate of return r on the portfolio, which is reflected by the
term rX(t)dt,

(ii) a risk premium α − r for investing in the stock, which is reflected by the term
∆(t)(α− r)S(t)dt, and

(iii) a volatility term proportional to the size of the stock investment, which is the
term ∆(t)σS(t)dW (t).

The discrete-time analogue of equation (4.5.2) appears in Chapter 1 of Volume I
as (1.2.12):

Xn+1 = ∆nSn+1 + (1 + r)(Xn −∆nSn).

We may rearrange terms in this equation to obtain

Xn+1 −Xn = ∆n(Sn+1 − Sn) + r(Xn −∆nSn), (4.5.3)

which is analogous to the first line of (4.5.2), except in (4.5.3) time steps forward
one unit at a time, whereas in (4.5.2) time moves forward continuously. See Exercise
4.10 for additional discussion of the rationale for equation (4.5.2) in option pricing.

We shall often consider the discounted stock price e−rtS(t) and the discounted
portfolio value of an agent, e−rtX(t). According to the Itô-Doeblin formula with
f(t, x) = e−rtx, the differential of the discounted stock price is

d
(
e−rtS(t)

)
= df

(
t, S(t)

)

= ft

(
t, S(t)

)
dt + fx

(
t, S(t)

)
dS(t) +

1

2
fxxf

(
t, S(t)

)
dS(t)dS(t)

= −re−rtS(t)dt + e−rtdS(t)

= (α− r)e−rtS(t)dt + σe−rtS(t)dW (t),

(4.5.4)
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and the differential of the discounted portfolio value is

d
(
e−rtX(t)

)
= df

(
t,X(t)

)

= ft

(
t,X(t)

)
dt + fx

(
t,X(t)

)
dX(t) +

1

2
fxxf

(
t,X(t)

)
dX(t)dX(t)

= −re−rtX(t)dt + e−rtdX(t)

= ∆(t)(α− r)e−rtS(t)dt + ∆(t)σe−rtS(t)dW (t)

= ∆(t)d
(
e−rtS(t)

)
.

(4.5.5)

Discounting the stock price reduces the mean rate of return from a, the term multiply-
ing S(t)dt in (4.5.1), to α− r, the term multiplying e−rtS(t)dt in (4.5.4). Discounting
the portfolio value removes the underlying rate of return r; compare the last line of
(4.5.2) to the next-to-last line of (4.5.5). The last line of (4.5.5) shows that change in
the discounted portfolio value is solely due to change in the discounted stock price.

4.5.2 Evolution of Option Value

Consider a European call option that pays
(
S(T ) − K

)+ at time T . The strike price
K is some nonnegative constant. Black, Scholes, and Merton argued that the value
of this call at any time should depend on the time (more precisely, on the time to
expiration) and on the value of the stock price at that time, and of course it should
also depend on the model parameters r and σ and the contractual strike price K. Only
two of these quantities, time and stock price, are variable. Following this reasoning,
we let c(t, x) denote the value of the call at time t if the stock price at that time is
S(t) = x. There is nothing random about the function c(t, x). However, the value of
the option is random; it is the stochastic process c

(
t, S(t)

)
obtained by replacing the

dummy variable x by the random stock price S(t) in this function. At the initial time,
we do not know the future stock prices S(t) and hence do not know the future option
values c

(
t, S(t)

)
. Our goal is to determine the function c(t, x) so we at least have a

formula for the future option values in terms of the future stock prices.
We begin by computing the differential of c

(
t, S(t)

)
. According to the Itô-Doeblin

formula, it is

dc
(
t, S(t)

)
= ct

(
t, S(t)

)
dt + cx

(
t, S(t)

)
dS(t) +

1

2
cxx

(
t, S(t)

)
dS(t)dS(t)

= ct

(
t, S(t)

)
dt + cx

(
t, S(t)

)(
αS(t)dt + σS(t)dW (t)

)
+

1

2
cxx

(
t, S(t)

)
σ2S2(t)dt

=

[
ct

(
t, S(t)

)
+ αS(t)cx

(
t, S(t)

)
+

1

2
σ2S2(t)cxx

(
t, S(t)

)]
dt

+ σS(t)cx

(
t, S(t)

)
dW (t).

(4.5.6)

We next compute the differential of the discounted option price e−rtc
(
t, S(t)

)
. Let
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f(t, x) = e−rtx. According to the Itô-Doeblin formula,

d
(
e−rtc

(
t, S(t)

))
= df

(
t, c

(
t, S(t)

))

= ft

(
t, c

(
t, S(t)

))
dt + fx

(
t, c

(
t, S(t)

))
dc

(
t, S(t)

)

+
1

2
fxx

(
t, c

(
t, S(t)

))
dc

(
t, S(t)

)
dc

(
t, S(t)

)

= −re−rtc
(
t, S(t)

)
dt + e−rtdc

(
t, S(t)

)

= e−rt
[
− rc

(
t, S(t)

)
+ ct

(
t, S(t)

)
+ αS(t)cx

(
t, S(t)

)

+
1

2
σ2S2(t)cxx

(
t, S(t)

)]
dt + e−rtσS(t)cx

(
t, S(t)

)
dW (t).

(4.5.7)

4.5.3 Equating the Evolutions

A (short option) hedging portfolio starts with some initial capital X(0) and invests
in the stock and money market account so that the portfolio value X(t) at each time
t ∈ [0, T ] agrees with c

(
t, S(t)

)
. This happens if and only if e−rtX(t) = e−rtc

(
t, S(t)

)

for all t. One way to ensure this equality is to make sure that

d
(
e−rtX(t)

)
= d

(
e−rtc

(
t, S(t)

))
for all t ∈ [0, T ) (4.5.8)

and X(0) = c
(
0, S(0)

)
. Integration of (4.5.8) from 0 to t then yields

e−rtX(t)−X(0) = e−rtc
(
t, S(t)

)− c
(
0, S(0)

)
for all t ∈ [0, T ). (4.5.9)

If X(0) = c
(
0, S(0)

)
, then we can cancel this term in (4.5.9) and get the desired

equality.
Comparing (4.5.5) and (4.5.7), we see that (4.5.8) holds if and only if

∆(t)(α− r)S(t)dt + ∆(t)σS(t)dW (t)

=

[
−rc

(
t, S(t)

)
+ ct

(
t, S(t)

)
+ αS(t)cx

(
t, S(t)

)
+

1

2
σ2S2(t)cxx

(
t, S(t)

)]
dt

+ σS(t)cx

(
t, S(t)

)
dW (t).

(4.5.10)

We examine what is required in order for (4.5.10) to hold.
We first equate the dW (t) terms in (4.5.10), which gives

∆(t) = cx

(
t, S(t)

)
for all t ∈ [0, T ). (4.5.11)

This is called the delta-hedging rule. At each time t prior to expiration, the number
of shares held by the hedge of the short option position is the partial derivative with
respect to the stock price of the option value at that time. This quantity, cx

(
t, S(t)

)
, is

called the delta of the option.
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We next equate the dt terms in (4.5.10), using (4.5.11), to obtain

(α− r)S(t)cx

(
t, S(t)

)
= −rc

(
t, S(t)

)
+ ct

(
t, S(t)

)
+ αS(t)cx

(
t, S(t)

)

+
1

2
σ2S2(t)cxx

(
t, S(t)

)
for all t ∈ [0, T ).

(4.5.12)

The term αS(t)cx

(
t, S(t)

)
appears on both sides of (4.5.12), and after canceling it, we

obtain

rc
(
t, S(t)

)
= ct

(
t, S(t)

)
+ rS(t)cx

(
t, S(t)

)
+

1

2
σ2S2(t)cxx

(
t, S(t)

)
for all t ∈ [0, T ).

(4.5.13)
In conclusion, we should seek a continuous function c(t, x) that is a solution to the

Black-Scholes-Merton partial differential equation

ct(t, x) + rxcx(t, x) +
1

2
σ2x2cxx(t, x) = rc(t, x) for all t ∈ [0, T ), x ≥ 0, (4.5.14)

and that satisfies the terminal condition

c(T, x) = (x−K)+. (4.5.15)

Suppose we have found this function. If an investor starts with initial capital X(0) =

c
(
0, S(0)

)
and uses the hedge ∆(t) = cx

(
t, S(t)

)
, then (4.5.10) will hold for all

t ∈ [0, T ). Indeed, the dW (t) terms on the left and right sides of (4.5.10) agree be-
cause ∆(t) = cx

(
t, S(t)

)
, and the dt terms agree because (4.5.14) guarantees (4.5.13).

Equality in (4.5.10) gives us (4.5.9). Canceling X(0) = c
(
0, S(0)

)
and e−rt in this

equation, we see that X(t) = c
(
t, S(t)

)
for all t ∈ [0, T ). Taking the limit as t ↑ T

and using the fact that both X(t) and c
(
t, S(t)

)
are continuous, we conclude that

X(T ) = c
(
T, S(T )

)
=

(
S(T )−K

)+ This means that the short position has been suc-
cessfully hedged. No matter which of its possible paths the stock price follows, when
the option expires, the agent hedging the short position has a portfolio whose value
agrees with the option payoff.

4.5.4 Solution to the Black-Scholes-Merton Equation

The Black-Scholes-Merton equation (4.5.14) does not involve probability. It is a par-
tial differential equation, and the arguments t and x are dummy variables, not random
variables. One can solve it by partial differential equation methods. In this section,
however, rather than showing how to solve the equation, we shall simply present the
solution and check that it works. In Subsection 5.2.5, we present a derivation of this
solution based on probability theory.

We want the Black-Scholes-Merton equation to hold for all x ≥ 0 and t ∈ [0, T )

so that (4.5.14) will hold regardless of which of its possible paths the stock price
follows. If the initial stock price is positive, then the stock price is always positive,
and it can take any positive value. If the initial stock price is zero, then subsequent
stock prices are all zero. We cover both of these cases by asking (4.5.14) to hold for
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all x ≥ 0. We do not need (4.5.14) to hold at t = T , although we need the function
c(t, x) to be continuous at t = T . If the hedge works at all times strictly prior to T , it
also works at time T because of continuity.

Equation (4.5.14) is a partial differential equation of the type called backward
parabolic. For such an equation, in addition to the terminal condition (4.5.15), one
needs boundary conditions at x = 0 and x = ∞ in order to determine the solution.
The boundary condition at x = 0 is obtained by substituting x = 0 into (4.5.14),
which then becomes

ct(t, 0) = rc(t, 0). (4.5.16)

This is an ordinary differential equation for the function c(t, 0) of t, and the solution
is

c(t, 0) = ertc(0, 0).

Substituting t = T into this equation and using the fact that c(T, 0) = (0 −K)+ = 0,
we see that c(0, 0) = 0 and hence

c(t, 0) = 0 for all t ∈ [0, T ]. (4.5.17)

This is the boundary condition at x = 0.
As x → ∞, the function c(t, x) grows without bound. In such a case, we give the

boundary condition at x = ∞ by specifying the rate of growth. One way to specify a
boundary condition at x = ∞ for the European call is

lim
x→∞

[
c(t, x)− (

x− e−r(T−t)K
)]

= 0 for all t ∈ [0, T ]. (4.5.18)

In particular, c(t, x) grows at the same rate as x as x → ∞. Recall that c(t, x) is the
value at time t of a call on a stock whose price at time t is x. For large x, this call is
deep in the money and very likely to end in the money. In this case, the price of the
call is almost as much as the price of the forward contract discussed in Subsection
4.5.6 below (see (4.5.26)). This is the assertion of (4.5.18).

The solution to the Black-Scholes-Merton equation (4.5.14) with terminal condi-
tion (4.5.15) and boundary conditions (4.5.17) and (4.5.18) is

c(t, x) = xN
(
d+(T − t, x)

)−Ke−r(T−t)N
(
d−(T − t, x)

)
, 0 ≤ t < T, x > 0, (4.5.19)

where
d±(τ, x) =

1

σ
√

τ

[
log

x

K
+

(
r ± σ2

2

)
τ

]
, (4.5.20)

and N is the cumulative standard normal distribution

N(y) =
1√
2π

∫ y

−∞
e−

z2

2 dz =
1√
2π

∫ ∞

−y
e−

z2

2 dz. (4.5.21)

We shall sometimes use the notation

BSM(τ, x; K, r, σ) = xN
(
d+(τ, x)

)−Ke−rτN
(
d−(τ, x)

)
, (4.5.22)

and call BSM(τ, x; K, r, σ) the Black-Scholes-Merton function. In this formula, τ

and x denote the time to expiration and the current stock price, respectively. The
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parameters K, r, and σ are the strike price, the interest rate, and the stock volatility,
respectively.

Formula (4.5.19) does not define c(t, x) when t = T (because then τ = T − t = 0

and this appears in the denominator in (4.5.20)), nor does it define c(t, x) when x = 0

(because log x appears in (4.5.20), and log 0 is not a real number). However, (4.5.19)
defines c(t, x) in such a way that limt→T c(t, x) = (x − K)+ and limx↓0 c(t, x) = 0.
Verification of all of these claims is given as Exercise 4.9.

4.5.5 The Greeks

The derivatives of the function c(t, x) of (4.5.19) with respect to various variables are
called the Greeks. Two of these are derived in Exercise 4.9, namely delta, which is

cx(t, x) = N
(
d+(T − t, x)

)
, (4.5.23)

and theta, which is

ct(t, x) = −rKe−r(T−t)N
(
d−(T − t, x)

)− σx

2
√

T − t
N ′(d+(T − t, x)

)
. (4.5.24)

Because both N and N ′ are always positive, delta is always positive and theta is
always negative. Another of the Greeks is gamma, which is

cxx(t, x) = N ′(d+(T − t, x)
) ∂

∂x
d+(T − t, x) =

1

σx
√

T − t
N ′(d+(T − t, x)

)
. (4.5.25)

Like delta, gamma is always positive.
In order to simplify notation in the following discussion, we sometimes suppress

the arguments (t, x) of c(t, x) and (T − t, x) of d±(T − t, x). If at time t the stock
price is x, then the short option hedge of (4.5.11) calls for holding cx(t, x) shares
of stock, a position whose value is xcx = xN(d+). The hedging portfolio value is
c = xN(d+)−Ke−r(T−t)N(d−), and since xcx(t, x) of this value is invested in stock,
the amount invested in the money market must be

c(t, x)− xcx(t, x) = −Ke−r(T−t)N(d−),

a negative number. To hedge a short position in a call option, one must borrow
money. To hedge a long position in a call option, one does the opposite. In other
words, to hedge a long call position one should hold −cx shares of stock (i.e., have a
short position in stock) and invest Ke−r(T−t)N(d−) in the money market account.

Because delta and gamma are positive, for fixed t, the function c(t, x) is increasing
and convex in the variable x, as shown in Figure 4.5.1. Suppose at time t the stock
price is x1 and we wish to take a long position in the option and hedge it. We do
this by purchasing the option for c(t, x1), shorting cx(t, x1) shares of stock, which
generates income x1cx(t, x1), and investing the difference,

M = x1cx(t, x1)− c(t, x1),
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in the money market account. We wish to consider the sensitivity to stock price
changes of the portfolio that has these three components: long option, short stock,
and long money market account. The initial portfolio value

c(t, x1)− x1cx(t, x1) + M

is zero at the moment t when we set up these positions.

If the stock price were to instantaneously fall to x0 as shown in Figure 4.5.1 and
we do not change our positions in the stock or money market account, then the value
of the option we hold would fall to c(t, x0) and the liability due to our short position
in stock would decrease to x0cx(t, x1). Our total portfolio value, including M in the
money market account, would be

c(t, x0)− x0cx(t, x1) + M = c(t, x0)− cx(t, x1)(x0 − x1)− c(t, x1).

This is the difference at x0 between the curve y = c(t, x) and the straight line y =

cx(t, x1)(x − x1) + c(t, x1) in Figure 4.5.1. Because this difference is positive, our
portfolio benefits from an instantaneous drop in the stock price.

On the other hand, if the stock price were to instantaneously rise to x2 and we do
not change our positions in the stock or money market account, then the value of the
option would rise to c(t, x2) and the liability due to our short position in stock would
increase to x2cx(t, x1). Our total portfolio value, including M in the money market
account, would be

c(t, x2)− x2cx(t, x1) + M = c(t, x2)− cx(t, x1)(x2 − x1)− c(t, x1).

This is the difference at x2 between the curve y = c(t, x) and the straight line y =

cx(t, x1)(x− x1) + c(t, x1) in Figure 4.5.1. This difference is positive, so our portfolio
benefits from an instantaneous rise in the stock price.

The portfolio we have set up is said to be delta-neutral and long gamma. The
portfolio is long gamma because it benefits from the convexity of c(t, x) as described
above. If there is an instantaneous rise or an instantaneous fall in the stock price, the
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value of the portfolio increases. A long gamma portfolio is profitable in times of high
stock volatility.

“Delta-neutral” refers to the fact that the line in Figure 4.5.1 is tangent to the
curve y = c(t, x). Therefore, when the stock price makes a small move, the change
of portfolio value due to the corresponding change in option price is nearly offset by
the change in the value of our short position in the stock. The straight line is a good
approximation to the option price for small stock price moves. If the straight line
were steeper than the option price curve at the starting point x1, then we would be
short delta; an upward move in the stock price would hurt the portfolio because the
liability from the short position in stock would rise faster than the value of the option.
On the other hand, a downward move would increase the portfolio value because the
option price would fall more slowly than the rate of decrease in the liability from
the short stock position. Unless a trader has a view on the market, he tries to set up
portfolios that are delta-neutral. If he expects high volatility, he would at the same
time try to choose the portfolio to be long gamma.

The portfolio described above may at first appear to offer an arbitrage opportu-
nity. When we let time move forward, not only does the long gamma position offer
an opportunity for profit, but the positive investment in the money market account
enhances this opportunity. The drawback is that theta, the derivative of c(t, x) with
respect to time, is negative. As we move forward in time, the curve y = c(t, x) is
shifting downward. Figure 4.5.1 is misleading because it is drawn with t fixed. In
principle, the portfolio can lose money because the curve c(t, x) shifts downward
more rapidly than the money market investment and the long gamma position gen-
erate income. The essence of the hedging argument in Subsection 4.5.3 is that if the
stock really is a geometric Brownian motion and we have determined the right value
of the volatility σ, then so long as we continuously rebalance our portfolio, all these
effects exactly cancel!

Of course, assets are not really geometric Brownian motions with constant volatil-
ity, but the argument above gives a good first approximation to reality. It also high-
lights volatility as the key parameter. In fact, the mean rate of return α of the stock
does not appear in the Black-Scholes-Merton equation (4.5.14). From the point of
view of no-arbitrage pricing, it is irrelevant how likely the stock is to go up or down
because a delta-neutral position is a hedge against both possibilities. What matters
is how much volatility the stock has, for we need to know the amount of profit that
can be made from the long gamma position. The more volatile stocks offer more
opportunity for profit from the portfolio that hedges a long call position with a short
stock position, and hence the call is more expensive. The derivative of the option
price with respect to the volatility σ is called vega, and it is positive. As volatility
increases, so do option prices in the Black-Scholes-Merton model.
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4.5.6 Put-Call Parity

A forward contract with delivery price K obligates its holder to buy one share of the
stock at expiration time T in exchange for payment K. At expiration, the value of the
forward contract is S(T )−K. Let f(t, x) denote the value of the forward contract at
earlier times t ∈ [0, T ] if the stock price at time t is S(t) = x.

We argue that the value of a forward contract is given by

f(t, x) = x− e−r(T−t)K. (4.5.26)

If an agent sells this forward contract at time zero for f
(
t, S(0)

)
= S(0) − e−rT K,

he can set up a static hedge, a hedge that does not trade except at the initial time, in
order to protect himself. Specifically, the agent should purchase one share of stock.
Since he has initial capital S(0) − e−rT K from the sale of the forward contract, this
requires that he borrow e−rT K from the money market account. The agent makes
no further trades. At expiration of the forward contract, he owns one share of stock
and his debt to the money market account has grown to K, so his portfolio value is
S(T )−K, exactly the value of the forward contract. Because the agent has been able
to replicate the payoff of the forward contract with a portfolio whose value at each
time t is S(t)−e−r(T−t)K, this must be the value at each time of the forward contract.
This is f

(
t, S(t)

)
, where f(t, x) is defined by (4.5.26).

The forward price of a stock at time t is defined to be the value of K that causes
the forward contract at time t to have value zero (i.e., it is the value of K that satisfies
the equation S(t) − e−r(T−t)K = 0). Hence, we see that in a model with a constant
interest rate, the forward price at time t is

For(t) = er(T−t)S(t). (4.5.27)

Note that the forward price is not the price (or value) of a forward contract. For
0 ≤ t ≤ T , the forward price at time t is the price one can lock in at time t for the
purchase of one share of stock at time T , paying the price (settling) at time T . No
money changes hands at the time the price is locked in.

Let us consider this situation at time t = 0. At that time, one can lock in a price
For(0) = erT S(0) for purchase of the stock at time T . Let us do this, which means
we set K = erT S(0) in (4.5.26). The value of this forward contract is zero at time
t = 0, but as soon as time begins to move forward, the value of the forward contract
changes. Indeed, its value at time t is

f
(
t, S(t)

)
= S(t)− ertS(0).

Finally, let us consider a European put, which pays off
(
K − S(T )

)+ at time T .
We observe that for any number x, the equation

x−K = (x−K)+ − (K − x)+ (4.5.28)

holds. Indeed, if x ≥ K, then (x−K)+ = x−K and (K−x)+ = 0. On the other hand,
if x ≤ K, then (x−K)+ = 0 and −(K − x)+ = −(K − x) = x−K. In either case, the



4.6 Multivariable Stochastic Calculus 153

right-hand side of (4.5.28) equals the left-hand side. We denote by p(t, x) the value of
the European put at time t if the time-t stock price is S(t) = x. Similarly, we denote
by c(t, x) the value of the European call expiring at time T with strike price K and by
f(t, x) the value of the forward contract for the purchase of one share of stock at time
T in exchange for payment K. Equation (4.5.28) implies

f
(
T, S(T )

)
= c

(
T, S(T )

)− p
(
T, S(T )

)
;

the payoff of the forward contract agrees with the payoff of a portfolio that is long
one call and short one put. Since the value at time T of the forward contract agrees
with the value of the portfolio that is long one call and short one put, these values
must agree at all previous times:

f(t, x) = c(t, x)− p(t, x), x ≥ 0, 0 ≤ t ≤ T. (4.5.29)

If this were not the case, one could at some time t either sell or buy the portfolio that
is long the forward, short the call, and long the put, realizing an instant profit, and
have no liability upon expiration of the contracts. The relationship (4.5.29) is called
put-call parity.

Note that we have derived the put-call parity formula (4.5.29) without appealing
to the Black-Scholes-Merton model of a geometric Brownian motion for the stock
price and a constant interest rate. Indeed, without any assumptions on the prices
except sufficient liquidity that permits one to form the portfolio that is long one call
and short one put, we have put-call parity. If we make the assumption of a constant
interest rate r, then f(t, x) is given by (4.5.26). If we make the additional assumption
that the stock is a geometric Brownian motion with constant volatility σ > 0, then
we have also the Black-Scholes-Merton call formula (4.5.19). We can then solve
(4.5.29) to obtain the Black-Scholes-Merton put formula

p(t, x) = x
(
N

(
d+(T − t, x)

)− 1
)
−Ke−r(T−t)

(
N

(
d−(T − t, x)

)− 1
)

= Ke−r(T−t)N
(− d−(T − t, x)

)− xN
(− d+(T − t, x)

)
,

(4.5.30)

where d±(T − t, x) is given by (4.5.20).

4.6 Multivariable Stochastic Calculus

4.6.1 Multiple Brownian Motions

Definition 4.6.1. A d-dimensional Brownian motion is a process

W (t) =
(
W1(t), . . . , Wd(t)

)

with the following properties.

(i) Each Wi(t) is a one-dimensional Brownian motion,

(ii) If i 6= j, then the processes Wi(t) and Wj(t) are independent. Associated with a
d-dimensional Brownian motion, we have a filtration F(t), t ≥ 0, such that the
following holds.
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(iii) (Information accumulates) For 0 ≤ s < t, every set in F(s) is also in F(t).

(iv) (Adaptivity) For each t ≥ 0, the random vector W (t) is F(t)-measurable.

(v) (Independence of future increments) For 0 ≤ t < u, the vector of increments
W (u)−W (t) is independent of F(t).

Although we have defined a multidimensional Brownian motion to be a vector of
independent one-dimensional Brownian motions, we shall see in Example 4.6.6 how
to build correlated Brownian motions from this.

Because each component Wi of a d-dimensional Brownian motion is a one-dimensional
Brownian motion, we have the quadratic variation formula [Wi,Wi](t) = t, which we
write informally as

dWi(t)dWi(t) = dt.

However, if i 6= j, we shall see that independence of Wi and Wj implies [Wi,Wj ](t) =

0, which we write informally as

dWi(t)dWj(t) = 0, i 6= j.

We justify this claim.
Let Π = {t0, . . . , tn} be a partition of [0, T ]. For i 6= j, define the sampled cross

variation of Wi and Wj on [0, T ] to be

CΠ =
n−1∑

k=0

[
Wi(tk+1)−Wi(tk)

][
Wj(tk+1)−Wj(tk)

]
.

The increments appearing on the right-hand side of the equation above are all inde-
pendent of one another and all have mean zero. Therefore, ECΠ = 0.

We compute Var(CΠ). Note first that

C2
Π =

n−1∑

k=0

[
Wi(tk+1)−Wi(tk)

]2[
Wj(tk+1)−Wj(tk)

]2

+ 2
n−1∑

`<k

[
Wi(t`+1)−Wi(t`)

][
Wj(t`+1)−Wj(t`)

]

· [Wi(tk+1)−Wi(tk)
][

Wj(tk+1)−Wj(tk)
]
.

All the increments appearing in the sum of cross-terms are independent of one an-
other and all have mean zero. Therefore,

Var(CΠ) = EC2
Π = E

n−1∑

k=0

[
Wi(tk+1)−Wi(tk)

]2[
Wj(tk+1)−Wj(tk)

]2
.

But
[
Wi(tk+1) −Wi(tk)

]2 and
[
Wj(tk+1) −Wj(tk)

]2 are independent of one another,
and each has expectation (tk+1 − tk). It follows that

Var(CΠ) =
n−1∑

k=0

(tk+1 − tk)
2 ≤ ‖Π‖ ·

n−1∑

k=0

(tk+1 − tk) = ‖Π‖ · T.

As ‖Π‖ → 0, we have Var(CΠ) → 0, so CΠ converges to the constant ECΠ = 0.
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4.6.2 Itô-Doeblin Formula for Multiple Processes

To keep the notation as simple as possible, we write the Itô formula for two processes
driven by a two-dimensional Brownian motion. In the obvious way, the formula
generalizes to any number of processes driven by a Brownian motion of any number
(not necessarily the same number) of dimensions.

Let X(t) and Y (t) be Itô processes, which means they are processes of the form

X(t) = X(0) +

∫ t

0
Θ1(u)du +

∫ t

0
σ11(u)dW1(u) +

∫ t

0
σ12(u)dW2(u),

Y (t) = Y (0) +

∫ t

0
Θ2(u)du +

∫ t

0
σ21(u)dW1(u) +

∫ t

0
σ22(u)dW2(u).

The integrands Θi(u) and αij(u) are assumed to be adapted processes. In differential
notation, we write

dX(t) = Θ1(t)dt + σ11(t)dW1(t) + σ12(t)dW2(t), (4.6.1)

dY (t) = Θ2(t)dt + σ21(t)dW1(t) + σ22(t)dW2(t). (4.6.2)

The Itô integral
∫ t
0 σ11(u)dW1(u) accumulates quadratic variation at rate σ2

11(t) per
unit time, and the Itô integral

∫ t
0 σ12(u)dW2(u) accumulates quadratic variation at rate

σ2
12(t) per unit time. Because both of these integrals appear in X(t), the process X(t)

accumulates quadratic variation at rate σ2
11(t) + σ2

12(t) per unit time:

[X,X](t) =

∫ t

0

(
σ2

11(u) + σ2
12(u)

)
du.

We may write this equation in differential form as

dX(t)dX(t) =
(
σ2

11(t) + σ2
12(t)

)
dt. (4.6.3)

One can informally derive (4.6.3) by squaring (4.6.1) and using the multiplication
rules

dtdt = 0, dtdWi(t) = 0, dWi(t)dWi(t) = dt, dWi(t)dWj(t) = 0 for i 6= j.

In a similar way, we may derive the differential formulas

dY (t)dY (t) =
(
σ2

21(t) + σ2
22(t)

)
dt, (4.6.4)

dX(t)dY (t) =
(
σ11(t)σ21(t) + σ12(t)σ22(t)

)
dt. (4.6.5)

Equation (4.6.5) says that, for every T ≥ 0,

[X,Y ](T ) =

∫ T

0

(
σ11(t)σ21(t) + σ12(t)σ22(t)

)
dt. (4.6.6)

The term [X,Y ](T ) on the left-hand side is defined as follows. Let Π = {t0, t1, . . . , tn}
be a partition of [0, T ] (i.e., 0 = t0 < t1 < · · · < tn = T ) and set up the sampled cross
variation

n−1∑

k=0

[
X(tk+1)−X(tk)

][
Y (tk+1)− Y (tk)

]
. (4.6.7)
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Now let the number of partition points n go to infinity as the length of the longest
subinterval ‖Π‖ = max0≤k≤n−1(tk+1−tk) goes to zero. The limit of the sum in (4.6.7)
is [X,Y ](T ). This limit is given by the right-hand side of (4.6.6). The proof of this
assertion is similar to the proof of Lemma 4.4.4, with the additional feature that we
must use the fact that [W1,W2](t) = 0. We omit the details.

The following theorem generalizes the Itô-Doeblin formula of Theorem 4.4.6. The
justification, which we omit, is similar to that of Theorem 4.4.6.

Theorem 4.6.2 (Two-dimensional Itô-Doeblin formula). Let f(t, x, y) be a function
whose partial derivatives ft, fx, fy, fxx, fxy, fyx, and fyy are defined and are contin-
uous. Let X(t) and Y (t) be Itô processes as discussed above. The two-dimensional
Itô-Doeblin formula in differential form is

df
(
t,X(t), Y (t)

)

= ft

(
t,X(t), Y (t)

)
dt + fx

(
t,X(t), Y (t)

)
dX(t) + fy

(
t,X(t), Y (t)

)
dY (t)

+
1

2
fxx

(
t,X(t), Y (t)

)
dX(t)dX(t) + fxy

(
t,X(t), Y (t)

)
dX(t)dY (t)

+
1

2
fyy

(
t,X(t), Y (t)

)
dY (t)dY (t).

(4.6.8)

Before discussing formula (4.6.8), we rewrite it, leaving out t wherever possible,
to obtain the same formula in the more compact notation

df(t,X, Y ) = ftdt + fxdX + fydY +
1

2
fxxdXdX + fxydXdY +

1

2
fyydY dY. (4.6.9)

The right-hand side of (4.6.9) is the Taylor series expansion of f out to second order.
The full expansion would have the additional second-order terms fttdtdt, 1

2ftxdtdX,
and 1

2ftydtdY , but dtdt, dtdX, and dtdY are zero. The Taylor series expansion actu-
ally has two mixed partial terms, 1

2fxydXdY and 1
2fyxdY dX. For functions f whose

second partial derivatives exist and are continuous, fxy = fyx, and so we have com-
bined these terms into the single term fxydXdY in (4.6.9).

The differentials dX, dY , dXdX, dXdY , and dY dY appearing in (4.6.9) are given
by (4.6.1)-(4.6.5). Making these substitutions and then integrating (4.6.9), we obtain
the Itô-Doeblin formula in integral form:
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f
(
t,X(t), Y (t)

)− f
(
0, X(0), Y (0)

)

=

∫ t

0

[
σ11(u)fx

(
u,X(u), Y (u)

)
+ σ21(u)fy

(
u,X(u), Y (u)

)]
dW1(u)

+

∫ t

0

[
σ12(u)fx

(
u,X(u), Y (u)

)
+ σ22(u)fy

(
u,X(u), Y (u)

)]
dW2(u)

+

∫ t

0

[
ft

(
u,X(u), Y (u)

)
+ Θ1(u)fx

(
u,X(u), Y (u)

)
+ Θ2(u)fy

(
u,X(u), Y (u)

)

+
1

2

(
σ2

11(u) + σ2
12(u)

)
fxx

(
u,X(u), Y (u)

)

+
(
σ11(u)σ21(u) + σ12(u)σ22(u)

)
fxy

(
u,X(u), Y (u)

)

+
1

2

(
σ2

21(u) + σ2
22(u)

)
fyy

(
u,X(u), Y (u)

)]
du.

(4.6.10)

The right-hand side of this equation has one ordinary (Lebesgue) integral with respect
to du and two Itô integrals, one with respect to dW1(u) and the other with respect to
dW2(u). All terms have precise mathematical meanings. This equation demonstrates
why it is preferable to work with differential notation, such as in (4.6.9).

Corollary 4.6.3 (Itô product rule). Let X(t) and Y (t) be Itô processes. Then

d
(
X(t)Y (t)

)
= X(t)dY (t) + Y (t)dX(t) + dX(t)dY (t).

Proof. In (4.6.9), take f(t, x, y) = xy, so that ft = 0, fx = y, fy = x, fxx = 0, fxy = 1,
and fyy = 0.

4.6.3 Recognizing a Brownian Motion

A Brownian motion W (t) is a martingale with continuous paths whose quadratic
variation is [W,W ](t) = t. It turns out that these conditions characterize Brownian
motion in the sense of the following theorem.

Theorem 4.6.4 (Levy, one dimension). Let M(t), t ≥ 0, be a martingale relative
to a filtration F(t), t ≥ 0. Assume that M(0) = 0, M(t) has continuous paths, and
[M,M ](t) = t for all t ≥ 0. Then M(t) is a Brownian motion.

IDEA OF THE PROOF: A Brownian motion is a martingale whose increments are
normally distributed. The surprising feature of Levy’s Theorem is that the assump-
tions do not say anything about normality, and yet implicit in the conclusion is the
assertion that M(t) is normally distributed.

The method used to establish normality is to first check that in the derivation of
the Itô-Doeblin formula, Theorem 4.4.1, for Brownian motion, the only properties of
Brownian motion that were used are assumed in this theorem: a continuous process
with quadratic variation [M,M ](t) = t. Therefore, the Itô-Doeblin formula may be
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applied to M with the result that, for any function f(t, x) whose derivatives exist and
are continuous,

df
(
t,M(t)

)
= ft

(
t,M(t)

)
dt + fx

(
t,M(t)

)
dM(t) +

1

2
fxx

(
t,M(t)

)
dt. (4.6.11)

The last term uses the fact that dM(t)dM(t) = dt. In integrated form, (4.6.11) is

f
(
t,M(t)

)
= f

(
0,M(0)

)
+

∫ t

0

[
ft

(
s,M(s)

)
+

1

2
fxx

(
s,M(s)

)]
ds+

∫ t

0
fx

(
s,M(s)

)
dM(s).

(4.6.12)
Because M(t) is a martingale, the stochastic integral

∫ t
0 fx

(
s,M(s)

)
dM(s) is also.

(See Exercise 4.1 for the case of a simple integrand; the general case follows from
this exercise upon passage to the limit.) At t = 0, this stochastic integral takes the
value zero, and so its expectation is always zero. Taking expectations in (4.6.12), we
obtain

Ef
(
t,M(t)

)
= f

(
0,M(0)

)
+ E

∫ t

0

[
ft

(
s,M(s)

)
+

1

2
fxx

(
s,M(s)

)]
ds. (4.6.13)

We fix a number u and define

f(t, x) = exp

{
ux− 1

2
u2t

}
.

Then ft(t, x) = −1
2u2f(t, x), fx(t, x) = uf(t, x), and fxx(t, x) = u2f(t, x). In particu-

lar,

ft(t, x) +
1

2
fxx(t, x) = 0.

For this function f(t, x), the second term on the right-hand side of (4.6.13) is zero,
and that equation becomes

E exp

{
uM(t)− 1

2
u2t

}
= 1.

In other words, we have the moment-generating function formula

EeuM(t) = e
1
2
u2t.

This is the moment-generating function for the normal distribution with mean zero
and variance t (see (3.2.13)). Hence, that is the distribution that M(t) must have.

The idea used to justify Theorem 4.6.4 can be combined with the two-dimensional
Itô-Doeblin formula used to show independence. In particular, we have the following
two-dimensional version of Levy’s Theorem.

Theorem 4.6.5 (Levy, two dimensions). Let M1(t) and M2(t), t ≥ 0, be martingales
relative to a filtration F(t), t ≥ 0. Assume that for i = 1, 2, we have Mi(0) = 0, Mi(t)

has continuous paths, and [Mi,Mi](t) = t for all t ≥ 0. If, in addition, [M1,M2](t) = 0

for all t ≥ 0, then M1(t) and M2(t) are independent Brownian motions.
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IDEA OF THE PROOF: The one-dimensional Levy Theorem, Theorem 4.6.4, implies
that M1 and M2 are Brownian motions. To show independence, we examine the joint
moment-generating function.

Let f(t, x, y) be a function whose derivatives are defined and continuous. The
two-dimensional Itô-Doeblin formula implies that

df(t,M1,M2) = ftdt + fxdM1 + fydM2 +
1

2
fxxdM1dM1 + fxydM1dM2 + fyydM2dM2

= ftdt + fxdM1 + fydM2 +
1

2
fxxdt +

1

2
fyydt,

where we have used the assumptions [M1,M1](t) = t, [M2,M2](t) = t, and [M1,M2](t) =

in their equivalent form dM1(t)dM1(t) = dt, dM2(t)dM2(t) = dt, and dM1(t)dM2(t) =

0. We integrate both sides to obtain

f
(
t,M1(t),M2(t)

)

= f
(
0,M1(0),M2(0)

)
+

∫ t

0

[
ft

(
s,M1(s),M2(s)

)
+

1

2
fxx

(
s,M1(s),M2(s)

)

+
1

2
fyy

(
s,M1(s),M2(s)

)]
ds

+

∫ t

0
fx

(
s,M1(s),M2(s)

)
dM1(s) +

∫ t

0
fy

(
s,M1(s),M2(s)

)
dM2(s).

The last two terms on the right-hand side are martingales, starting at zero at time
zero, and hence having expectation zero. Therefore,

Ef
(
t,M1(t),M2(t)

)

= f
(
0,M1(0),M2(0)

)
+ E

∫ t

0

[
ft

(
s,M1(s),M2(s)

)
+

1

2
fxx

(
s,M1(s),M2(s)

)

+
1

2
fyy

(
s,M1(s),M2(s)

)]
ds.

(4.6.14)

We now fix numbers u1 and u2 and define

f(t, x, y) = exp

{
u1x + u2y − 1

2
(u2

1 + u2
2)t

}
.

Then ft(t, x, y) = −1
2(u2

1 + u2
2)f(t, x, y), fx(t, x, y) = u1f(t, x, y), fy(t, x, y) =

u2f(t, x, y). fxx(t, x, y) = u2
1f(t, x, y), and fyy(t, x, y) = u2

2f(t, x, y). For this func-
tion f(t, x, y), the second term on the right-hand side of (4.6.14) is zero. We conclude
that

E exp

{
u1M1(t) + u2M2(t)− 1

2
(u2

1 + u2
2)t

}
= 1,

which gives us the moment-generating function formula

Eeu1M1(t)+u2M2(t) = e
1
2
u2

1t · e 1
2
u2

2t.

Because the joint moment-generating function factors into the product of moment-
generating functions, M1(t) and M2(t) must be independent.
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Example 4.6.6. (Correlated stock prices).

Suppose

dS1(t)

S1(t)
= α1dt + σ1dW1(t),

dS2(t)

S2(t)
= α2dt + σ2

[
ρdW1(t) +

√
1− ρ2dW2(t)

]
,

where W1(t) and W2(t) are independent Brownian motions and σ1 > 0, σ2 > 0 and
−1 ≤ ρ ≤ 1 are constant. To analyze the second stock price process, we define

W3(t) = ρW1(t) +
√

1− ρ2W2(t).

Then W3(t) is a continuous martingale with W3(0) = 0, and

dW3(t)dW3(t) = ρ2dW1(t)dW1(t) + 2ρ
√

1− ρ2dW1(t)dW2(t) + (1− ρ2)dW2(t)dW2(t)

= ρ2dt + (1− ρ2)dt = dt.

In other words, [W3,W3](t) = t. According to the one-dimensional Levy Theorem,
Theorem 4.6.4, W3(t) is a Brownian motion. Because we can write the differential of
S2(t) as

dS2(t)

S2(t)
= α2dt + σ2dW3(t),

we see that S2(t) is a geometric Brownian motion with mean rate of return α2 and
volatility σ2.

The Brownian motions W1(t) and W3(t) are correlated. According to Itô’s product
rule (Corollary 4.6.3),

d
(
W1(t)W3(t)

)
= W1(t)dW3(t) + W3(t)dW1(t) + dW1(t)dW3(t)

= W1(t)dW3(t) + W3(t)dW1(t) + ρdt.

Integrating, we obtain

W1(t)W3(t) =

∫ t

0
W1(s)dW3(s) +

∫ t

0
W3(s)dW1(s) + ρt.

The Itô integrals on the right-hand side have expectation zero, so the covariance of
W1(t) and W3(t) is

E[W1(t)W3(t)] = ρt.

Because both W1(t) and W3(t) have standard deviation
√

t, the number ρ is the corre-
lation between W1(t) and W3(t). The case of nonconstant correlation ρ is presented
in Exercise 4.17.

¤

4.7 Brownian Bridge

We conclude this chapter with a the discussion of the Brownian bridge. This is a
stochastic process that is like a Brownian motion except that with probability one
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it reaches a specified point at a specified positive time. We first discuss Gaussian
processes in general, the class to which the Brownian bridge belongs, and we then
define the Brownian bridge and present its properties. The primary use for the Brow-
nian bridge in finance is as an aid to Monte Carlo simulation. We make no use of it
in this text.

4.7.1 Gaussian Processes

Definition 4.7.1. A Gaussian process X(t), t ≥ 0, is a stochastic process that has
the property that, for arbitrary times 0 < t1 < t2 < · · · < tn, the random variables
X(t1), X(t2), . . . , X(tn) are jointly normally distributed.

The joint normal distribution of a set of vectors is determined by their means and
covariances. Therefore, for a Gaussian process, the joint distribution of X(t1), X(t2), . . . , X(tn)

is determined by the means and covariances of these random variables. We denote
the mean of X(t) by m(t), and, for s ≥ 0, t ≥ 0, we denote the covariance of X(s)

and X(t) by c(s, t); i.e.,

m(t) = EX(t), c(s, t) = E
[(

X(s)−m(s)
)(

X(t)−m(t)
)]

.

Example 4.7.2. (Brownian motion).

Brownian motion W (t) is a Gaussian process. For 0 < t1 < t2 < · · · < tn, the
increments

I1 = W (t1), I2 = W (t2)−W (t1), . . . , In = W (tn)−W (tn−1)

are independent and normally distributed. Writing

W (t1) = I1,W (t2) =
2∑

j=1

Ij , . . . , W (tn) =
n∑

j=1

Ij ,

we see that the random variables W (t1),W (t2), . . . , W (tn) are jointly normally dis-
tributed. These random variables are not independent. It is the increments of Brown-
ian motion that are independent. Of course, the mean function for Brownian motion
is

m(t) = EW (t) = 0.

We may compute the covariance by letting 0 ≤ s ≤ t be given and noting that

c(s, t) = E
[
W (s)W (t)

]

= E
[
W (s)

(
W (t)−W (s) + W (s)

)]

= E
[
W (s)

(
W (t)−W (s)

)]
+ E

[
W 2(s)

]
.

Because W (s) and W (t) − W (s) are independent and both have mean zero, we see
that E

[
W (s)

(
W (t)−W (s)

)]
= 0. The other term, E[W 2(s)], is the variance of W (s),

which is s. We conclude that c(s, t) = s when 0 ≤ s ≤ t. Reversing the roles of s and
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t, we conclude that c(s, t) = t when 0 ≤ t ≤ s. In general, the covariance function for
Brownian motion is then

c(s, t) = s ∧ t,

where s ∧ t denotes the minimum of s and t.

¤
Example 4.7.3. (Itô integral of a deterministic integrand).

Let ∆(t) be a nonrandom function of time, and define

I(t) =

∫ t

0
∆(s)dW (s),

where W (t) is a Brownian motion. Then I(t) is a Gaussian process, as we now show.
In the proof of Theorem 4.4.9, we showed that, for fixed u ∈ R, the process

Mu(t) = exp

{
uI(t)− 1

2
u2

∫ t

0
∆2(s)ds

}

is a martingale. We used this fact to argue that

1 = Mu(0) = EMu(t) = e−
1
2
u2
R t

0
∆2(s)ds · EeuI(t),

and we thus obtained the moment-generating function formula

EeuI(t) = e
1
2
u2
R t

0
∆2(s)ds. (4.7.1)

The right-hand side is the moment generating function for a normal random variable
with mean zero and variance

∫ t
0 ∆2(s)ds. Therefore, this is the distribution of I(t).

Although we have shown that I(t) is normally distributed, verification that the
process is Gaussian requires more. We must verify that, for 0 < t1 < t2 < · · · < tn,
the random variables I(t1), I(t2), . . . , I(tn) are jointly normally distributed. It turns
out that the increments

I(t1)− I(0) = I(t1), I(t2)− I(t1), . . . , I(tn)− I(tn−1)

are normally distributed and independent, and from this the joint normality of I(t1), I(t2), . . . , I(tn)

follows by the same argument as used in Example 4.7.2 for Brownian motion.
We show that, for 0 < t1 < t2, the two random increments I(t1)− I(0) = I(t1) and

I(t2)− I(t1) are normally distributed and independent. The argument we provide can
be iterated to prove this result for any number of increments. For fixed u2 ∈ R, the
martingale property of Mu2 implies that

Mu2(t1) = E
[
Mu2(t2)|F(t1)

]
.

Now let u1 ∈ R be fixed. Because Mu1(t1)
Mu2(t1)

is F(t1)-measurable, we may multiply the
equation above by this quotient to obtain

Mu1(t1) = E
[

Mu1(t1)Mu2(t2)

Mu2(t1)

∣∣∣∣F(t1)

]

= E
[
exp

{
u1I(t1) + u2

(
I(t2)− I(t1)

)− 1

2
u2

1

∫ t1

0
∆2(s)ds

−1

2
u2

2

∫ t2

t1

∆2(s)ds

}∣∣∣∣F(t1)

]
.



4.7 Brownian Bridge 163

We now take expectations

1 = Mu1(0)

= EMu1(t1)

= E
[
exp

{
u1I(t1) + u2

(
I(t2)− I(t1)

)− 1

2
u2

1

∫ t1

0
∆2(s)ds− 1

2
u2

2

∫ t2

t1

∆2(s)ds

}]

= E
[
exp

{
u1I(t1) + u2

(
I(t2)− I(t1)

)}]

· exp

{
−1

2
u2

1

∫ t1

0
∆2(s)ds− 1

2
u2

2

∫ t2

t1

∆2(s)ds

}
,

where we have used the fact that ∆2(s) is nonrandom to take the integrals of ∆2(s)

outside the expectation on the right-hand side. This leads to the moment-generating
function formula

E
[
exp

{
u1I(t1) + u2

(
I(t2)− I(t1)

)}]

= exp

{
1

2
u2

1

∫ t1

0
∆2(s)ds

}
· exp

{
1

2
u2

2

∫ t2

t1

∆2(s)ds

}
.

The right-hand side is the product of the moment-generating function for a normal
random variable with mean zero and variance

∫ t1
0 ∆2(s)ds and the moment-generating

function for a normal random variable with mean zero and variance
∫ t2
t1

∆2(s)ds. It
follows that I(t1) and I(t2) − I(t1) must have these distributions, and because their
joint moment-generating function factors into this product of moment-generating
functions, they must be independent.

The covariance of I(t1) and I(t2) can be computed using the same trick as in
Example 4.7.2 for the covariance of Brownian motion. We have

c(t1, t2) = E
[
I(t1)I(t2)

]

= E
[
I(t1)

(
I(t2)− I(t1) + I(t1)

)]

= E
[
I(t1)

(
I(t2)− I(t1)

)]
+ EI2(t1)

= EI(t1) · E
[
I(t2)− I(t1)

]
+

∫ t1

0
∆2(s)ds

=

∫ t1

0
∆2(s)ds.

For the general case where s ≥ 0 and t ≥ 0 and we do not know the relationship
between s and t, we have the covariance formula

c(s, t) =

∫ s∧t

0
∆2(u)du.

¤

4.7.2 Brownian Bridge as a Gaussian Process

Definition 4.7.4. Let W (t) be a Brownian motion. Fix T ≥ 0. We define the Brownian
bridge from 0 to 0 on [0, T ] to be the process

X(t) = W (t)− t

T
W (T ), 0 ≤ t ≤ T. (4.7.2)
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Note that t
T W (T ) as a function of t is the line from (0, 0) to

(
T, W (T )

)
. In (4.7.2),

we have subtracted this line away from the Brownian motion W (t), so that the result-
ing process X(t) satisfies

X(0) = X(T ) = 0.

Because W (T ) enters the definition of X(t) for 0 ≤ t ≤ T , the Brownian bridge
X(t) is not adapted to the filtration F(t) generated by W (t). We shall later obtain a
different process that has the same distribution as the process X(t) but is adapted to
this filtration.

For 0 < t1 < t2 < · · · < tn < T , the random variables

X(t1) = W (t1)− t1
T

W (T ), . . . , X(tn) = W (tn)− tn
T

W (T )

are jointly normal because W (t1), . . . , W (tn), W (T ) are jointly normal. Hence, the
Brownian bridge from 0 to 0 is a Gaussian process. Its mean function is easily seen
to be

m(t) = EX(t) = E
[
W (t)− t

T
W (T )

]
= 0.

For s, t ∈ (0, T ), we compute the covariance function

c(s, t) = E
[(

W (s)− s

T
W (T )

) (
W (t)− t

T
W (T )

)]

= E
[
W (s)W (t)

]− t

T
E

[
W (s)W (T )

]− s

T
E

[
W (t)W (T )

]
+

st

T 2
EW 2(T )

= s ∧ t− 2st

T
+

st

T
= s ∧ t− st

T
.

(4.7.3)

Definition 4.7.5. Let W (t) be a Brownian motion. Fix T > 0, a ∈ R, and b ∈ R. We
define the Brownian bridge from a to b on [0, T ] to be the process

Xa→b(t) = a +
(b− a)t

T
+ X(t), 0 ≤ t ≤ T,

where X(t) = X0→0 is the Brownian bridge from 0 to 0 of Definition 4.7.4.

The function a + (b−a)t
T , as a function of t, is the line from (0, a) to (T, b). When

we add this line to the Brownian bridge from 0 to 0 on [0, T ], we obtain a process
that begins at a at time 0 and ends at b at time T . Adding a nonrandom function to a
Gaussian process gives us another Gaussian process. The mean function is affected:

ma→b(t) = EXa→b(t) = a +
(b− a)t

T
.

However, the covariance function is not affected:

ca→b(s, t) = E
[(

Xa→b(s)−ma→b(s)
)(

Xa→b(t)−ma→b(t)
)]

= s ∧ t− st

T
.
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4.7.3 Brownian Bridge as a Scaled Stochastic Integral

We cannot write the Brownian bridge as a stochastic integral of a deterministic inte-
grand because the variance of the Brownian bridge,

EX2(t) = c(t, t) = t− t2

T
=

t(T − t)

T
,

increases for 0 ≤ t ≤ T
2 and then decreases for T

2 ≤ t ≤ T . In Example 4.7.3,
the variance of I(t) =

∫ t
0 ∆(u)dW (u) is

∫ t
0 ∆2(u)du, which is nondecreasing in t.

However, we can obtain a process with the same distribution as the Brownian bridge
from 0 to 0 as a scaled stochastic integral. In particular, consider

Y (t) = (T − t)

∫ t

0

1

T − u
dW (u), 0 ≤ t < T. (4.7.4)

The integral

I(t) =

∫ t

0

1

T − u
dW (u)

is a Gaussian process of the type discussed in Example 4.7.3, provided t < T so the
integrand is defined. For 0 < t1 < t2 < · · · < tn < T , the random variables

Y (t1) = (T − t1)I(t1), Y (t2) = (T − t2)I(t2), . . . , Y (tn) = (T − tn)I(tn)

are jointly normal because I(t1), I(t2), . . . , I(tn) are jointly normal. In particular, Y

is a Gaussian process.
The mean and covariance functions of I are

mI(t) = 0,

cI(s, t) =

∫ s∧t

0

1

(T − u)2
du =

1

T − s ∧ t
− 1

T
for all s, t ∈ [0, T ).

This means that the mean function for Y is mY (t) = 0. To compute the covariance
function for Y , we assume for the moment that 0 ≤ s ≤ t < T so that

cI(s, t) =
1

T − s
− 1

T
=

s

T (T − s)
.

Then

cY (s, t) = E
[
(T − s)(T − t)I(s)I(t)

]

= (T − s)(T − t)
s

T (T − s)

=
(T − t)s

T

= s− st

T
.

If we had taken 0 ≤ s ≤ t < T , the roles of s and t would have been reversed. In
general,

cY (s, t) = s ∧ t− st

T
for all s, t ∈ [0, T ). (4.7.5)
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This is the same covariance formula (4.7.3) we obtained for the Brownian bridge.
Because the mean and covariance functions for a Gaussian process completely de-
termine the distribution of the process, we conclude that the process Y has the same
distribution as the Brownian bridge from 0 to 0 on [0, T ].

We now consider the variance

EY 2(t) = cY (t, t) =
t(T − t)

T
, 0 < t < T.

Note that, as t ↑ T , this variance converges to 0. In other words, as t ↑ T , the random
process Y (t), which always has mean zero, has a variance that converges to zero.
We did not initially define Y (T ), but this observation suggests that it makes sense to
define Y (T ) = 0. If we do that, then Y (t) is continuous at t = T . We summarize this
discussion with the following theorem.

Theorem 4.7.6. Define the process

Y (t) =





(T − t)
∫ t
0

1
T−udW (u) for 0 ≤ t < T,

0 for t = T.

Then Y (t) is a continuous Gaussian process on [0, T ] and has mean and covariance
functions

mY (t) = 0, t ∈ [0, T ],

cY (s, t) = s ∧ t− st

T
for all s, t ∈ [0, T ].

In particular, the process Y (t) has the same distribution as the Brownian bridge from
0 to 0 on [0, T ] (Definition 4.7.5).

We note that the process Y (t) is adapted to the filtration generated by the Brownian
motion W (t). It is interesting to compute the stochastic differential of Y (t), which is

dY (t) =

∫ t

0

1

T − u
dW (u) · d(T − t) + (T − t) · d

∫ t

0

1

T − u
dW (u)

= −
∫ t

0

1

T − u
dW (u) · dt + dW (t)

= − Y (t)

T − t
dt + dW (t).

If Y (t) is positive as t approaches T , the drift term −Y (t)
T−tdt becomes large in absolute

value and is negative. This drives Y (t) toward zero. On the other hand, if Y (t) is
negative, the drift term becomes large and positive, and this again drives Y (t) toward
zero. This strongly suggests, and it is indeed true, that as t ↑ T the process Y (t)

converges to zero almost surely.

4.7.4 Multidimensional Distribution of the Brownian Bridge

We fix a ∈ R and b ∈ R and let Xa→b(t) denote the Brownian bridge from a to b on
[0, T ]. We also fix 0 = t0 < t1 < t2 < · · · < tn < T . In this section, we compute the
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joint density of Xa→b(t1), . . . , X
a→b(tn).

We recall that the Brownian bridge from a to b has the mean function

ma→b(t) = a +
(b− a)t

T
=

(T − t)a

T
+

bt

T

and covariance function
c(s, t) = s ∧ t− st

T
.

When s ≤ t, we may write this as

c(s, t) = s− st

T
=

s(T − t)

T
, 0 ≤ s ≤ t ≤ T.

To simplify notation, we set τj = T−tj so that τ0 = T . We define random variables

Zj =
Xa→b(tj)

τj
− Xa→b(tj−1)

τj−1
.

Because Xa→b(t1), . . . , X
a→b(tn) are jointly normal, so are Z(t1), . . . , Z(tn). We com-

pute

EZj =
1

τj
EXa→b(tj)− 1

τj
EXa→b(tj+1)

=
a

T
+

btj
Tτj

− a

T
− btj−1

Tτj−1

=
btj(T − tj−1)− btj−1(T − tj)

Tτjτj−1

=
b(tj − tj−1)

τjτj−1
.

Furthermore,

Var(Zj) =
1

τ2
j

Var
(
Xa→b(tj)

)− 2

τjτj−1
Cov

(
Xa→b(tj), X

a→b(tj−1)
)

+
1

τ2
j−1

Var
(
Xa→b(tj−1)

)

=
1

τ2
j

c(tj , tj)− 2

τjτj−1
c(tj , tj−1) +

1

τ2
j−1

c(tj−1, tj−1)

=
tj

Tτj
− 2tj−1

Tτj−1
+

tj−1

Tτj−1

=
tj(T − tj−1)− 2tj−1(T − tj) + tj−1(T − tj)

Tτjτj−1

=
tj − tj−1

τjτj−1
.

Finally, we compute the covariance of Zi and Zj when i < j. We obtain

Cov(Zi, Zj) =
1

τiτj
c(ti, tj)− 1

τiτj−1
c(ti, tj−1)− 1

τi−1τj
c(ti−1, tj) +

1

τi−1τj−1
c(ti−1, tj−1)

=
ti(T − tj)

Tτiτj
− ti(T − tj−1)

Tτiτj−1
− ti−1(T − tj)

Tτi−1τj
+

ti−1(T − tj−1)

Tτi−1τj−1

= 0.
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We conclude that the normal random variables Z1, . . . , Zn are independent, and we
can write down their joint density, which is

fZ(t1),...,Z(tn)(z1, . . . , zn) =
n∏

j=1

1√
2π tj−tj−1

τjτj−1

exp




−1

2
·

(
zj − b(tj−tj−1)

τjτj−1

)2

tj−tj−1

τjτj−1





= exp




−1

2

n∑

j=1

(
zj − b(tj−tj−1)

τjτj−1

)2

tj−tj−1

τjτj−1




·

n∏

j=1

1√
2π tj−tj−1

τjτj−1

.

We make the change of variables

zj =
xj

τj
− xj−1

τj−1
, j = 1, . . . , n,

where x0 = a, to find the joint density for Xa→b(t1), . . . , X
a→b(tn). We work first on

the sum in the exponent to see the effect of this change of variables. We have

n∑

j=1

(
zj − b(tj−tj−1)

τjτj−1

)2

tj−tj−1

τjτj−1

=
n∑

j=1

τjτj−1

tj − tj−1

(
xj

τj
− xj−1

τj−1
− b(tj − tj−1)

τjτj−1

)2

=
n∑

j=1

τjτj−1

tj − tj−1

(
x2

j

τ2
j

+
x2

j−1

τ2
j−1

+
b2(tj − tj−1)

2

τ2
j τ2

j−1

− 2xjxj−1

τjτj−1

−2xjb(tj − tj−1)

τ2
j τj−1

+
2xj−1b(tj − tj−1)

τjτ2
j−1

)

=
n∑

j=1

(
τj−1x

2
j

τj(tj − tj−1)
+

τjx
2
j−1

τj−1(tj − tj−1)
+

b2(tj − tj−1)

τjτj−1
− 2xjxj−1

tj − tj−1

−2xjb

τj
+

2xj−1b

τj−1

)

=
n∑

j=1

[
x2

j

tj − tj−1

(
1 +

τj−1 − τj

τj

)
+

x2
j−1

tj − tj−1

(
1− τj−1 − τj

τj−1

)
− 2xjxj−1

tj − tj−1

]

+ b2
n∑

j=1

(
1

τj
− 1

τj−1

)
− 2b

n∑

j=1

(
xj

τj
− xj−1

τj−1

)
.

Now

τj−1 − τj = (T − tj−1)− (T − tj) = tj − tj−1,

and so this last expression is equal to
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n∑

j=1

[
x2

j − 2xjxj−1 + x2
j−1

tj − tj−1

]
+

n∑

j=1

(
x2

j

τj
− x2

j−1

τj−1

)

+ b2
n∑

j=1

(
1

τj
− 1

τj−1

)
− 2b

n∑

j=1

(
xj

τj
− xj−1

τj−1

)

=
n∑

j=1

(xj − xj−1)
2

tj − tj−1
+

x2
n

T − tn
− a2

T
+ b2

(
1

T − tn
− 1

T

)

− 2b

(
xn

T − tn
− a

T

)

=
n∑

j=1

(xj − xj−1)
2

tj − tj−1
+

(b− xn)2

T − tn
− (b− a)2

T
.

In conclusion, when we change variables from zj to xj , we have the equation

exp




−1

2

n∑

j=1

(
zj − b(tj−tj−1)

τjτj−1

)2

tj−tj−1

τjτj−1





= exp



−

1

2

n∑

j=1

(xj − xj−1)
2

tj − tj−1
− (b− xn)2

2(T − tn)
+

(b− a)2

2T



 .

To change a density, we also need to account for the Jacobian of the change of vari-
ables. In this case, we have

∂zj

∂xj
=

1

τj
, j = 1, . . . , n,

∂zj

∂xj−1
= − 1

τj−1
, j = 2, . . . , n,

and all other partial derivatives are zero. This leads to the Jacobian matrix

J =




1
τ1

0 . . . 0

− 1
τ1

1
τ2

. . . 0

...
...

...

0 0 . . . 1
τn




,

whose determinant is
∏n

j=1
1
τj

. Multiplying fZ1(t1),...,Z1(tn)(z1, . . . , zn) by this determi-
nant and using the change of variables worked out above, we obtain the density for
Xa→b(t1), . . . , X

a→b(tn),
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fXa→b(t1),...,Xa→b(tn)(x1, . . . , xn)

=
n∏

j=1

1√
2π(tj − tj−1)

√
τj−1

τj
· exp



−

1

2

n∑

j=1

(xj − xj−1)
2

tj − tj−1
− (b− xn)2

2(T − tn)
+

(b− a)2

2T





=

√
T

T − tn
·

n∏

j=1

1√
2π(tj − tj−1)

· exp



−

1

2

n∑

j=1

(xj − xj−1)
2

tj − tj−1
− (b− xn)2

2(T − tn)
+

(b− a)2

2T





=
p(T − tn, xn, b)

p(T, a, b)

n∏

j=1

p(tj − tj−1, xj−1, xj),

(4.7.6)

where
p(τ, x, y) =

1√
2πτ

exp

{
−(y − x)2

2τ

}

is the transition density for Brownian motion.

4.7.5 Brownian Bridge as a Conditioned Brownian Motion

The joint density (4.7.6) for Xa→b(t1), . . . , X
a→b(tn) permits us to give one more

interpretation for the Brownian bridge from a to b on [0, T ]. It is a Brownian motion
W (t) on this time interval, starting at W (0) = a and conditioned to arrive at b at time
T (i.e., conditioned on W (T ) = b). Let 0 = t0 < t1 < t2 < · · · < tn < T be given. The
joint density of W (t1), . . . , W (tn), W (T ) is

fW (t1),...,W (tn),W (T )(x1, . . . , xn, b) = p(T − tn, xn, b)
n∏

j=1

p(tj − tj−1, xj−1, xj), (4.7.7)

where W (0) = x0 = a. This is because p(t1 − t0, x0, x1) = p(t1, a, x1) is the density
for the Brownian motion going from W (0) = a to W (t1) = x1 in the time between
t = 0 and t = t1. Similarly, p(t2 − t1, x1, x2) is the density for going from W (t1) = x1

to W (t2) = x2 between time t = t1 and t = t2. The joint density for W (t1) and W (t2)

is then the product
p(t1, a, x1)p(t2 − t1, x1, x2).

Continuing in this way, we obtain the joint density (4.7.7). The marginal density of
W (T ) is p(T, a, b). The density of W (t1), . . . , W (tn) conditioned on W (T ) = b is thus
the quotient

p(T − tn, xn, b)

p(T, a, b)

n∏

j=1

p(tj − tj−1, xj−1, xj),

and this is fXa→b(t1),...,Xa→b(tn)(x1, . . . , xn) of (4.7.6).
Finally, let us define

Ma→b(T ) = max
0≤t≤T

Xa→b(t)

to be the maximum value obtained by the Brownian bridge from a to b on [0, T ]. This
random variable has the following distribution.
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Corollary 4.7.7. The density of Ma→b(T ) is

fMa→b(T )(y) =
2(2y − b− a)

T
e−

2
T

(y−a)(y−b), y > max{a, b}. (4.7.8)

Proof. Because the Brownian bridge from 0 to w on [0, T ] is a Brownian motion
conditioned on W (T ) = w, the maximum of X0→w on [0, T ] is the maximum of W on
[0, T ] conditioned on W (T ) = w. Therefore, the density of M0→w(T ) was computed
in Corollary 3.7.4 and is

fM0→w(T )(m) =
2(2m− w)

T
e−

2m(m−w)
T , w < m, m > 0. (4.7.9)

The density of fMa→b(T )(y) can be obtained by translating from the initial condition
W (0) = a to W (0) = 0 and using (4.7.9). In particular, in (4.7.9) we replace m by
y − a and replace w by b− a. This results in (4.7.8).

4.8 Summary

Let W (t) be a Brownian motion and ∆(t) a stochastic process adapted to the filtration
of the Brownian motion. The Itô integral

I(t) =

∫ t

0
∆(u)dW (u) (4.8.1)

is a martingale. Because it is zero at time t = 0, its expectation is zero for all t. Its
variance is given by Itô’s isometry

EI2(t) = E
∫ t

0
∆2(u)du. (4.8.2)

The quadratic variation accumulated by the Itô integral up to time t is

[I, I](t) =

∫ t

0
∆2(u)du. (4.8.3)

These assertions appear in Theorem 4.3.1. Note that the quadratic variation (4.8.3) is
computed path-by-path and the result may depend on the path, whereas the variance
(4.8.2) is an average over all paths. In differential notation, we write (4.8.1) as

dI(t) = ∆(t)dW (t)

and (4.8.3) as
dI(t)dI(t) = ∆2(t)dW (t)dW (t) = ∆2(t)dt.

An Itô process (Definition 4.4.3) is a process of the form

X(t) = X(0) +

∫ t

0
∆(u)dW (u) +

∫ t

0
Θ(u)du, (4.8.4)

where X(0) is nonrandom and ∆(u) and Θ(u) are adapted stochastic processes. Ac-
cording to Lemma 4.4.4, the quadratic variation accumulated by X up to time t is

[X,X](t) =

∫ t

0
∆2(u)du. (4.8.5)
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In differential notation, we write (4.8.4) as

dX(t) = ∆(t)dW (t) + Θ(t)dt

and (4.8.5) as

dX(t)dX(t) =
(
∆(t)dW (t) + Θ(t)dt

)2

= ∆2(t)dW (t)dW (t) + 2∆(t)Θ(t)dW (t)dt + Θ2(t)dtdt

= ∆2(t)dt,

where we have used the multiplication table

dW (t)dW (t) = dt, dW (t)dt = dtdW (t) = 0, dtdt = 0.

Suppose X and Y are Itô processes with differentials

dX(t) = Θ1(t)dt + σ11(t)dW1(t) + σ12(t)dW2(t), (4.8.6)

dY (t) = Θ2(t)dt + σ21(t)dW1(t) + σ22(t)dW2(t), (4.8.7)

where W1 and W2 are independent Brownian motions. Then

dX(t)dX(t) =
(
σ2

11(t) + σ2
12(t)

)
dt, (4.8.8)

dX(t)dY (t) =
(
σ11(t)σ21(t) + σ12(t)σ22(t)

)
dt, (4.8.9)

dY (t)dY (t) =
(
σ2

21(t) + σ2
22(t)

)
dt. (4.8.10)

Equations (4.8.8)-(4.8.10) can be obtained by multiplying the equations (4.8.6) and
(4.8.7) for dX(t) and dY (t) and using the multiplication table

dWi(t)dWi(t) = dt, dWi(t)dt = dtdWi(t) = 0, dtdt = 0,

and
dW1(t)dW2(t) = 0. (4.8.11)

Equation (4.8.11) holds for independent Brownian motions. If instead we had

dW1(t)dW2(t) = ρdt,

for a constant ρ ∈ [−1, 1], then ρ would be the correlation between W1(t) and W2(t)

(i.e., E[W1(t)W2(t)] = ρt).
Now suppose f(t, x, y) is a function of the time variable t and two dummy variables

x and y. The multidimensional Itô-Doeblin formula (Theorem 4.6.2) says

df
(
t,X(t), Y (t)

)

= ft

(
t,X(t), Y (t)

)
dt + fx

(
t,X(t), Y (t)

)
dX(t) + fy

(
t,X(t), Y (t)

)
dY (t)

+
1

2
fxx

(
t,X(t), Y (t)

)
dX(t)dX(t) + fxy

(
t,X(t), Y (t)

)
dX(t)dY (t)

+
1

2
fyy

(
t,X(t), Y (t)

)
dY (t)dY (t).

(4.8.12)

Replacing all the differentials on the right-hand side of (4.8.12) by their formulas
(4.8.6)-(4.8.10) and integrating, one obtains a formula for the stochastic process
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f
(
t,X(t), Y (t)

)
as the sum of f

(
0, X(0), Y (0)

)
, an ordinary integral with respect to

time, an Itô integral with respect to dW1, and an Itô integral with respect to dW2.
There are two important special cases of (4.8.12). If the second process Y is not

present, (4.8.12) reduces to the Itô-Doeblin formula for one process (Theorem 4.4.6):

df
(
t,X(t)

)
= ft

(
t,X(t)

)
dt + fx

(
t,X(t)

)
dX(t) +

1

2
fxx

(
t,X(t)

)
dX(t)dX(t).

If both X and Y are present and f(t, x, y) = xy, then (4.8.12) gives us Itô’s product
rule (Corollary 4.6.3):

d
(
X(t)Y (t)

)
= X(t)dY (t) + Y (t)dX(t) + dX(t)dY (t).

Using the Itô-Doeblin formula, we can derive the Black-Scholes-Merton partial
differential equation. This was done in Section 4.5, and that section is summarized
here. Let the stock price S(t) be a geometric Brownian motion:

dS(t) = αS(t)dt + σS(t)dW (t).

Let c
(
t, S(t)

)
be the price at time t ∈ [0, T ] of a European call paying

(
S(T ) − K

)+

at expiration time T . Suppose we sell this call for X(0) = c
(
0, S(0)

)
at time zero

and, starting with initial capital X(0), invest in a stock and a money market account
paying a constant rate of interest r. If ∆(t) is the number of shares of stock held by
the portfolio at time t, then

dX(t) = ∆(t)dS(t) + r
(
X(t)−∆(t)S(t)

)
dt.

We compute the differential of the discounted portfolio value e−rtX(t), the differen-
tial of the discounted call price e−rtc

(
t, S(t)

)
, and set these two equal. This results in

the delta-hedging rule (4.5.11),

∆(t) = cx

(
t, S(t)

)
, (4.8.13)

and the Black-Scholes-Merton partial differential equation (4.5.14),

ct(t, x) + rxcx(t, x) +
1

2
σ2x2cxx(t, x) = rc(t, x).

In addition to satisfying this partial differential equation, the function c(t, x) must
satisfy the boundary conditions

c(T, x) = (x−K)+, c(t, 0) = 0, lim
n→∞

[
c(t, x)− (

x− e−r(T−t)K
)]

= 0.

The function satisfying these conditions is (see (4.5.19))

c(t, x) = xN
(
d+(T − t, x)

)−Ke−r(T−t)N
(
d−(T − t, x)

)
, (4.8.14)

where
d±(τ, x) =

1

σ
√

τ

[
log

x

K
+

(
r ± σ2

2

)
τ

]
.

Using the function given by (4.8.14), if one starts with initial capital X(0) =

c
(
0, S(0)

)
and uses the delta-hedging rule (4.8.13), then at every time t, X(t) =
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c
(
t, S(t)

)
. In particular, at the final time, the value of the hedging portfolio is X(T ) =

c
(
T, S(T )

)
=

(
S(T )−K

)+ almost surely. The short position in the European call has
been hedged.

Levy’s Theorem, Theorem 4.6.4, says that if M(t) is a continuous martingale start-
ing at M(0) = 0 and if [M,M ](t) = t (i.e., dM(t)dM(t) = dt), then M(t) is a Brow-
nian motion. If M1(t) and M2(t) are two such processes and [M1,M2](t) = 0 (i.e.,
dM1(t)dM2(t) = 0), then M1(t) and M2(t) are independent Brownian motions (The-
orem 4.6.5). One can use this theorem to construct independent Brownian motions
from correlated Brownian motions and vice versa (see Exercise 4.13).

A Gaussian process X(t) is one for which X(t1), X(t2), . . . , X(tn) are jointly nor-
mally distributed whenever 0 < t1 < t2 < · · · < tn (Definition 4.7.1). Because the
joint distribution of jointly normal random variables is determined by means, vari-
ances, and covariances, the distribution of a Gaussian process is determined by its
mean function m(t) = EX(t) and covariance function c(s, t) = Cov

(
X(s), X(t)

)
.

Brownian motion is a Gaussian process with m(t) = 0 and c(s, t) = s ∧ t (Exam-
ple 4.7.2). If ∆(u) is nonrandom, then I(t) =

∫ t
0 ∆(u)dW (u) is a Gaussian process

with m(t) = 0 and c(s, t) =
∫ s∧t
0 ∆2(u)du (Example 4.7.3). The Brownian bridge

from a to b on [0, T ] is a Gaussian process with m(t) = (T−t)a+bt
T for t ∈ [0, T ] and

c(s, t) = s∧ t− st
T for s, t ∈ [0, T ] (see Subsection 10.7.2). The Brownian bridge from

a to b on [0, T ] is the process one obtains by starting a Brownian motion at a at time
t = 0 and conditioning on W (T ) = b (see Subsection 10.7.5).

4.9 Notes

The modern theory of stochastic calculus developed from the work of Itô [92]. Not
only did Itô define the integral with respect to Brownian motion, but he also devel-
oped the change-of-variable formula commonly called Itô’s rule or Itô’s formula. As
demonstrated in this chapter, this formula is at the heart of a wide range of useful cal-
culations. An amazing twist to the story of stochastic calculus has recently emerged.
In February 1940, the French National Academy of Sciences received a document
from W. Doeblin, a French soldier on the German front. Doeblin died shortly there-
after, and the document remained sealed until May 2000. When it was opened, the
document was found to contain a construction of the stochastic integral slightly dif-
ferent from Itô’s and a clear statement of the change-of-variable formula. Doeblin’s
work [52], Yor’s [166] analysis of the work, and a detailed history by Bru [24] of
the context of the work appeared in the December 2000 issue of Comptes Rendus de
L’Académie des Sciences. An English translation of this material is [25]. Because of
this remarkable development, in this text the change-of-variable formula is called the
Itô-Doeblin formula.

We have defined the Itô integral
∫ T
0 ∆2(t)dW (t) under the condition

E
∫ T

0
∆2(t)dt < ∞. (4.9.1)
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The integral can be defined under the weaker condition
∫ T

0
∆2(t)dt < ∞ almost surely

but then is not guaranteed to be a martingale. It is still a local martingale, a topic
discussed in advanced books on stochastic calculus (e.g., [101]). In this text, we do
not consider local martingales. We work only under the condition (4.3.1), and every
Itô integral we encounter is a martingale.

Brownian motion was introduced to finance by Bachelier [6]. Samuelson [143],
[145] presents the argument that geometric Brownian motion is a good model for
stock prices. The application of stochastic calculus to finance began with the work of
Merton [121]. (The paper [121] and many other papers by Merton that use stochastic
calculus in finance are collected in Merton [124].) The Black-Scholes-Merton for-
mula is based on the geometric Brownian motion model for stock prices. However,
no-arbitrage pricing theory has now moved far beyond this assumption. As seen in
this and subsequent chapters, this theory and the accompanying risk-neutral pricing
formula can be applied in the presence of a time-varying random volatility, a time-
varying random mean rate of return, and a time-varying random interest rate.

Many finance books, including (in order of increasing mathematical difficulty)
Hull [87], Dothan [54], and Duffie [56], include sections on Itô’s integral and the Itô-
Doeblin formula. Some other books on dynamic models in finance are Cox and Ru-
binstein [43], Huang and Litzenberger [86], Ingersoll [91], and Jarrow [97]. A com-
prehensive text is Wilmott [164]. Some good references for practitioners are Baxter
and Rennie [8] (reviewed in [134]), Björk [11] (reviewed in [135]), and Musiela and
Rutkowski [126] (reviewed in [134]). More mathematical texts on stochastic calcu-
lus with applications to finance are Lamberton and Lapeyre [105] (reviewed in [134])
and Steele [150] (reviewed in [136]). Other texts on stochastic calculus are Chung
and Williams [36], Karatzas and Shreve [101], Øksendal [129], and Protter [133].
Karatzas and Shreve [102] is a sequel to [101] that focuses on finance. Protter [133]
is the easiest place to learn about stochastic calculus for processes with jumps, and
this is not at all easy. We introduce this topic in Chapter 11.

No-arbitrage pricing theory and the accompanying risk-neutral pricing formula is
predicated on the assumption that there is no arbitrage in the market. An arbitrage is
defined to be a trading strategy which begins with zero capital and at a later time has
positive capital with positive probability without having any risk of loss. Absence of
arbitrage is similar to but different from the efficient market hypothesis, which asserts
that technical analysis of stock prices is of no value. This hypothesis asserts that pat-
terns in stock prices may be useful to estimate the parameters of the distribution of
future returns, but they do not provide clues to whether the next price movement will
be up or down. In particular, technical analysis does not permit one to outperform the
market. This hypothesis could be violated in a way which permits one to outperform
the market with high probability without actually admitting arbitrage because there is
still a nonzero probability of underperforming the market. This is sometimes called
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statistical arbitrage. An empirical study supporting the efficient market hypothesis
is Fama [64], which also discusses distributions that fit stock prices better than geo-
metric Brownian motion. A criticism of the efficient market hypothesis is provided
by LeRoy [106], and a recent paper that finds long-range dependence (but not much)
in stock price data is Willinger, Taqqu, and Teverovsky [163]. A provocative article
on the source of stock price movements is Black [14].

Geometric fractional Brownian motion has been proposed as an alternative model
for stock prices because it has fatter tails than geometric Brownian motion. One
can assume such a model and compute the prices of derivative securities as their ex-
pected discounted payoffs, but the model is inconsistent with the usual delta-hedging
formula. Indeed, geometric fractional Brownian motion violates the efficient market
hypothesis so strongly that it admits arbitrage (not just “statistical arbitrage” but ac-
tual arbitrage). An example of this is provided by Rogers [138]. Further examples of
arbitrage and a market-trading restriction that prevents arbitrage in such markets are
provided by Cheridito [33].

The Vasicek model of Example 4.4.10 is taken from [154]. The Cox-Ingersoll-
Ross model of Example 4.4.11 is due to [41], where the distribution of the interest
rate process in the model is provided.

The derivation of the Black-Scholes-Merton formula in Section 4.5 is similar to
that originally given by Black and Scholes [17] but also relies heavily on the no-
arbitrage idea appearing in Merton [122]. It is well-documented that the three men
cooperated on development of the option-pricing formula, and in recognition of this
the 1997 Nobel Prize in Economics was awarded to Scholes and Merton. (Black died
in 1995, and the prize is not awarded posthumously). In this text, the role of all three
men is acknowledged by the terminology Black-Scholes-Merton option-pricing for-
mula. Even though geometric Brownian motion is a less than perfect model for stock
prices, the Black-Scholes-Merton pricing formula for vanilla options (i.e., European
calls and puts) seems not to be terribly sensitive to deficiencies in the model.

The passage from discrete to continuous time in the model of evolution of the
portfolio value, which is touched upon in Subsection 4.5.1, is given a more detailed
treatment by Duffie and Protter [60]; see also Exercise 4.10.

4.10 Exercises

Exercise 4.1.

Suppose M(t), 0 ≤ t ≤ T , is a martingale with respect to some filtration F(t),
0 ≤ t ≤ T . Let ∆(t), 0 ≤ t ≤ T , be a simple process adapted to F(t) (i.e., there is a
partition Π = {t0, t1, . . . , tn} of [0, T ] such that, for every j, ∆(tj) is F(tj)-measurable
and ∆(t) is constant in t on each subinterval [tj , tj+1)). For t ∈ [tk, tk+1), define the
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stochastic integral

I(t) =
k−1∑

j=0

∆(tj)[M(tj+1)−M(tj)] + ∆(tk)[M(t)−M(tk)].

We think of M(t) as the price of an asset at time t and ∆(tj) as the number of shares
of the asset held by an investor between times tj and tj+1. Then I(t) is the capital
gains that accrue to the investor between times 0 and t. Show that I(t), 0 ≤ t ≤ T , is
a martingale.

Exercise 4.2.

Let W (t), 0 ≤ t ≤ T , be a Brownian motion, and let F(t), 0 ≤ t ≤ T , be an
associated filtration. Let ∆(t), 0 ≤ t ≤ T , be a nonrandom simple process (i.e., there
is a partition Π = {t0, t1, . . . , tn} of [0, T ] such that for every j, ∆(tj) is a nonrandom
quantity and ∆(t) = ∆(tj) is constant in t on the subinterval [tj , tj+1)). For t ∈
[tk, tk+1], define the stochastic integral

I(t) =
k−1∑

j=0

∆(tj)[W (tj+1)−W (tj)] + ∆(tk)[W (t)−W (tk)].

(i) Show that whenever 0 ≤ s < t ≤ T , the increment I(t)− I(s) is independent of
F(s). (Simplification: If s is between two partition points, we can always insert
s as an extra partition point. Then we can relabel the partition points so that they
are still called t0, t1, . . . , tn, but with a larger value of n and now with s = tk for
some value of k. Of course, we must set ∆(s) = ∆(tk−1) so that ∆ takes the
same value on the interval [s, tk+1) as on the interval [tk−1, s). Similarly, we can
insert t as an extra partition point if it is not already one. Consequently, to show
that I(t)− I(s) is independent of F(s) for all 0 ≤ s < t ≤ T , it suffices to show
that I(tk) − I(t`) is independent of F(t`) whenever tk and t` are two partition
points with t` < tk. This is all you need to do.)

(ii) Show that whenever 0 ≤ s < t ≤ T , the increment I(t) − I(s) is a normally
distributed random variable with mean zero and variance

∫ t
s ∆2(u)du.

(iii) Use (i) and (ii) to show that I(t), 0 ≤ t ≤ T , is a martingale.

(iv) Show that I2(t)− ∫ t
0 ∆2(u)du, 0 ≤ t ≤ T , is a martingale.

Exercise 4.3.

We now consider a case in which ∆(t) in Exercise 4.2 is simple but random. In
particular, let t0 = 0, t1 = s, and t2 = t and let ∆(0) be nonrandom and ∆(s) = W (s).
Which of the following assertions is true? Justify your answers.

(i) I(t)− I(s) is independent of F(s).

(ii) I(t) − I(s) is normally distributed. (Hint: Check if the fourth moment is three
times the square of the variance; see Exercise 3.3 of Chapter 3.)
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(iii) E[I(t)|F(s)] = I(s).

(iv) E
[
I2(t)− ∫ t

0 ∆2(u)du
∣∣∣F(s)

]
= I2(s)− ∫ s

0 ∆2(u)du.

Exercise 4.4 (Stratonovich integral).

Let W (t), t ≥ 0, be a Brownian motion. Let T be a fixed positive number and let
Π = {t0, t1, . . . , tn} be a partition of [0, T ] (i.e., 0 = t0 < t1 < · · · < tn = T ). For each
j, define t∗j = tj+tj+1

2 to be the midpoint of the interval [tj , tj+1].

(i) Define the half-sample quadratic variation corresponding to Π to be

QΠ/2 =
n−1∑

j=0

(
W (t∗j)−W (tj)

)2
.

Show that QΠ/2 has limit 1
2T as ‖Π‖ → 0. (Hint: It suffices to show that EQΠ/2 =

1
2T and lim‖Π‖→0 Var(QΠ/2) = 0.)

(ii) Define the Stratonovich integral of W (t) with respect to W (t) to be
∫ T

0
W (t) ◦ dW (t) = lim

‖Π‖→0

n−1∑

j=0

W (t∗j)
(
W (tj+1)−W (tj)

)
. (4.10.1)

In contrast to the Itô integral
∫ T
0 W (t)dW (t) = 1

2W 2(T ) − 1
2T of (4.3.4), which

evaluates the integrand at the left endpoint of each subinterval [tj , tj+1], here we
evaluate the integrand at the midpoint t∗j . Show that

∫ T

0
W (t) ◦ dW (t) =

1

2
W 2(T ).

(Hint: Write the approximating sum in (4.10.1) as the sum of an approximating
sum for the Itô integral

∫ T
0 W (t)dW (t) and QΠ/2. The approximating sum for

the Itô integral is the one corresponding to the partition 0 = t0 < t∗0 < t1 < t∗1 <

· · · < t∗n−1 < tn = T , not the partition Π.)

Exercise 4.5 (Solving the generalized geometric Brownian motion equation).

Let S(t) be a positive stochastic process that satisfies the generalized geometric
Brownian motion differential equation (see Example 4.4.8)

dS(t) = α(t)S(t)dt + σ(t)S(t)dW (t), (4.10.2)

where α(t) and σ(t) are processes adapted to the filtration F(t), t ≥ 0, associated with
the Brownian motion W (t), t ≥ 0. In this exercise, we show that S(t) must be given
by formula (4.4.26) (i.e., that formula provides the only solution to the stochastic
differential equation (4.10.2)). In the process, we provide a method for solving this
equation.

(i) Using (4.10.2) and the Itô-Doeblin formula, compute d log S(t). Simplify so that
you have a formula for d log S(t) that does not involve S(t).
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(ii) Integrate the formula you obtained in (i), and then exponentiate the answer to
obtain (4.4.26).

Exercise 4.6.

Let S(t) = S(0) exp
{
σW (t) +

(
α− 1

2σ2
)
t
}

be a geometric Brownian motion. Let
p be a positive constant. Compute d(Sp(t)), the differential of S(t) raised to the power
p.

Exercise 4.7.

(i) Compute dW 4(t) and then write W 4(T ) as the sum of an ordinary (Lebesgue)
integral with respect to time and an Itô integral.

(ii) Take expectations on both sides of the formula you obtained in (i), use the fact
that EW 2(t) = t, and derive the formula EW 4(T ) = 3T 2.

(iii) Use the method of (i) and (ii) to derive a formula for EW 6(T ).

Exercise 4.8 (Solving the Vasicek equation).

The Vasicek interest rate stochastic differential equation (4.4.32) is

dR(t) =
(
α− βR(t)

)
dt + σdW (t),

where α, β, and σ are positive constants. The solution to this equation is given in
Example 4.4.10. This exercise shows how to derive this solution.

(i) Use (4.4.32) and the Itô-Doeblin formula to compute d
(
eβtR(t)

)
. Simplify it so

that you have a formula for d
(
eβtR(t)

)
that does not involve R(t).

(ii) Integrate the equation you obtained in (i) and solve for R(t) to obtain (4.4.33).

Exercise 4.9.

For a European call expiring at time T with strike price K, the Black-Scholes-
Merton price at time t, if the time-t stock price is x, is

c(t, x) = xN
(
d+(T − t, x)

)−Ke−r(T−t)N
(
d−(T − t, x)

)
,

where

d+(τ, x) =
1

σ
√

τ

[
log

x

K
+

(
r +

1

2
σ2

)
τ

]
,

d−(τ, x) = d+(τ, x)− σ
√

τ ,

and N(y) is the cumulative standard normal distribution

N(y) =
1

2π

∫ y

−∞
e−

z2

2 dz =
1

2π

∫ ∞

−y
e−

z2

2 dz.

The purpose of this exercise is to show that the function c satisfies the Black-Scholes-
Merton partial differential equation

ct(t, x) + rxcx(t, x) +
1

2
σ2x2cxx(t, x) = rc(t, x) (4.10.3)
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the terminal condition

lim
t↑T

c(t, x) = (x−K)+, x > 0, x 6= K, (4.10.4)

and the boundary conditions

lim
t↓0

c(t, x) = 0, lim
x→∞

[
c(t, x)− (

x− e−r(T−t)K
)]

, 0 ≤ t < T. (4.10.5)

Equation (4.10.4) and the first part of (4.10.5) are usually written more simply but
less precisely as

c(T, x) = (x−K)+, x ≥ 0

and
c(t, 0) = 0, 0 ≤ t ≤ T.

For this exercise, we abbreviate c(t, x) as simply c and d±(T − t, x) as simply d±.

(i) Verify first the equation

Ke−r(T−t)N ′(d−) = xN ′(d+). (4.10.6)

(ii) Show that cx = N(d+). This is the delta of the option. (Be careful! Remember
that d+ is a function of x.)

(iii) Show that
ct = −rKe−r(T−t)N(d−)− σx

2
√

T − t
N ′(d+).

This is the theta of the option.

(iv) Use the formulas above to show that c satisfies (4.10.3).

(v) Show that for x > K, limt↑T d± = ∞, but for 0 < ∞ < K, limt↑T d± = −∞. Use
these equalities to derive the terminal condition (4.10.4).

(vi) Show that for 0 ≤ t < T , limx↓0d± = −∞. Use this fact to verify the first part
of boundary condition (4.10.5) as x ↓ 0.

(vii) Show that for 0 ≤ t < T , limx→∞d± = ∞. Use this fact to verify the second part
of boundary condition (4.10.5) as x → ∞. In this verification, you will need to
show that

lim
x→∞

N(d+)− 1

x−1
= 0.

This is an indeterminate form 0
0 , and L’Hopital’s rule implies that this limit is

lim
x→∞

d
dx [N(d+)− 1]

d
dxx−1

.

Work out this expression and use the fact that

x = K exp

{
σ
√

T − td+ − (T − t)

(
r +

1

2
σ2

)}

to write this expression solely in terms of d+ (i.e., without the appearance of
any x except the x in the argument of d+(T − t, x)). Then argue that the limit is
zero as d+ →∞.
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Exercise 4.10 (Self-financing trading).

The fundamental idea behind no-arbitrage pricing is to reproduce the payoff of a
derivative security by trading in the underlying asset (which we call a stock) and the
money market account. In discrete time, we let Xk denote the value of the hedging
portfolio at time k and let ∆k denote the number of shares of stock held between
times k and k + 1. Then, at time k, after rebalancing (i.e., moving from a position
of ∆k−1 to a position ∆k in the stock), the amount in the money market account is
Xk − Sk∆k. The value of the portfolio at time k + 1 is

Xk+1 = ∆kSk+1 + (1 + r)(Xk −∆kSk). (4.10.7)

This formula can be rearranged to become

Xk+1 −Xk = ∆k(Sk+1 − Sk) + r(Xk −∆kSk), (4.10.8)

which says that the gain between time k and time k + 1 is the sum of the capital gain
on the stock holdings, ∆k(Sk+1 − Sk), and the interest earnings on the money market
account, r(Xk −∆kSk). The continuous-time analogue of (4.10.8) is

dX(t) = ∆(t)dS(t) + r
(
X(t)−∆(t)S(t)

)
dt. (4.10.9)

Alternatively, one could define the value of a share of the money market account
at time k to be

Mk = (1 + r)k

and formulate the discrete-time model with two processes, ∆k as before and Γk de-
noting the number of shares of the money market account held at time k after rebal-
ancing. Then

Xk = ∆kSk + ΓkMk, (4.10.10)

so that (4.10.7) becomes

Xk+1 = ∆kSk+1 + (1 + r)ΓkMk = ∆kSk+1 + ΓkMk+1. (4.10.11)

Subtracting (4.10.10) from (4.10.11), we obtain in place of (4.10.8) the equation

Xk+1 −Xk = ∆k(Sk+1 − Sk) + Γk(Mk+1 −Mk), (4.10.12)

which says that the gain between time k and time k+1 is the sum of the capital gain on
stock holdings, ∆k(Sk+1 − Sk), and the earnings from the money market investment,
Γk(Mk+1 −Mk).

But ∆k and Γk cannot be chosen arbitrarily. The agent arrives at time k + 1 with
some portfolio of ∆k shares of stock and Γk shares of the money market account and
then rebalances. In terms of ∆k and Γk, the value of the portfolio upon arrival at time
k + 1 is given by (4.10.11). After rebalancing, it is

Xk+1 = ∆k+1Sk+1 + Γk+1Mk+1.
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Setting these two values equal, we obtain the discrete-time self-financing condition

Sk+1(∆k+1 −∆k) + Mk+1(Γk+1 − Γk) = 0. (4.10.13)

The first term is the cost of rebalancing in the stock, and the second is the cost of
rebalancing in the money market account. If the sum of these two terms is not zero,
then money must either be put into the position or can be taken out as a by-product of
rebalancing. The point is that when the two processes ∆k and Γk are used to describe
the evolution of the portfolio value Xk, then two equations, (4.10.12) and (4.10.13),
are required rather than the single equation (4.10.8) when only the process ∆k is used.

Finally, we note that we may rewrite the discrete-time self-financing condition
(4.10.13) as

Sk(∆k+1 −∆k) + (Sk+1 − Sk)(∆k+1 −∆k)

+ Mk(Γk+1 − Γk) + (Mk+1 −Mk)(Γk+1 − Γk) = 0.
(4.10.14)

This is suggestive of the continuous-time self-financing condition

S(t)d∆(t) + dS(t)d∆(t) + M(t)dΓ(t) + dM(t)dΓ(t) = 0, (4.10.15)

which we derive below.

(i) In continuous time, let M(t) = ert be the price of a share of the money market
account at time t, let ∆(t) denote the number of shares of stock held at time t,
and let Γ(t) denote the number of shares of the money market account held at
time t, so that the total portfolio value at time t is

X(t) = ∆(t)S(t) + Γ(t)M(t). (4.10.16)

Using (4.10.16) and (4.10.9), derive the continuous-time self-financing condi-
tion (4.10.15).

A common argument used to derive the Black-Scholes-Merton partial differen-
tial equation and delta- hedging formula goes like this. Let c(t, x) be the price
of a call at some time t if the stock price at that time is S(t) = x. Form a port-
folio that is long the call and short ∆(t) shares of stock, so that the value of the
portfolio at time t is N(t) = c

(
t, S(t)

) − ∆(t)S(t). We want to choose ∆(t) so
this is “instantaneously riskless,” in which case its value would have to grow
at the interest rate. Otherwise, according to this argument, we could arbitrage
this portfolio against the money market account. This means we should have
dN(t) = rN(t)dt. We compute the differential of N(t) and get

dN(t) = ct

(
t, S(t)

)
dt + cx

(
t, S(t)

)
dS(t) +

1

2
cxx

(
t, S(t)

)
dS(t)dS(t)−∆(t)dS(t)

=
[
cx

(
t, S(t)

)−∆(t)
]
dS(t) +

[
ct

(
t, S(t)

)
+

1

2
σ2S2(t)cxx

(
t, S(t)

)]
dt.

(4.10.17)

In order for this to be instantaneously riskless, we must cancel out the dS(t)

term, which contains the risk. This gives us the delta-hedging formula ∆(t) =
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cx

(
t, S(t)

)
. Having chosen ∆(t) this way, we recall that we expect to have

dN(t) = rN(t)dt, and this yields

rN(t)dt =

[
ct

(
t, S(t)

)
+

1

2
σ2S2(t)cxx

(
t, S(t)

)]
dt. (4.10.18)

But

N(t) = c
(
t, S(t)

)−∆(t)S(t) = c
(
t, S(t)

)− S(t)cx

(
t, S(t)

)
, (4.10.19)

and substitution of (4.10.19) into (4.10.18) yields the Black-Scholes-Merton
partial differential equation

ct

(
t, S(t)

)
+ rS(t)cs

(
t, S(t)

)
+

1

2
σ2S2(t)css

(
t, S(t)

)
= rc

(
t, S(t)

)
. (4.10.20)

One can question the first step of this argument, where we failed to use Itô’s
product rule (Corollary 4.6.3) on the term ∆(t)S(t) when we differentiated N(t)

in (4.10.17). In discrete time, we hold ∆k fixed for a period and let S move,
computing the capital gain according to the formula ∆k(Sk+1 − Sk), and in
(4.10.17) we are attempting something analogous to that in continuous time.
However, as soon as we set ∆(t) = cx

(
t, S(t)

)
, then ∆(t) moves continuously in

time and the differential of N(t) is really

dN(t) = ct

(
t, S(t)

)
dt + cx

(
t, S(t)

)
dS(t) +

1

2
cxx

(
t, S(t)

)
dS(t)dS(t)

−∆(t)dS(t)− S(t)d∆(t)− d∆(t)dS(t)
(4.10.21)

rather than the expression in (4.10.17).

This exercise shows that the argument is correct after all. At least, equation
(4.10.18) is correct, and from that the Black-Scholes-Merton partial differential
equation (4.10.20) follows.

Recall from Subsection 4.5.3 that if we take X(0) = c
(
0, S(0)

)
and at each time

t hold ∆(t) = cx

(
t, S(t)

)
shares of stock, borrowing or investing in the money

market as necessary to finance this, then at each time t we have a portfolio of
stock and a money market account valued at X(t) = c

(
t, S(t)

)
. The amount

invested in the money market account at each time t is

X(t)−∆(t)S(t) = c
(
t, S(t)

)−∆(t)S(t) = N(t),

and so the number of money market account shares held is

Γ(t) =
N(t)

M(t)
.

(ii) Now replace (4.10.17) by its corrected version (4.10.21) and use the continuous-
time self-financing condition you derived in part (i) to derive (4.10.18).

Exercise 4.11.
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Let
c(t, x) = xN

(
d+(T − t, x)

)−Ke−r(T−t)N
(
d−(T − t, x)

)

denote the price for a European call, expiring at time T with strike price K, where

d±(T − t, x) =
1

σ1

√
T − t

[
log

x

K
+

(
r ± σ2

1

2

)
(T − t)

]
.

This option price assumes the underlying stock is a geometric Brownian motion with
volatility σ1 > 0. For this problem, we take this to be the market price of the option.

Suppose, however, that the underlying asset is really a geometric Brownian motion
with volatility σ2 > σ1, i.e.,

dS(t) = αS(t)dt + σ2S(t)dW (t).

Consequently, the market price of the call is incorrect.
We set up a portfolio whose value at each time t we denote by X(t). We begin with

X(0) = 0. At each time t, the portfolio is long one European call, is short cx

(
t, S(t)

)

shares of stock, and thus has a cash position

X(t)− c
(
t, S(t)

)
+ S(t)cx

(
t, S(t)

)
,

which is invested at the constant interest rate r. We also remove cash from this port-
folio at a rate 1

2(σ2
2 − σ2

1)S
2(t)cxx

(
t, S(t)

)
. Therefore, the differential of the portfolio

value is

dX(t) = dc
(
t, S(t)

)− cx

(
t, S(t)

)
+ r

[
X(t)− c

(
t, S(t)

)
+ S(t)cx

(
t, S(t)

)]
dt

− 1

2
(σ2

2 − σ2
1)S

2(t)cxx

(
t, S(t)

)
, 0 ≤ t ≤ T.

Show that X(t) = 0 for all t ∈ [0, T ]. In particular, because cxx

(
t, S(t)

)
> 0 and

σ2 > σ1, we have an arbitrage opportunity; we can start with zero initial capital,
remove cash at a positive rate between times 0 and T , and at time T have zero liability.
(Hint: Compute d

(
e−rtX(t)

)
.)

Exercise 4.12.

(i) Use formulas (4.5.23)-(4.5.25), (4.5.26), and (4.5.29) to determine the delta
px(t, x), the gamma pxx(t, x), and the theta pt(t, x) of a European put.

(ii) Show that an agent hedging a short position in the put should have a short posi-
tion in the underlying stock and a long position in the money market account,

(iii) Show that f(t, x) of (4.5.26) and p(t, x) satisfy the same Black-Scholes-Merton
partial differential equation (4.5.14) satisfied by c(t, x).

Exercise 4.13 (Decomposition of correlated Brownian motions into independent Brow-
nian motions).

Suppose B1(t) and B2(t) are Brownian motions and

dB1(t)dB2(t) = ρ(t)dt,
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where ρ is a stochastic process taking values strictly between −1 and 1. Define pro-
cesses W1(t) and W2(t) such that

B1(t) = W1(t),

B2(t) =

∫ t

0
ρ(s)dW1(s) +

∫ t

0

√
1− ρ2(s)dW2(s)

and show that W1(t) and W2(t) are independent Brownian motions.

Exercise 4.14.

In the derivation of the Itô-Doeblin formula, Theorem 4.4.1, we considered only
the case of the function f(x) = 1

2x2, for which f ′′(x) = 1. This made it easy to
determine the limit of the last term,

1

2

n−1∑

j=0

f ′′
(
W (tj)

)[
W (tj+1)−W (tj)

]2

appearing in (4.4.5). Indeed,

lim
‖Π‖→0

n−1∑

j=0

f ′′
(
W (tj)

)[
W (tj+1)−W (tj)

]2
= lim
‖Π‖→0

n−1∑

j=0

[
W (tj+1)−W (tj)

]2

= [W,W ](T ) = T

=

∫ T

0
f ′′

(
W (t)

)
dt.

If we had been working with an arbitrary function f(x), we could not replace
f ′′

(
W (tj)

)
by 1 in the argument above. It is tempting in this case to just argue that[

W (tj+1)−W (tj)
]2 is approximately equal to (tj+1 − tj), so that

n−1∑

j=0

f ′′
(
W (tj)

)[
W (tj+1)−W (tj)

]2

is approximately equal to

n−1∑

j=0

f ′′
(
W (tj)

)
(tj+1 − tj),

and this has limit
∫ T
0 f ′′

(
W (t)

)
dt as ‖Π‖ → 0. However, as discussed in Remark

3.4.4, it does not make sense to say that
[
W (tj+1) −W (tj)

]2 is approximately equal
to (tj+1 − tj). In this exercise, we develop a correct explanation for the equation

lim
‖Π‖→0

n−1∑

j=0

f ′′
(
W (tj)

)[
W (tj+1)−W (tj)

]2
=

∫ T

0
f ′′

(
W (t)

)
dt. (4.10.22)

Define
Zj = f ′′

(
W (tj)

)[(
W (tj+1)−W (tj)

)2 − (tj+1 − tj)
]
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so that
n−1∑

j=0

f ′′
(
W (tj)

)[
W (tj+1)−W (tj)

]2
=

n−1∑

j=0

Zj +
n−1∑

j=0

f ′′
(
W (tj)

)
(tj+1 − tj). (4.10.23)

(i) Show that Zj is F(tj+1)-measurable and

E[Zj |F(tj)] = 0, E[Z2
j |F(tj)] = 2

[
f ′′

(
W (tj)

)]2
(tj+1 − tj)

2.

It remains to show that

lim
‖Π‖→0

n−1∑

j=0

Zj = 0. (4.10.24)

This will cause us to obtain (4.10.22) when we take the limit in (4.10.23). Prove
(4.10.24) in the following steps.

(ii) Show that E
∑n−1

j=0 Zj = 0.

(iii) Under the assumption that E
∫ T
0

[
f ′′

(
W (tj)

)]2
dt is finite, show that

lim
‖Π‖→0

Var




n−1∑

j=0

Zj


 = 0

From (iii), we conclude that
∑n−1

j=0 Zj converges to its mean, which by (ii) is zero.
This establishes (4.10.24).

Exercise 4.15 (Creating correlated Brownian motions from independent ones).

Let
(
W1(t), . . . , Wd(t)

)
be a d-dimensional Brownian motion. In particular, these

Brownian motions are independent of one another. Let
(
σij(t)

)
i=1,...,m;j=1,...,d

be an
m× d matrix-valued process adapted to

the filtration associated with the d-dimensional Brownian motion. For i = 1, . . . , m,
define

σi(t) =




d∑

j=1

σ2
ij(t)




1
2

,

and assume this is never zero. Define also

Bi(t) =
d∑

j=1

∫ t

0

σij(u)

σi(u)
dWj(u).

(i) Show that, for each i, Bi is a Brownian motion.

(ii) Show that dBi(t)dBk(t) = ρik(t), where

ρik(t) =
1

σi(t)σk(t)

d∑

j=1

σij(t)σkj(t).

Exercise 4.16 (Creating independent Brownian motions to represent correlated ones).
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Let B1(t), . . . , Bm(t) be m one-dimensional Brownian motions with

dBi(t)dBk(t) = ρik(t)dt for all i, k = 1, . . . , m,

where ρik(t) are adapted processes taking values in (−1, 1) for i 6= k and ρik(t) = 1

for t = k. Assume that the symmetric matrix

C(t) =




ρ11(t) ρ12(t) . . . ρ1m(t)

ρ21(t) ρ22(t) . . . ρ2m(t)

...
...

...

ρm1(t) ρm2(t) . . . ρmm(t)




is positive definite for all t almost surely. Because the matrix C(t) is symmetric and
positive definite, it has a matrix square root. In other words, there is a matrix

A(t) =




a11(t) a12(t) . . . a1m(t)

a21(t) a22(t) . . . a2m(t)

...
...

...

am1(t) am2(t) . . . amm(t)




such that C(t) = A(t)A′(t), which when written componentwise is

ρik(t) =
m∑

j=1

aij(t)ajk(t) for all i, k = 1, . . . , m. (4.10.25)

This matrix can be chosen so that its components aik(t) are adapted processes. Fur-
thermore, the matrix A(t) has an inverse

A−1(t) =




α11(t) α12(t) . . . α1m(t)

α21(t) α22(t) . . . α2m(t)

...
...

...

αm1(t) αm2(t) . . . αmm(t)




,

which means that
m∑

j=1

aij(t)αjk(t) =
m∑

j=1

αij(t)ajk(t) = δik, (4.10.26)

where we define

δik =





1 if i = k,

0 if i 6= k,
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to be the so-called Kronecker delta. Show that there exist m independent Brownian
motions W1(t), . . . , Wm(t) such that

Bi(t) =
m∑

j=1

∫ t

0
aij(u)dWj(u) for all i = 1, . . . , m. (4.10.27)

Exercise 4.17 (Instantaneous correlation).

Let

X1(t) = X1(0) +

∫ t

0
Θ1(u)du +

∫ t

0
σ1(u)dB1(u),

X2(t) = X2(0) +

∫ t

0
Θ2(u)du +

∫ t

0
σ2(u)dB2(u),

where B1(t) and B2(t) are Brownian motions satisfying dB1(t)dB2(t) = ρ(t) and ρ(t),
Θ1(t), Θ2(t), σ1(t) and σ2(t) are adapted processes. Then

dX1(t)dX2(t) = σ1(t)σ2(t)dB1(t)dB2(t) = ρ(t)σ1(t)σ2(t)dt.

We call ρ(t) the instantaneous correlation between X1(t) and X2(t) for the reason
explained by this exercise.

We first consider the case when ρ, Θ1, Θ2, σ1, and σ2 are constant. Then

X1(t) = X1(0) + Θ1t + σ1B1(t),

X2(t) = X2(0) + Θ2t + σ2B2(t).

Fix t0 > 0, and let ≥> 0 be given.

(i) Use Itô’s product rule to show that

E
[(

B1(t0+ ≥)−B1(t0)
)(

B2(t0+ ≥)−B2(t0)
)|F(t0)

]
= ρ ≥ .

(ii) Show that, conditioned on F(t0), the pair of random variables
(
X1(t0+ ≥)−X1(t0), X2(t0+ ≥)−X2(t0)

)

has means, variances, and covariance

Mi(ε) = E
[
Xi(t0 + ε)−Xi(t0)|F(t0)

]
= Θiε for i = 1, 2, (4.10.28)

Vi(ε) =
[(

Xi(t0 + ε)−Xi(t0)
)2

∣∣∣F(t0)
]
−M2

i (ε)

= σ2
i ε for i = 1, 2, (4.10.29)

C(ε) = E
[(

X1(t0 + ε)−X1(t0)
)(

X2(t0 + ε)−X2(t0)
)|F(t0)

]

−M1(ε)M2(ε) = ρσ1σ2ε.

(4.10.30)

In particular, conditioned onF(t0), the correlation between the increments X1(t0+

ε)−X1(t0) and X2(t0 + ε)−X2(t0) is

C(ε)√
V1(ε)V2(ε)

= ρ.
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We now allow ρ, Θ1, Θ2, σ1, and σ2 to be continuous adapted processes, assum-
ing only that there is a constant M such that

|Θ1(t)| ≤ M, |Σ1(t)| ≤ M, |Θ2(t)| ≤ M, |σ2(t)| ≤ M, |ρ(t)| ≤ M

(4.10.31)
for all t ≥ 0 almost surely. We again fix t0 ≥ 0.

(iii) Show that, conditioned on F(t0), we have the conditional mean formulas

Mi(ε) = E
[
Xi(t0+ε)−Xi(t0)|F(t0)

]
= Θi(t0)ε+o(ε) for i = 1, 2, (4.10.32)

where we denote by o(ε) any quantity that is so small that limε↓0
o(ε)
ε = 0. In

other words, show that

lim
ε↓0

1

ε
Mi(ε) = Θi(t0) for i = 1, 2. (4.10.33)

(Hint: First show that

Mi(ε) = E
[∫ t0+ε

t0

Θi(u)du

∣∣∣∣F(t0)

]
. (4.10.34)

The Dominated Convergence Theorem, Theorem 1.4.9, works for conditional
expectations as well as for expectations in the following sense. Let X be a
random variable. Suppose for every ε > 0 we have a random variable X(ε) such
that limε↓0 X(ε) = X almost surely. Finally, suppose there is another random
variable Y such that EY < ∞ and |X(ε)| ≤ Y almost surely for every ε > 0.
Then

lim
ε↓0
E

[
X(ε)|F(t0)

]
= E

[
X|F(t0)

]
.

Use this to obtain (4.10.33) from (4.10.34).)

(iv) Show that Dij(ε) defined by

Dij(ε) = E
[(

Xi(t0 + ε)−Xi(t0)
)(

Xj(t0 + ε)−Xj(t0)
)|F(t0)

]−Mi(ε)Mj(ε)

for i = 1, 2 and j = 1, 2 satisfies

Dij(ε) = ρij(t0)σi(to)σj(t0)ε + o(ε), (4.10.35)

where we set ρ11(t) = ρ22(t) = 1 and ρ12(t) = ρ21(t) = ρ(t). (Hint: You should
define the martingales

Yi(t) =

∫ t

0
σi(u)dBi(u) for i = 1, 2,

so you can write

Dij(ε) = E
[(

Yi(t0 + ε)− Yi(t0) +

∫ t0+ε

t0

Θi(u)du

)

·
(

Yj(t0 + ε)− Yj(t0) +

∫ t0+ε

t0

Θj(u)du

)∣∣∣∣F(t0)

]
−Mi(ε)Mj(ε).

(4.10.36)
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Then expand the expression on the right-hand side of (4.10.36). You should use
Itô’s product rule to show that the first term in the expansion is

E
[(

Yi(t0 + ε)− Yi(t0)
)(

Yj(t0 + ε)− Yj(t0)
)|F(t0)

]

= E
[∫ t0+ε

t0

ρij(u)σi(u)σj(u)du

∣∣∣∣F(t0)

]
.

This equation is similar to (4.10.34), and you can use the Dominated Conver-
gence Theorem as stated in the hint for (iii) to conclude that

lim
ε↓0

1

ε
E

[(
Yi(t0 + ε)− Yi(t0)

)(
Yj(t0 + ε)− Yj(t0)

)|F(t0)
]

= ρij(t0)σi(t0)σj(t0).

To handle the other terms that arise from expanding (4.10.36), you will need
(4.10.31) and the fact that

lim
ε↓0

1

ε
E

[|Yi(t0 + ε)− Y1(t0)|
∣∣F(t0)

]
= 0. (4.10.37)

You may use (4.10.37) without proving it.

(v) Show that, conditioned on F(t0), the pair of random variables
(
X1(t0 + ε)−X1(t0), X2(t0 + ε)−X2(t0)

)

has variances and covariance

Vi(ε) =
[(

Xi(t0 + ε)−Xi(t0)
)2

∣∣∣F(t0)
]
−M2

i (ε)

= σ2
i (t0)ε + o(ε) for i = 1, 2, (4.10.38)

C(ε) = E
[(

X1(t0 + ε)−X1(t0)
)(

X2(t0 + ε)−X2(t0)
)|F(t0)

]−M1(ε)M2(ε)

= ρ(t0)σ1(t0)σ2(t0)ε + o(ε). (4.10.39)

(vi) Show that

lim
ε↓0

C(ε)√
V1(ε)V2(ε)

= ρ(t0). (4.10.40)

In other words, for small values of ε > 0, conditioned on F(t0), the correlation
between the increments X1(t0 + ε)−X1(t0) and X2(t0 + ε)−X2(t0) is approxi-
mately equal to ρ(t0), and this approximation becomes exact as ε ↓ 0.

Exercise 4.18.

Let a stock price be a geometric Brownian motion

dS(t) = αS(t)dt + σS(t)dW (t),

and let r denote the interest rate. We define the market price of risk to be

θ =
α− r

σ

and the state price density process to be

ζ(t) = exp

{
−θW (t)−

(
r +

1

2
θ2

)
t

}
.
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(i) Show that
dζ(t) = −θζ(t)dW (t)− rζ(t)dt.

(ii) Let X denote the value of an investor’s portfolio when he uses a portfolio pro-
cess ∆(t). From (4.5.2), we have

dX(t) = rX(t)dt + ∆(t)(α− r)S(t)dt + ∆(t)σS(t)dW (t).

Show that ζ(t)X(t) is a martingale. (Hint: Show that the differential d
(
ζ(t)X(t)

)

has no dt term.)

(iii) Let T > 0 be a fixed terminal time. Show that if an investor wants to begin with
some initial capital X(0) and invest in order to have portfolio value V (T ) at time
T , where V (T ) is a given F(T )-measurable random variable, then he must begin
with initial capital

X(0) = E
[
ζ(T )V (T )

]
.

In other words, the present value at time zero of the random payment V (T ) at
time T is E

[
ζ(T )V (T )

]
. This justifies calling ζ(t) the state price density process.

Exercise 4.19.

Let W (t) be a Brownian motion, and define

B(t) =

∫ t

0
sign

(
W (s)

)
dW (s),

where

sign(x) =





1 if x ≥ 0,

−1 if x < 0.

(i) Show that B(t) is a Brownian motion.

(ii) Use Itô’s product rule to compute d[B(t)W (t)]. Integrate both sides of the re-
sulting equation and take expectations. Show that E[B(t)W (t)] = 0 (i.e., B(t)

and W (t) are uncorrelated).

(iii) Verify that
dW 2(t) = 2W (t)dW (t) + dt.

(iv) Use Itô’s product rule to compute d
[
B(t)W 2(t)

]
. Integrate both sides of the

resulting equation and take expectations to conclude that

E
[
B(t)W 2(t)

] 6= EB(t) · EW 2(t).

Explain why this shows that, although they are uncorrelated normal random
variables, B(t) and W (t) are not independent.

Exercise 4.20 (Local time).
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Let W (t) be a Brownian motion. The Itô-Doeblin formula in differential form says
that

df
(
W (t)

)
= f ′

(
W (t)

)
dW (t) +

1

2
f ′′

(
W (t)

)
dt. (4.10.41)

In integrated form, this formula is

f
(
W (T )

)
= f

(
W (0)

)
+

∫ T

0
f ′

(
W (t)

)
dW (t) +

1

2

∫ T

0
f ′′

(
W (t)

)
dt. (4.10.42)

The usual statement of this formula assumes that the function f ′′(x) is defined for
every x ∈ R and is a continuous function of x. In fact, the formula still holds if there
are finitely many points x where f ′′(x) is undefined, provided that f ′(x) is defined for
every x ∈ R and is a continuous function of x (and provided that |f ′′(x)| is bounded
so that the integral

∫ T
0 f ′′

(
W (t)

)
dt is defined).

However, if f ′(x) is not defined at some point, naive application of the Itô-Doeblin
formula can give wrong answers, as this problem demonstrates.

(i) Let K be a positive constant, and define f(x) = (x −K)+. Compute f ′(x) and
f ′′(x). Note that there is a point x where f ′(x) is not defined, and note also that
f ′′(x) is zero everywhere except at this point, where f ′′(x) is also undefined.

(ii) Substitute the function f(x) = (x − K)+ into (4.10.42), replacing the term
1
2

∫ T
0 f ′′

(
W (t)

)
dt by zero since f ′′ is zero everywhere except at one point, where

it is not defined. Show that the two sides of this equation cannot be equal by
computing their expected values.

(iii) To get some idea of what is going on here, define a sequence of functions
{fn}∞n=1 by the formula

fn(x) =





0 if x ≤ K − 1
2n ,

n
2 (x−K)2 + 1

2(x−K) + 1
8n if K − 1

2n ≤ x ≤ K + 1
2n ,

x−K if x ≥ K + 1
2n .

Show that

f ′n(x) =





0 if x ≤ K − 1
2n ,

n(x−K) + 1
2 if K − 1

2n ≤ x ≤ K + 1
2n ,

1 if x ≥ K + 1
2n .

In particular, because we get the same value for f ′n(K− 1
2n) regardless of whether

we use the formula for x ≤ K − 1
2n or the formula for K − 1

2n ≤ x ≤ K + 1
2n ,

the derivative f ′n(K − 1
2n) is defined. By the same argument, f ′n(K + 1

2n) is also



4.10 Exercises 193

defined. Verify that

f ′′n(x) =





0 if x ≤ K − 1
2n ,

n if K − 1
2n ≤ x ≤ K + 1

2n ,

0 if x ≥ K + 1
2n .

The second derivative f ′′(x) is not defined when x = K ± 1
2n because the for-

mulas above disagree at those points.

(iv) Show that
lim

n→∞ fn(x) = (x−K)+

for every x ∈ R and

lim
n→∞ f ′n(x) =





0 if x < K,

1
2 if x = K,

1 if x > K.

The value of limn→∞ f ′n(x) at a single point will not matter when we integrate
in part (v) below, so instead of using the formula just derived, we will replace
limn→∞ f ′n(x) by

I(K,∞)(x) =





0 if x ≤ K,

1 if x > K,

in (4.10.44) below. The two functions limn→∞ f ′n(x) and I(K,∞)(x) agree except
at the single point x = K.

For each n, the Itô-Doeblin formula applies to the function fn because f ′n(x) is
defined for every x and is a continuous function of x, f ′′n(x) is defined for every
x except the two points x = K ± 1

2n , and |f ′′(x)| is bounded above by n. In
integrated form, the Itô-Doeblin formula applied to fn gives

fn

(
W (T )

)
= fn

(
W (0)

)
+

∫ T

0
f ′n

(
W (t)

)
dW (t) +

∫ T

0
f ′′n

(
W (T )

)
dt. (4.10.43)

If we now let n →∞ in this formula, we obtain

(
W (T )−K

)+
=

(
W (0)−K

)+
∫ T

0
I(K,∞)

(
W (t)

)
dW (t)

+ lim
n→∞n

∫ T

0
I(K− 1

2n
,K+ 1

2n
)

(
W (t)

)
dt.

(4.10.44)

Let us define the local time of the Brownian motion at K to be

LK(T ) = lim
n→∞n

∫ T

0
I(K− 1

2n
,K+ 1

2n
)

(
W (t)

)
dt.
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(This formula is sometimes written as

LK(T ) =

∫ T

0
δK

(
W (t)

)
dt,

where δK is the so-called “Dirac delta function” at K.) For a fixed n, the ex-
pression

∫ T
0 I(K− 1

2n
,K+ 1

2n
)

(
W (t)

)
dt measures how much time between time 0

and time T the Brownian motion spends in the band of length 1
n centered at K.

As n → ∞, this has limit zero because the width of the band is approaching
zero. However, before taking the limit, we multiply by n, and now it is not clear
whether the limit will be zero, +∞, or something in between. The limit will, of
course, be random; it depends on the path of the Brownian motion.

(v) Show that if the path of the Brownian motion stays strictly below K on the time
interval [0, T ], we have LK(T ) = 0.

(vi) We may solve (4.10.44) for LK(T ), using the fact that W (0) = 0 and K > 0, to
obtain

LK(T ) =
(
W (T )−K

)+ −
∫ T

0
I(K,∞)

(
W (t)

)
dW (t). (4.10.45)

From this, we see that LK(T ) is never +∞. Show that we cannot have LK(T ) =

0 almost surely. In other words, for some paths of the Brownian motion, we
must have LK(T ) > 0. (It turns out that the paths that reach level K are those
for which LK(T ) > 0.)

Exercise 4.21 (Stop-loss start-gain paradox).

Let S(t) be a geometric Brownian motion with mean rate of return zero. In other
words,

dS(t) = σS(t)dW (t),

where the volatility σ is constant. We assume the interest rate is r = 0.
Suppose we want to hedge a short position in a European call with strike price

K and expiration date T . We assume that the call is initially out of the money (i.e.,
S(0) < K). Starting with zero capital (X(0) = 0), we could try the following portfolio
strategy: own one share of the stock whenever its price strictly exceeds K, and own
zero shares whenever its price is K or less. In other words, we use the hedging
portfolio process

∆(t) = I(K,∞)

(
S(t)

)
.

The value of this hedge follows the stochastic differential equation

dX(t) = ∆(t)dS(t) + r
(
X(t)−∆(t)X(t)

)
dt,

and since r = 0 and X(0) = 0, we have

X(T ) = σ

∫ T

0
I(K,∞)

(
S(t)

)
S(t)dW (t). (4.10.46)
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Executing this hedge requires us to borrow from the money market to buy a share
of stock whenever the stock price rises across level K and sell the share, repaying
the money market debt, when it falls back across level K. (Recall that we have taken
the interest rate to be zero. The situation we are describing can also occur with a
nonzero interest rate, but it is more complicated to set up.) At expiration, if the stock
price S(T ) is below K, there would appear to have been an even number of crossings
of the level K, half in the up direction and half in the down direction, so that we
would have bought and sold the stock repeatedly, each time at the same price K, and
at the final time have no stock and zero debt to the money market. In other words,
if S(T ) < K, then X(T ) = 0. On the other hand, if at the final time S(T ) is above
K, we have bought the stock one more time than we sold it, so that we end with one
share of stock and a debt of K to the money market. Hence, if S(T ) > K, we have
X(T ) = S(T )−K. If at the final time S(T ) = K, then we either own a share of stock
valued at K and have a money market debt K or we have sold the stock and have zero
money market debt. In either case, X(T ) = 0. According to this argument, regardless
of the final stock price, we have X(T ) =

(
S(T )−K

)+. This kind of hedging is called
a stop-loss start-gain strategy.

(i) Discuss the practical aspects of implementing the stop-loss start-gain strategy
described above. Can it be done?

(ii) Apart from the practical aspects, does the mathematics of continuous-time stochas-
tic calculus suggest that the stop-loss start-gain strategy can be implemented?
In other words, with X(T ) defined by (4.10.46), is it really true that X(T ) =(
S(T )−K

)+?



Chapter 5

Risk-Neutral Pricing

5.1 Introduction

In the binomial asset pricing model of Chapter 1 of Volume I, we showed how to
price a derivative security by determining the initial capital required to hedge a short
position in the derivative security. In a two-period model, this method led to the six
equations (1.2.2), (1.2.3), and (1.2.5)-(1.2.8) in six unknowns in Volume I. Three of
these unknowns were the position the hedge should take in the underlying asset at
time zero, the position taken by the hedge at time one if the first coin toss results
in H, and the position taken by the hedge at time one if the first coin toss results in
T . The three other unknowns were the value of the derivative security at time zero,
the value of the derivative security at time one if the first coin toss results in H, and
the value of the derivative security at time one if the first coin toss results in T . The
solution to these six equations provides both the value of the derivative security at all
times and the hedge for the short position at all times, regardless of the outcome of
the first coin toss.

In Theorem 1.2.2 of Volume I, we discovered a clever way to solve these six equa-
tions in six unknowns by first solving for the derivative security values Vn using the
risk-neutral probabilities p̃ and q̃ in (1.2.16) and then computing the hedge positions
from (1.2.17). Equation (1.2.16) says that under the risk-neutral probabilities, the
discounted derivative security value is a martingale.

In Section 4.5 of this volume, we repeated the first part of this program. To de-
termine the value of a European call, we determined the initial capital required to set
up a portfolio that with probability one hedges a short position in the derivative secu-
rity. Subsection 4.5.3, in which we equated the evolution of the discounted portfolio
value with the evolution of the discounted option value, provides the continuous-time
analogue of solving the six equations (1.2.2), (1.2.3), and (1.2.5)-(1.2.8) of Volume
I. From that process, we obtained the delta-hedging rule (4.5.11) and we obtained the
Black-Scholes-Merton partial differential equation (4.5.14) for the value of the call.

Now we execute the second part of the program. In this chapter, we discover
a clever way to solve the partial differential equation (4.5.14) using a risk-neutral
probability measure. After solving this equation, we can then compute the short
option hedge using (4.5.11).
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To accomplish this second part of the program, we show in Section 5.2 how to
construct the risk-neutral measure in a model with a single underlying security. This
step relies on Girsanov’s Theorem, which is presented in Section 5.2. Risk-neutral
pricing is a powerful method for computing prices of derivative securities, but it is
fully justified only when it is accompanied by a hedge for a short position in the
security being priced. In Section 5.3, we provide the conditions under which such
a hedge exists in a model with a single underlying security. Section 5.4 generalizes
the ideas of Sections 5.2 and 5.3 to models with multiple underlying securities. Fur-
thermore, Section 5.4 provides conditions that guarantee that such a model does not
admit arbitrage and that every derivative security in the model can be hedged.

5.2 Risk-Neutral Measure

5.2.1 Girsanov’s Theorem for a Single Brownian Motion

In Theorem 1.6.1, we began with a probability space (Ω,F ,P) and a nonnegative
random variable Z satisfying EZ = 1. We then defined a new probability measure P̃
by the formula

P̃(A) =

∫

A
Z(ω)dP (ω) for all A ∈ F . (5.2.1)

Any random variable X now has two expectations, one under the original probability
measure P, which we denote EX, and the other under the new probability measure P̃,
which we denote ẼX. These are related by the formula

ẼX = E[XZ]. (5.2.2)

If P{Z > 0} = 1, then P and P̃ agree which sets have probability zero and (5.2.2) has
the companion formula

EX = Ẽ
[
X

Z

]
. (5.2.3)

We say Z is the Radon-Nikodym derivative of P̃ with respect to P, and we write

Z =
dP̃
dP

.

This is supposed to remind us that Z is like a ratio of these two probability mea-
sures. The reader may wish to review Section 3.1 of Volume I, where this concept is
discussed in a finite probability model. In the case of a finite probability model, we
actually have

Z(ω) =
P̃(ω)

P(ω)
. (5.2.4)

If we multiply both sides of (5.2.4) by P(ω) and then sum over ω in a set A, we obtain

P̃(A) =
∑

ω∈A

Z(ω)P(ω) for all A ⊂ Ω. (5.2.5)

In a general probability model, we cannot write (5.2.4) because P(ω) is typically zero
for each individual ω, but we can write an analogue of (5.2.5). This is (5.2.1).
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Example 1.6.6 shows how we can use this change-of-measure idea to move the
mean of a normal random variable. In particular, if X is a standard normal random
variable on a probability space (Ω,F ,P), θ is a constant, and we define

Z = exp

{
−θX − 1

2
θ2

}
,

then under the probability measure P̃ given by (5.2.1), the random variable Y = X +θ

is standard normal. In particular, ẼY = 0, whereas EY = EX + θ = θ. By changing
the probability measure, we have changed the expectation of Y .

In this section, we perform a similar change of measure in order to change a mean,
but this time for a whole process rather than for a single random variable. To set the
stage, suppose we have a probability space (Ω,F ,P) and a filtration F(t), defined for
0 ≤ t ≤ T , where T is a fixed final time. Suppose further that Z is an almost surely
positive random variable satisfying EZ = 1, and we define P̃ by (5.2.1). We can then
define the Radon-Nikodym derivative process

Z(t) = E[Z|F(t)], 0 ≤ t ≤ T. (5.2.6)

This process in discrete time is discussed in Section 3.2 of Volume I. The Radon-
Nikodym derivative process (5.2.6) is a martingale because of iterated conditioning
(Theorem 2.3.2(iii)): for 0 ≤ s ≤ t ≤ T ,

E[Z(t)|F(s)] = E
[
E[Z|F(t)]|F(s)

]
= E[Z|F(s)] = Z(s). (5.2.7)

Furthermore, it has the properties presented in the following two lemmas, which are
continuous-time analogues of Lemmas 3.2.5 and 3.2.6 of Volume I.

Lemma 5.2.1. Let t satisfying 0 ≤ t ≤ T be given and let Y be an F(t)-measurable
random variable. Then

ẼY = E[Y Z(t)]. (5.2.8)

Proof. We use (5.2.2), the unbiasedness of conditional expectations (2.3.25), the
property “taking out what is known” (Theorem 2.3.2(ii)), and the definition of Z(t)

to write

ẼY = E[Y Z] = E
[
E[Y Z|F(t)]

]
= E

[
Y E[Z|F(t)]

]
= E[Y Z(t)].

Lemma 5.2.2. Let s and t satisfying 0 ≤ s ≤ t ≤ T be given and let Y be an F(t)-
measurable random variable. Then

Ẽ[Y |F(s)] =
1

Z(s)
E[Y Z(t)|F(s)]. (5.2.9)

Proof. It is clear that 1
Z(s)E[Y Z(t)|F(s)] is F(s)-measurable. We must check the

partial-averaging property (Definition 2.3.1(ii)), which in this case is
∫

A

1

Z(s)
E[Y Z(t)|F(s)]dP̃ =

∫

A
Y dP̃ for all A ∈ F(s). (5.2.10)
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Note that because we are claiming that the right-hand side of (5.2.9) is the conditional
expectation of Y under the P̃ probability measure, we must integrate with respect to
the measure P̃ in the statement of the partial-averaging property (5.2.10). We may
write the left-hand side of (5.2.10) as

Ẽ
[
IA

1

Z(s)
E[Y Z(t)|F(s)]

]

and then use Lemma 5.2.1 for F(s)-measurable random variables, use “taking out
what is known,” use the unbiasedness of conditional expectations (2.3.25), and finally
use Lemma 5.2.1 for F(t)-measurable random variables to write

Ẽ
[
IA

1

Z(s)
E[Y Z(t)|F(s)]

]
= E

[
IAE[Y Z(t)|F(s)]

]

= E
[
E[IAY Z(t)|F(s)]

]

= E[IAY Z(t)]

= Ẽ[IAY ]

=

∫

A
Y dP̃.

This verifies (5.2.10), which in turn proves (5.2.9).

Theorem 5.2.3 (Girsanov, one dimension). Let W (t), 0 ≤ t ≤ T , be a Brownian
motion on a probability space (Ω,F ,P), and let F(t), 0 ≤ t ≤ T , be a filtration for
this Brownian motion. Let Θ(t), 0 ≤ t ≤ T , be an adapted process. Define

Z(t) = exp

{
−

∫ t

0
Θ(u)dW (u)− 1

2

∫ t

0
Θ2(u)du

}
, (5.2.11)

W̃ (t) =W (t) +

∫ t

0
Θ(u)du, (5.2.12)

and assume that1

E
∫ T

0
Θ2(u)Z2(u)du < ∞. (5.2.13)

Set Z = Z(T ). Then EZ = 1 and under the probability measure P̃ given by (5.2.1),
the process W̃ (t), 0 ≤ t ≤ T , is a Brownian motion.

Proof. We use Levy’s Theorem, Theorem 4.6.4, which says that a martingale starting
at zero at time zero, with continuous paths and with quadratic variation equal to t at
each time t, is a Brownian motion.The process W̃ starts at zero at time zero and is
continuous. Furthermore, [W̃ , W̃ ](t) = [W,W ](t) = t because the term

∫ t
0 Θ(u)du in

the definition of W̃ (t) contributes zero quadratic variation. In other words,

dW̃ (t)dW̃ (t) =
(
dW (t) + Θ(t)dt

)2
= dW (t)dW (t) = dt.

1Condition (5.2.13) is imposed to ensure that the Itô integral in (5.2.14) is defined and is a martingale. This
is (4.3.1) imposed in the construction of Itô integrals.
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It remains to show that W̃ (t) is a martingale under P̃. We first observe that Z(t) is
a martingale under P. With

X(t) = −
∫ t

0
Θ(u)dW (u)− 1

2

∫ t

0
Θ2(u)du

and f(x) = ex so that f ′(x) = ex and f ′′(x) = ex, we have

dZ(t) = df
(
X(t)

)

= f ′
(
X(t)

)
dX(t) +

1

2
f ′′

(
X(t)

)
dX(t)dX(t)

= eX(t)

(
−Θ(t)dW (t)− 1

2
Θ2(t)dt

)
+

1

2
eX(t)Θ2(t)dt

= −Θ(t)Z(t)dW (t).

Integrating both sides of the equation above, we see that

Z(t) = Z(0)−
∫ t

0
Θ(u)Z(u)dW (u). (5.2.14)

Because Itô integrals are martingales, Z(t) is a martingale. In particular, EZ =

EZ(T ) = Z(0) = 1.
Because Z(t) is a martingale and Z = Z(T ), we have

Z(t) = E[Z(T )|F(t)] = E[Z|F(t)], 0 ≤ t ≤ T.

This shows that Z(t), 0 ≤ t ≤ T , is a Radon-Nikodym derivative process as defined
in (5.2.6), and Lemmas 5.2.1 and 5.2.2 apply to this situation.

We next show that W̃ (t)Z(t) is a martingale under P. To see this, we compute the
differential using Itô’s product rule (Corollary 4.6.3):

d
(
W̃ (t)Z(t)

)
= W̃ (t)dZ(t) + Z(t)dW̃ (t) + dW̃ (t)dZ(t)

= −W̃ (t)Θ(t)Z(t)dW (t) + Z(t)dW (t) + Z(t)Θ(t)dt

+
(
dW (t) + Θ(t)dt

)(−Θ(t)Z(t)dW (t)
)

=
(− W̃ (t)Θ(t) + 1

)
Z(t)dW (t).

Because the final expression has no dt term, the process W̃ (t)Z(t) is a martingale
under P.

Now let 0 ≤ s ≤ t ≤ T be given. Lemma 5.2.2 and the martingale property for
W̃ (t)Z(t) under P imply

Ẽ
[
W̃ (t)|F(s)

]
=

1

Z(s)
E

[
W̃ (t)Z(t)|F(s)

]
=

1

Z(s)
W̃ (s)Z(s) = W̃ (s).

This shows that W̃ (t) is a martingale under P̃. The proof is complete.

The probability measures P and P̃ in Girsanov’s Theorem are equivalent (i.e., they
agree about which sets have probability zero and hence about which sets have prob-
ability one). This is because P{Z > 0} = 1; see Definition 1.6.3 and the discussion
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following it. In the remainder of this section, we setup an asset price model in which
P is the actual probability measure and P̃ is the risk-neutral measure. We want these
probabilities to agree about what is possible and what is impossible, and they do. In
the discrete-time binomial model of Volume I, the actual and risk-neutral probability
measures agree about which moves are possible (i.e., they both give positive proba-
bility to an up move, positive probability to a down move, and the sizes (but not the
probabilities) of the up and down moves are the same whether we are working under
the actual probability measure or the risk-neutral probability measure). The set of
possible asset price paths is a tree in the binomial model, and both the actual proba-
bility measure and the risk-neutral probability measure are based on the same tree. In
the continuous-time model, there are infinitely many possible paths, and this agree-
ment about what is possible and what is not possible is the equivalence of Definition
1.6.3.

5.2.2 Stock Under the Risk-Neutral Measure

Let W (t), 0 ≤ t ≤ T , be a Brownian motion on a probability space (Ω,F ,P), and let
F(t), 0 ≤ t ≤ T , be a filtration for this Brownian motion. Here T is a fixed final time.
Consider a stock price process whose differential is

dS(t) = α(t)S(t)dt + σ(t)S(t)dW (t), 0 ≤ t ≤ T. (5.2.15)

The mean rate of return α(t) and the volatility σ(t) are allowed to be adapted pro-
cesses. We assume that, for all t ∈ [0, T ], σ(t) is almost surely not zero. This stock
price is a generalized geometric Brownian motion (see Example 4.4.8, in particular,
(4.4.27)), and an equivalent way of writing (5.2.15) is (see (4.4.26))

S(t) = S(0) exp

{∫ t

0
σ(s)dW (s) +

∫ t

0

(
α(s)− 1

2
σ2(s)

)
ds

}
. (5.2.16)

In addition, suppose we have an adapted interest rate process R(t). We define the
discount process

D(t) = e−
R t

0
R(s)ds (5.2.17)

and note that
dD(t) = −R(t)D(t)dt. (5.2.18)

To obtain (5.2.18) from (5.2.17), we can define I(t) =
∫ t
0 R(s)ds so that dI(t) =

R(t)dt and dI(t)dI(t) = 0. We introduce the function f(x) = e−x, for which f ′(x) =

−f(x), f ′′(x) = f(x), and then use the Itô-Doeblin formula to write

dD(t) = df
(
I(t)

)

= f ′
(
I(t)

)
dI(t) +

1

2
f ′′

(
I(t)

)
dI(t)dI(t)

= −f
(
I(t)

)
R(t)dt

= −R(t)D(t)dt.
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Observe that although D(t) is random, it has zero quadratic variation. This is
because it is “smooth.” It has a derivative, namely D′(t) = −R(t)D(t), and one
does not need stochastic calculus to do this computation. The stock price S(t) is
random and has nonzero quadratic variation. It is “more random” than D(t). If we
invest in the stock, we have no way of knowing whether the next move of the driving
Brownian motion will be up or down, and this move directly affects the stock price.
Hence, we face a high degree of uncertainty. On the other hand, consider a money
market account with variable interest rate R(t), where money is rolled over at this
interest rate. If the price of a share of this money market account at time zero is 1,
then the price of a share of this money market account at time t is e

R t

0
R(s)ds = 1

D(t)

If we invest in this account, we know the interest rate at the time of the investment
and hence have a high degree of certainty about what the return will be over a short
period of time. Over longer periods, we are less certain because the interest rate is
variable, and at the time of investment, we do not know the future interest rates that
will be applied. However, the randomness in the model affects the money market
account only indirectly by affecting the interest rate. Changes in the interest rate do
not affect the money market account instantaneously but only when they act over
time. (Warning: The money market account is not a bond. For a bond, a change in
the interest rate can have an instantaneous effect on price.) Unlike the price of the
money market account, the stock price is susceptible to instantaneous unpredictable
changes and is, in this sense, “more random” than D(t). Our mathematical model
captures this effect because S(t) has nonzero quadratic variation, while D(t) has zero
quadratic variation.

The discounted stock price process is

D(t)S(t) = S(0) exp

{∫ t

0
σ(s)dW (s) +

∫ t

0

(
α(s)−R(s)− 1

2
σ2(s)

)
ds

}
, (5.2.19)

and its differential is

d
(
D(t)S(t)

)
=

(
α(t)−R(t)

)
D(t)S(t)dt + σ(t)D(t)S(t)dW (t)

= σ(t)D(t)S(t)
[
Θ(t)dt + dW (t)

]
,

(5.2.20)

where we define the market price of risk to be

Θ(t) =
α(t)−R(t)

σ(t)
. (5.2.21)

One can derive (5.2.20) either by applying the Itô-Doeblin formula to the right-hand
side of (5.2.19) or by using Itô’s product rule and the formulas (5.2.15) and (5.2.18).
The first line of (5.2.20), compared with (5.2.15), shows that the mean rate of return
of the discounted stock price is α(t)−R(t), which is the mean rate α(t) of the undis-
counted stock price, reduced by the interest rate R(t). The volatility of the discounted
stock price is the same as the volatility of the undiscounted stock price.

We introduce the probability measure P̃ defined in Girsanov’s Theorem, Theorem
5.2.3, which uses the market price of risk Θ(t) given by (5.2.21). In terms of the
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Brownian motion W̃ (t) of that theorem, we may rewrite (5.2.20) as

d
(
D(t)S(t)

)
= σ(t)D(t)S(t)dW̃ (t). (5.2.22)

We call P̃, the measure defined in Girsanov’s Theorem, the risk-neutral measure
because it is equivalent to the original measure P and it renders the discounted stock
price D(t)S(t) into a martingale. Indeed, according to (5.2.22),

D(t)S(t) = S(0) +

∫ t

0
σ(u)D(u)S(u)dW̃ (u),

and under P̃ the process
∫ t
0 σ(u)D(u)S(u)dW̃ (u) is an Itô integral and hence a martin-

gale.
The undiscounted stock price S(t) has mean rate of return equal to the interest rate

under P̃, as one can verify by making the replacement dW (t) = −Θ(t)dt + dW̃ (t) in
(5.2.15). With this substitution, (5.2.15) becomes

dS(t) = R(t)S(t)dt + σ(t)S(t)dW̃ (t). (5.2.23)

We can either solve this equation for S(t) or simply replace the Itô integral
∫ t
0 σ(s)dW (s)

by its equivalent
∫ t
0 σ(s)dW̃ (s)− ∫ t

0

(
α(s)−R(s)

)
ds in (5.2.16) to obtain the formula

S(t) = S(0) exp

{∫ t

0
σ(s)dW̃ (s) +

∫ t

0

(
R(s)− 1

2
σ2(s)

)
ds

}
. (5.2.24)

In discrete time, the change of measure does not change the binomial tree, only
the probabilities on the branches of the tree. In continuous time, the change from
the actual measure P to the risk-neutral measure P̃ changes the mean rate of return
of the stock but not the volatility. The volatility tells us which stock price paths are
possible—namely those for which the log of the stock price accumulates quadratic
variation at rate σ2(t) per unit time. After the change of measure, we are still consid-
ering the same set of stock price paths, but we have shifted the probability on them.
If α(t) > R(t), as it normally is, then the change of measure puts more probability
on the paths with lower return so that the overall mean rate of return is reduced from
α(t) to R(t).

5.2.3 Value of Portfolio Process Under the Risk-Neutral Measure

Consider an agent who begins with initial capital X(0) and at each time t, 0 ≤ t ≤
T , holds ∆(t) shares of stock, investing or borrowing at the interest rate R(t) as
necessary to finance this. The differential of this agent’s portfolio value is given by
the analogue of (4.5.2) for this case of random α(t), σ(t), and R(t), and this works
out to be

dX(t) = ∆(t)dS(t) + R(t)
(
X(t)−∆(t)S(t)

)
dt

= ∆(t)
(
α(t)S(t)dt + σ(t)S(t)dW (t)

)
+ R(t)

(
X(t)−∆(t)S(t)

)
dt

= R(t)X(t)dt + ∆(t)
(
α(t)−R(t)

)
S(t)dt + ∆(t)σ(t)S(t)dW (t)

= R(t)X(t)dt + ∆(t)σ(t)S(t)
[
Θ(t)dt + dW (t)

]
.

(5.2.25)
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Itô’s product rule, (5.2.18), and (5.2.20) imply

d
(
D(t)X(t)

)
= ∆(t)σ(t)D(t)S(t)

[
Θ(t)dt + dW (t)

]

= ∆(t)d
(
D(t)S(t)

)
.

(5.2.26)

Changes in the discounted value of an agent’s portfolio are entirely due to fluctuations
in the discounted stock price. We may use (5.2.22) to rewrite (5.2.26) as

d
(
D(t)X(t)

)
= ∆(t)σ(t)D(t)S(t)dW̃ (t). (5.2.27)

Our agent has two investment options: (1) a money market account with rate of
return R(t), and (2) a stock with mean rate of return R(t) under P̃. Regardless of how
the agent invests, the mean rate of return for his portfolio will be R(t) under P̃, and
hence the discounted value of his portfolio, D(t)X(t), will be a martingale. This is
the content of (5.2.27).

5.2.4 Pricing Under the Risk-Neutral Measure

In Section 4.5, we derived the Black-Scholes-Merton equation for the value of a
European call by asking what initial capital X(0) and portfolio process ∆(t) an agent
would need in order to hedge a short position in the call (i.e., in order to have X(T ) =(
S(T ) − K

)+ almost surely). In this section, we generalize the question. Let V (T )

be an F(T )-measurable random variable. This represents the payoff at time T of
a derivative security. We allow this payoff to be path-dependent (i.e., to depend
on anything that occurs between times 0 and T ), which is what F(T )-measurability
means. We wish to know what initial capital X(0) and portfolio process ∆(t), 0 ≤ t ≤
T , an agent would need in order to hedge a short position in this derivative security,
i.e., in order to have

X(T ) = V (T ) almost surely. (5.2.28)

In Section 4.5, the mean rate of return, volatility, and interest rate were constant. In
this section, we do not assume a constant mean rate of return, volatility, and interest
rate.

Our agent wishes to choose initial capital X(0) and portfolio strategy ∆(t), 0 ≤
t ≤ T , such that (5.2.28) holds. We shall see in the next section that this can be done.
Once it has been done, the fact that D(t)X(t) is a martingale under P̃ implies

D(t)X(t) = Ẽ[D(T )X(T )|F(t)] = Ẽ[D(T )V (T )|F(t)]. (5.2.29)

The value X(t) of the hedging portfolio in (5.2.29) is the capital needed at time t

in order to successfully complete the hedge of the short position in the derivative
security with payoff V (T ). Hence, we can call this the price V (t) of the derivative
security at time t, and (5.2.29) becomes

D(t)V (t) = Ẽ[D(T )V (T )|F(t)], 0 ≤ t ≤ T. (5.2.30)

This is the continuous-time analogue of the risk-neutral pricing formula (2.4.10) in
the binomial model of Volume I. Dividing (5.2.30) by D(t), which is F(t)-measurable



5.2 Risk-Neutral Measure 205

and hence can be moved inside the conditional expectation on the right-hand side of
(5.2.30), and recalling the definition of D(t), we may write (5.2.30) as

V (t) = Ẽ
[
e−
R T

t
R(u)duV (T )|F(t)

]
, 0 ≤ t ≤ T. (5.2.31)

This is the continuous-time analogue of (2.4.11) of Volume I. We shall refer to
both (5.2.30) and (5.2.31) as the risk-neutral pricing formula for the continuous-time
model.

5.2.5 Deriving the Black-Scholes-Merton Formula

The addition of Merton’s name to what has traditionally been called the Black-
Scholes formula is explained in the Notes to Chapter 4, Section 4.9.

To obtain the Black-Scholes-Merton price of a European call, we assume a con-
stant volatility σ, constant interest rate r, and take the derivative security payoff to be
V (T ) =

(
S(T )−K

)+. The right-hand side of (5.2.31) becomes

Ẽ
[
e−r(T−t)

(
S(T )−K

)+|F(t)
]
.

Because geometric Brownian motion is a Markov process, this expression depends on
the stock price S(t) and of course on the time t at which the conditional expectation
is computed, but not on the stock price prior to time t. In other words, there is a
function c(t, x) such that

c
(
t, S(t)

)
= Ẽ

[
e−r(T−t)

(
S(T )−K

)+|F(t)
]
. (5.2.32)

We can compute c(t, x) using the Independence Lemma, Lemma 2.3.4. With con-
stant σ and r, equation (5.2.24) becomes

S(t) = S(0) exp

{
σW̃ (t) +

(
r − 1

2
σ2

)
t

}
,

and we may thus write

S(T ) = S(t) exp

{
σ

(
W̃ (T )− W̃ (t)

)
+

(
r − 1

2
σ2

)
τ

}

= S(t) exp

{
−σ
√

τY +

(
r − 1

2
σ2

)
τ

}
,

where Y is the standard normal random variable

Y = −W̃ (T )− W̃ (t)√
T − t

,

and τ is the “time to expiration” T − t. We see that S(T ) is the product of the F(t)-
measurable random variable S(t) and the random variable

exp

{
−σ
√

τY +

(
r − 1

2
σ2

)
τ

}
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which is independent of F(t). Therefore, (5.2.32) holds with

c(t, x) = Ẽ

[
e−rτ

(
x exp

{
−σ
√

τY +

(
r − 1

2
σ2

)
τ

}
−K

)+
]

=
1√
2π

∫ ∞

−∞
e−rτ

(
x exp

{
−σ
√

τy +

(
r − 1

2
σ2

)
τ

}
−K

)+

e−
1
2
y2

dy.

The integrand
(

x exp

{
−σ
√

τy +

(
r − 1

2
σ2

)
τ

}
−K

)+

is positive if and only if

y < d−(τ, x) =
1

σ
√

τ

[
log

x

K
+

(
r − 1

2
σ2

)
τ

]
. (5.2.33)

Therefore,

c(t, x) =
1√
2π

∫ d−(τ,x)

−∞
e−rτ

(
x exp

{
−σ
√

τy +

(
r − 1

2
σ2

)
τ

}
−K

)
e−

1
2
y2

dy

=
1√
2π

∫ d−(τ,x)

−∞
x exp

{
−y2

2
− σ

√
τy − σ2τ

2

}
dy − 1√

2π

∫ d−(τ,x)

−∞
e−rτKe−

1
2
y2

dy

=
x√
2π

∫ d−(τ,x)

−∞
exp

{
−1

2
(y + σ

√
τ)2

}
dy − e−rτKN

(
d−(τ, x)

)

=
x√
2π

∫ d−(τ,x)+σ
√

τ

−∞
exp

{
−z2

2

}
dz − e−rτKN

(
d−(τ, x)

)

= xN
(
d+(τ, x)

)− e−rτKN
(
d−(τ, x)

)
,

where

d+(τ, x) = d−(τ, x) + σ
√

τ =
1

σ
√

τ

[
log

x

K
+

(
r +

1

2
σ2

)
τ

]
. (5.2.34)

For future reference, we introduce the notation

BSM(τ, x; K, r, σ) = Ẽ

[
e−rτ

(
x exp

{
−σ
√

τY +

(
r − 1

2
σ2

)
τ

}
−K

)+
]

, (5.2.35)

where Y is a standard normal random variable under P̃. We have just shown that

BSM(τ, x; K, r, σ) = xN
(
d+(τ, x)

)− e−rτKN
(
d−(τ, x)

)
. (5.2.36)

In Section 4.5, we derived the Black-Scholes-Merton partial differential equation
(4.5.14) and then provided the solution in equation (4.5.19) without explaining how
one obtains this solution (although one can verify after the fact that (4.5.19) does
indeed solve (4.5.14); see Exercise 4.9 of Chapter 4). Here we have derived the
solution by the device of switching to the risk-neutral measure.
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5.3 Martingale Representation Theorem

The risk-neutral pricing formula for the price (value) at time t of a derivative security
paying V (T ) at time T , equation (5.2.31), was derived under the assumption that
if an agent begins with the correct initial capital, there is a portfolio process ∆(t),
0 ≤ t ≤ T , such that the agent’s portfolio value at the final time T will be V (T )

almost surely. Under this assumption, we determined the “correct initial capital” to
be (set t = 0 in (5.2.31))

V (0) = Ẽ[D(T )V (T )],

and the value of the hedging portfolio at every time t, 0 ≤ t ≤ T , to be V (t) given by
(5.2.31). In this section, in the model with one stock driven by one Brownian motion,
we verify the assumption on which the risk-neutral pricing formula (5.2.31) is based.
We take up the case of multiple Brownian motions and multiple stocks in Section
5.4.

5.3.1 Martingale Representation with One Brownian Motion

The existence of a hedging portfolio in the model with one stock and one Brownian
motion depends on the following theorem, which we state without proof.

Theorem 5.3.1 (Martingale representation, one dimension). Let W (t), 0 ≤ t ≤ T ,
be a Brownian motion on a probability space (Ω,F ,P), and let F(t), 0 ≤ t ≤ T ,
be the filtration generated by this Brownian motion. Let M(t), 0 ≤ t ≤ T , be a
martingale with respect to this filtration (i.e., for every t, M(t) is F(t)-measurable
and for 0 ≤ s ≤ t ≤ T , E[M(t)|F(s)] = M(s)). Then there is an adapted process
Γ(u), 0 ≤ u ≤ T , such that

M(t) = M(0) +

∫ t

0
Γ(u)dW (u), 0 ≤ t ≤ T. (5.3.1)

The Martingale Representation Theorem asserts that when the filtration is the one
generated by a Brownian motion (i.e., the only information inF(t) is that gained from
observing the Brownian motion up to time t), then every martingale with respect to
this filtration is an initial condition plus an Itô integral with respect to the Brownian
motion. The relevance to hedging of this is that the only source of uncertainty in the
model is the Brownian motion appearing in Theorem 5.3.1, and hence there is only
one source of uncertainty to be removed by hedging. This assumption implies that
the martingale cannot have jumps because Itô integrals are continuous. If we want to
have a martingale with jumps, we will need to build a model that includes sources of
uncertainty different from (or in addition to) Brownian motion.

The assumption that the filtration in Theorem 5.3.1 is the one generated by the
Brownian motion is more restrictive than the assumption of Girsanov’s Theorem,
Theorem 5.2.3, in which the filtration can be larger than the one generated by the
Brownian motion. If we include this extra restriction in Girsanov’s Theorem, then
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we obtain the following corollary. The first paragraph of this corollary is just a repeat
of Girsanov’s Theorem; the second part contains the new assertion.

Corollary 5.3.2. Let W (t), 0 ≤ t ≤ T , be a Brownian motion on a probability space
(Ω,F ,P), and letF(t), 0 ≤ t ≤ T , be the filtration generated by this Brownian motion.
Let Θ(t), 0 ≤ t ≤ T , be an adapted process, define

Z(t) = exp

{
−

∫ t

0
Θ(u)dW (u)− 1

2

∫ t

0
Θ2(u)du

}
,

W̃ (t) = W (t) +

∫ t

0
Θ(u)du,

and assume that Ẽ
∫ T
0 Θ2(u)Z2(u)du < ∞. Set Z = Z(T ). Then EZ = 1, and un-

der the probability measure P̃ given by (5.2.1), the process W̃ (t), 0 ≤ t ≤ T , is a
Brownian motion.

Now let M̃(t), 0 ≤ t ≤ T , be a martingale under P̃. Then there is an adapted
process Γ̃(u), 0 ≤ u ≤ T , such that

M̃(t) = M̃(0) +

∫ t

0
Γ̃(u)dW̃ (u), 0 ≤ t ≤ T. (5.3.2)

Corollary 5.3.2 is not a trivial consequence of the Martingale Representation The-
orem, Theorem 5.3.1, with W̃ (t) replacing W (t) because the filtration F(t) in this
corollary is generated by the process W (t), not the P̃-Brownian motion W̃ (t). How-
ever, the proof is not difficult and is left to the reader as Exercise 5.5.

5.3.2 Hedging with One Stock

We now return to the hedging problem. We begin with the model of Subsection
5.2.2, which has the stock price process (5.2.15) and an interest rate process R(t) that
generates the discount process (5.2.17). Recall the assumption that, for all t ∈ [0, T ],
the volatility a(t) is almost surely not zero. We make the additional assumption that
the filtration F(t), 0 ≤ t ≤ T , is generated by the Brownian motion W (t), 0 ≤ t ≤ T .

Let V (T ) be an F(T )-measurable random variable and, for 0 ≤ t ≤ T , define V (t)

by the risk-neutral pricing formula (5.2.31). Then, according to (5.2.30),

D(t)V (t) = Ẽ
[
D(T )V (T )|F(t)

]
.

This is a P̃-martingale; indeed, iterated conditioning implies that, for 0 ≤ s ≤ t ≤ T ,

Ẽ
[
D(t)V (t)|F(s)

]
= Ẽ

[
Ẽ

[
D(T )V (T )|F(t)

]∣∣∣F(s)
]

= Ẽ
[
D(T )V (T )|F(s)

]

= D(s)V (s).

(5.3.3)

Therefore, D(t)V (t) has a representation as (recall that D(0)V (0) = V (0))

D(t)V (t) = V (0) +

∫ t

0
Γ̃(u)dW̃ (u), 0 ≤ t ≤ T. (5.3.4)
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On the other hand, for any portfolio process ∆(t), the differential of the discounted
portfolio value is given by (5.2.27), and hence

D(t)X(t) = X(0) +

∫ t

0
∆(u)σ(u)D(u)S(u)dW̃ (u), 0 ≤ t ≤ T. (5.3.5)

In order to have X(t) = V (t) for all t, we should choose

X(0) = V (0) (5.3.6)

and choose ∆(t) to satisfy

∆(t)σ(t)D(t)S(t) = Γ̃(t), 0 ≤ t ≤ T, (5.3.7)

which is equivalent to

∆(t) =
Γ̃(t)

σ(t)D(t)S(t)
, 0 ≤ t ≤ T. (5.3.8)

With these choices, we have a hedge for a short position in the derivative security
with payoff V (T ) at time T .

There are two key assumptions that make the hedge possible. The first is that the
volatility σ(t) is not zero, so equation (5.3.7) can be solved for ∆(t). If the volatility
vanishes, then the randomness of the Brownian motion does not enter the stock,
although it may still enter the payoff V (T ) of the derivative security. In this case, the
stock is no longer an effective hedging instrument. The other key assumption is that
F(t) is generated by the underlying Brownian motion (i.e., there is no randomness
in the derivative security apart from the Brownian motion randomness, which can be
hedged by trading the stock). Under these two assumptions, every F(T )-measurable
derivative security can be hedged. Such a model is said to be complete.

The Martingale Representation Theorem argument of this section justifies the risk-
neutral pricing formulas (5.2.30) and (5.2.31), but it does not provide a practical
method of finding the hedging portfolio ∆(t). The final formula (5.3.8) for ∆(t)

involves the integrand Γ̃(t) in the martingale representation (5.3.4) of the discounted
derivative security price. While the Martingale Representation Theorem guarantees
that such a process Γ̃ exists and hence a hedge ∆(t) exists, it does not provide a
method for finding Γ̃(t). We return to this point in Chapter 6.

5.4 Fundamental Theorems of Asset Pricing

In this section, we extend the discussions of Sections 5.2 and 5.3 to the case of mul-
tiple stocks driven by multiple Brownian motions. In the process, we develop and
illustrate the two fundamental theorems of asset pricing. In addition to providing
these theorems, in this section we give precise definitions of some of the basic con-
cepts of derivative security pricing in continuous-time models
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5.4.1 Girsanov and Martingale Representation Theorems

The two theorems on which this section is based are the multidimensional Girsanov
Theorem and the multidimensional Martingale Representation Theorem. We state
them here.

Throughout this section,

W (t) =
(
W1(t), . . . , Wd(t)

)

is a multidimensional Brownian motion on a probability space (Ω,F ,P). We interpret
P to be the actual probability measure, the one that would be observed from empirical
studies of price data. Associated with this Brownian motion, we have a filtration F(t)

(see Definition 3.3.3). We shall have a fixed final time T , and we shall assume that
F = F(T ). We do not always assume that the filtration is the one generated by the
Brownian motion. When that is assumed, we say so explicitly.

Theorem 5.4.1 (Girsanov, multiple dimensions). Let T be a fixed positive time, and
let Θ(t) =

(
Θ1(t), . . . , Θd(t)

)
be a d-dimensional adapted process. Define

Z(t) = exp

{
−

∫ t

0
Θ(u)dW (u)− 1

2

∫ t

0
‖Θ(u)‖2du

}
, (5.4.1)

W̃ (t) = W (t) +

∫ t

0
Θ(u)du, (5.4.2)

and assume that

E
∫ T

0
‖Θ(u)‖2Z2(u)du < ∞. (5.4.3)

Set Z = Z(T ). Then EZ = 1, and under the probability measure P̃ given by

P̃(A) =

∫

A
Z(ω)dP(ω) for all A ∈ F ,

the process W̃ (t) is a d-dimensional Brownian motion.

The Itô integral in (5.4.1) is

∫ t

0
Θ(u)dW (u) =

∫ t

0

d∑

j=1

Θj(u)dWj(u) =
d∑

j=1

∫ t

0
Θj(u)dWj(u).

Also, in (5.4.1), ‖Θ(u)‖ denotes the Euclidean norm

‖Θ(u)‖ =




d∑

j=1

Θ2
j(u)




1
2

,

and (5.4.2) is shorthand notation for W̃ (t) =
(
W̃1(t), . . . , W̃d(t)

)
with

W̃j(t) = Wj(t) +

∫ t

0
Θj(u)du, j = 1, . . . , d.
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The remarkable thing about the conclusion of the jmultidimensional Girsanov
Theorem is that the component processes of W̃ (t) are independent under P̃. This is
part of what it means to be a d-dimensional Brownian motion. The component pro-
cesses of W (t) are independent under P, but each of the Θj(t) processes can depend
in a path-dependent, adapted way on all of the Brownian motions W1(t), . . . , Wd(t).
Therefore, under P, the components of W̃ (t) can be far from independent. Yet, af-
ter the change to the measure P̃, these components are independent. The proof of
Theorem 5.4.1 is like that of the one-dimensional Girsanov Theorem 5.2.3, except it
uses a d-dimensional version of Levy’s Theorem. The proof for d = 2 based on the
two-dimensional Levy Theorem, Theorem 4.6.5, is left to the reader as Exercise 5.6.

Theorem 5.4.2 (Martingale representation, multiple dimensions). Let T be a fixed
positive time, and assume that F(t), 0 ≤ t ≤ T , is the filtration generated by the
d-dimensional Brownian motion W (t), 0 ≤ t ≤ T . Let M(t), 0 ≤ t ≤ T , be a martin-
gale with respect to this filtration under P. Then there is an adapted, d-dimensional
process Γ(u) =

(
Γ1(u), . . . , Γd(u)

)
, 0 ≤ u ≤ T , such that

M(t) = M(0) +

∫ t

0
Γ(u)dW (u), 0 ≤ t ≤ T. (5.4.4)

If, in addition, we assume the notation and assumptions of Theorem 5.4.1 and if
M̃(t), 0 ≤ t ≤ T , is P̃-martingale, then there is an adapted, d-dimensional process
Γ̃(u) =

(
Γ̃1(u), . . . , Γ̃d(u)

)
such that

M̃(t) = M̃(0) +

∫ t

0
Γ̃(u)dW̃ (u), 0 ≤ t ≤ T. (5.4.5)

5.4.2 Multidimensional Market Model

We assume there are m stocks, each with stochastic differential

dSi(t) = αi(t)Si(t)dt + Si(t)
d∑

j=1

σij(t)dWj(t), i = 1, . . . , m. (5.4.6)

We assume that the mean rate of return vector (αi(t))i=1,...,m and the volatility matrix
(σij(t))i=1,...,m;j=1,...,d are adapted processes. These stocks are typically correlated.

To see the nature of this correlation, we set σi(t) =
√∑d

j=1 σ2
ij(t), which we assume

is never zero, and we define processes

Bi(t) =
d∑

j=1

∫ t

0

σij(u)

σi(u)
dWj(u), i = 1, . . . , m. (5.4.7)

Being a sum of stochastic integrals, each Bi(t) is a continuous martingale. Further-
more,

dBi(t)dBi(t) =
d∑

j=1

σ2
ij(t)

σ2
i (t)

dt = dt.
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According to Levy’s Theorem, Theorem 4.6.4, Bi(t) is a Brownian motion. We may
rewrite (5.4.6) in terms of the Brownian motion Bi(t) as

dSi(t) = αi(t)Si(t)dt + σi(t)Si(t)dBi(t). (5.4.8)

From this formula, we see that σi(t) is the volatility of Si(t).
For i 6= k, the Brownian motions Bi(t) and Bk(t) are typically not independent. To

see this, we first note that

dBi(t)dBk(t) =
d∑

j=1

σij(t)σkj(t)

σi(t)σk(t)
dt = ρik(t)dt, (5.4.9)

where

ρik(t) =
1

σi(t)σk(t)

d∑

j=1

σij(t)σkj(t). (5.4.10)

Itô’s product rule implies

d
(
Bi(t)Bk(t)

)
= Bi(t)dBk(t) + Bk(t)dBi(t) + dBi(t)dBk(t),

and integration of this equation yields

Bi(t)Bk(t) =

∫ t

0
Bi(u)dBk(u) +

∫ t

0
Bk(u)dBi(u) +

∫ t

0
ρik(u)du. (5.4.11)

Taking expectations and using the fact that the expectation of an Itô integral is zero,
we obtain the covariance formula

Cov
[
Bi(t), Bk(t)

]
= E

∫ t

0
ρik(u)du. (5.4.12)

If the processes σij(t) and σkj(t) are constant (i.e., independent of t and not random),
then so are σi(t), σk(t), and ρij(t). In this case, (5.4.12) reduces to Cov

[
Bi(t), Bk(t)

]
=

ρikt. Because both Bi(t) and Bk(t) have standard deviation
√

t, the correlation be-
tween Bi(t) and Bj(t) is simply ρik. When σij(t) and σkj(t) are themselves random
processes, we call ρik(t) the instantaneous correlation between Bi(t) and Bk(t). At
a fixed time t along a particular path, ρik(t) is the conditional correlation between
the next increments of Bi and Bk over a “small” time interval following time t (see
Exercise 4.17 of Chapter 4 with Θ1 = Θ2 = 0, σ1 = σ2 = 1).

Finally, we note from (5.4.8) and (5.4.9) that

dSi(t)dSk(t) = σi(t)σk(t)Si(t)Sk(t)dBi(t)dBk(t)

= ρik(t)σi(t)σk(t)Si(t)Sk(t)dt.
(5.4.13)

Rewriting (5.4.13) in terms of “relative differentials,” we obtain

dSi(t)

Si(t)
· dSk(t)

Sk(t)
= ρik(t)σi(t)σk(t)dt.

The volatility processes σi(t) and σk(t) are the respective instantaneous standard
deviations of the relative changes in Si and Sk at time t, and the process ρik(t) is the
instantaneous correlation between these relative changes.
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Mean rates of return are affected by the change to a risk-neutral measure in the
next subsection. Instantaneous standard deviations and correlations are unaffected
(Exercise 5.12(ii) and (iii)). If the instantaneous standard deviations and correlations
are not random, then (noninstantaneous) standard deviations and correlations are un-
affected by the change of measure (see Exercise 5.12(iv) for the case of correlations).
However, (noninstantaneous) standard deviations and correlations can be affected by
a change of measure when the instantaneous standard deviations and correlations are
random (see Exercises 5.12(v) and 5.13 for the case of correlations).

We define a discount process

D(t) = e−
R t

0
R(u)du. (5.4.14)

We assume that the interest rate process R(t) is adapted. In addition to stock prices,
we shall often work with discounted stock prices. Their differentials are

d
(
D(t)Si(t)

)
= D(t)

[
dSi(t)−R(t)Si(t)dt

]

= D(t)Si(t)


(

αi(t)−R(t)
)
dt +

d∑

j=1

σij(t)dWi(t)




= D(t)Si(t)
[(

αi(t)−R(t)
)
dt + σi(t)dBi(t)

]
, i = 1, . . . , m.

(5.4.15)

5.4.3 Existence of the Risk-Neutral Measure

Definition 5.4.3. A probability measure P̃ is said to be risk-neutral if

(i) P̃ and P are equivalent (i.e., for every A ∈ F , P(A) = 0 if and only if P̃(A) = 0),
and

(ii) under P̃, the discounted stock price D(t)Si(t) is a martingale for every i =

1, . . . , m.

In order to make discounted stock prices be martingales, we would like to rewrite
(5.4.15) as

d
(
D(t)Si(t)

)
= D(t)Si(t)

d∑

j=1

σij(t)
[
Θj(t)dt + dWj(t)

]
. (5.4.16)

If we can find the market price of risk processes Θj(t) that make (5.4.16) hold, with
one such process for each source of uncertainty Wj(t), we can then use the multidi-
mensional Girsanov Theorem to construct an equivalent probability measure P̃ under
which W̃ (t) given by (5.4.2) is a d-dimensional Brownian motion. This permits us to
reduce (5.4.16) to

d
(
D(t)Si(t)

)
= D(t)Si(t)

d∑

j=1

σij(t)dW̃j(t), (5.4.17)
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and hence D(t)Si(t) is a martingale under P̃. The problem of finding a risk-neutral
measure is simply one of finding processes Θj(t) that make (5.4.15) and (5.4.16)
agree. Since these equations have the same coefficient multiplying each dWj(t), they
agree if and only if the coefficient multiplying dt is the same in both cases, which
means that

αi(t)−R(t) =
d∑

j=1

σij(t)Θj(t), i = 1, . . . , m. (5.4.18)

We call these the market price of risk equations. These are m equations in the d

unknown processes Θ1(t), . . . , Θd(t).
If one cannot solve the market price of risk equations, then there is an arbitrage

lurking in the model; the model is bad and should not be used for pricing. We do not
give the detailed proof of this fact. Instead, we give a simple example to illustrate it.

Example 5.4.4.

Suppose there are two stocks (m = 2) and one Brownian motion (d = 1), and
suppose further that all coefficient processes are constant. Then, the market price of
risk equations are

α1 − r = σ1θ, (5.4.19)

α2 − r = σ2θ. (5.4.20)

These equations have a solution θ if and only if

α1 − r

σ1
=

α2 − r

σ2
.

If this equation does not hold, then one can arbitrage one stock against the other.
Suppose, for example, that

α1 − r

σ1
>

α2 − r

σ2

and define
µ =

α1 − r

σ1
− α2 − r

σ2
> 0.

Suppose that at each time an agent holds ∆1(t) = 1
S1(t)σ1

shares of stock one and
∆2(t) = − 1

S2(t)σ2
shares of stock two, borrowing or investing as necessary at the

interest rate r to set up and maintain this portfolio. The initial capital required to take
the stock positions is 1

σ1
− 1

σ2
, but if this is positive we borrow from the money market

account, and if it is negative we invest in the money market account, so the initial
capital required to set up the whole portfolio, including the money market position,
is X(0) = 0. The differential of the portfolio value X(t) is

dX(t) = ∆1(t)dS1(t) + ∆2(t)dS2(t) + r
(
X(t)−∆1(t)S1(t)−∆2(t)S2(t)

)
dt

=
α1 − r

σ1
dt + dW (t)− α2 − r

σ2
dt− dW (t) + rX(t)dt

= µdt + rX(t)dt.
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The differential of the discounted portfolio value is

d
(
D(t)X(t)

)
= D(t)

(
dX(t)− rX(t)dt

)
= µD(t)dt.

The right-hand side µD(t) is strictly positive and nonrandom. Therefore, this port-
folio will make money for sure and do so faster than the interest rate r because the
discounted portfolio value has a nonrandom positive derivative. We have managed to
synthesize a second money market account with rate of return higher than r, and now
the arbitrage opportunities are limitless.

¤

When there is no solution to the market price of risk equations, the arbitrage in
the model may not be as obvious as in Example 5.4.4, but it does exist. If there is
a solution to the market price of risk equations, then there is no arbitrage. To show
this, we need to introduce some notation and terminology. In the market with stock
prices Si(t) given by (5.4.6) and interest rate process R(t), an agent can begin with
initial capital X(0) and choose adapted portfolio processes ∆i(t), one for each stock
Si(t). The differential of the agent’s portfolio value will then be

dX(t) =
m∑

i=1

∆i(t)dSi(t) + R(t)

(
X(t)−

m∑

i=1

∆i(t)Si(t)

)
dt

= R(t)X(t)dt +
m∑

i=1

∆i(t)
(
dSi(t)−R(t)Si(t)dt

)

= R(t)X(t)dt +
m∑

i=1

∆i(t)

D(t)
d
(
D(t)Si(t)

)
.

(5.4.21)

The differential of the discounted portfolio value is

d
(
D(t)X(t)

)
= D(t)

(
dX(t)−R(t)X(t)dt

)

=
m∑

i=1

∆i(t)d
(
D(t)Si(t)

)
.

(5.4.22)

If P̃ is a risk-neutral measure, then under P̃ the processes D(t)Si(t) are martingales,
and hence the process D(t)X(t) must also be a martingale. Put another way, under
P̃ each of the stocks has mean rate of return R(t), the same as the rate of return of
the money market account. Hence, no matter how an agent invests, the mean rate of
return of his portfolio value under P̃ must also be R(t), and the discounted portfolio
value must then be a martingale. We have proved the following result.

Lemma 5.4.5. Let P̃ be a risk-neutral measure, and let X(t) be the value of a port-
folio. Under P̃, the discounted portfolio value D(t)X(t) is a martingale.

Definition 5.4.6. An arbitrage is a portfolio value process X(t) satisfying X(0) = 0

and also satisfying for some time T > 0

P{X(T ) ≥ 0} = 1, P{X(T ) > 0} > 0. (5.4.23)
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An arbitrage is a way of trading so that one starts with zero capital and at some
later time T is sure not to have lost money and furthermore has a positive probability
of having made money. Such an opportunity exists if and only if there is a way to
start with positive capital X(0) and to beat the money market account. In other words,
there exists an arbitrage if and only if there is a way to start with X(0) and at a later
time T have a portfolio value satisfying

P
{

X(T ) ≥ X(0)

D(T )

}
= 1, P

{
X(T ) >

X(0)

D(T )

}
> 0 (5.4.24)

(see Exercise 5.7).

Theorem 5.4.7 (First fundamental theorem of asset pricing). If a market model has
a risk-neutral probability measure, then it does not admit arbitrage.

Proof. If a market model has a risk-neutral probability measure P̃, then every dis-
counted portfolio value process is a martingale under P̃. In particular, every portfolio
value process satisfies Ẽ[D(T )X(T )] = X(0). Let X(t) be a portfolio value process
with X(0) = 0. Then we have

Ẽ[D(T )X(T )] = 0. (5.4.25)

Suppose X(T ) satisfies the first part of (5.4.23) (i.e., P{X(T ) < 0} = 0). Since P̃
is equivalent to P, we have also P̃{X(T ) < 0} = 0. This, coupled with (5.4.25),
implies P̃{X(T ) > 0} = 0, for otherwise we would have P̃{D(T )X(T ) > 0} > 0,
which would imply Ẽ[D(T )X(T )] > 0. Because P and P̃ are equivalent, we have also
P{X(T ) > 0} = 0. Hence, X(t) is not an arbitrage. In fact, there cannot exist an
arbitrage since every portfolio value process X(t) satisfying X(0) = 0 cannot be an
arbitrage.

One should never offer prices derived from a model that admits arbitrage, and the
First Fundamental Theorem provides a simple condition one can apply to check that
the model one is using does not have this fatal flaw. In our model with d Brownian
motions and m stocks, this amounts to producing a solution to the market price of risk
equations (5.4.18). In models of the term structure of interest rates (i.e., models that
provide prices for bonds of every maturity), there are many instruments available for
trading, and possible arbitrages in the model prices are a real concern. An application
of the First Fundamental Theorem of Asset Pricing in such a model leads directly to
the Heath-Jarrow-Merton condition for no arbitrage in term-structure models.

5.4.4 Uniqueness of the Risk-Neutral Measure

Definition 5.4.8. A market model is complete if every derivative security can be
hedged.

Let us suppose we have a market model with a filtration generated by a d-dimensional
Brownian motion and with a risk-neutral measure P̃ (i.e., we have solved the market
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price of risk equations (5.4.18), used the resulting market prices of risk Θ1(t), . . . , Θd(t)

to define the Radon-Nikodym derivative process Z(t), and have changed to the mea-
sure P̃ under which W̃ (t) defined by (5.4.2) is a d-dimensional Brownian motion).
Suppose further that we are given an F(T )-measurable random variable V (T ), which
is the payoff of some derivative security.

We would like to be sure we can hedge a short position in the derivative security
whose payoff at time T is V (T ). We can define V (t) by (5.2.31), so that D(t)V (t)

satisfies (5.2.30), and just as in (5.3.3), we see that D(t)V (t) is a martingale under
P̃. According to the Martingale Representation Theorem 5.4.2, there are processes
Γ̃1(u), . . . , Γ̃d(u) such that

D(t)V (t) = V (0) +
d∑

j=1

∫ t

0
Γ̃j(u)dW̃j(u), 0 ≤ t ≤ T. (5.4.26)

Consider a portfolio value process that begins at X(0). According to (5.4.22) and
(5.4.17),

d
(
D(t)X(t)

)
=

m∑

i=1

∆i(t)d
(
D(t)Si(t)

)

=
d∑

j=1

m∑

i=1

∆i(t)D(t)Si(t)σij(t)dW̃j(t)

(5.4.27)

or, equivalently,

D(t)X(t) = X(0) +
d∑

j=1

∫ t

0

m∑

i=1

∆i(u)D(u)Si(u)σij(u)dW̃j(u). (5.4.28)

Comparing (5.4.26) and (5.4.28), we see that to hedge the short position, we should
take X(0) = V (0) and choose the portfolio processes ∆1(t), . . . , ∆m(t) so that the
hedging equations

Γ̃j(t)

D(t)
=

m∑

i=1

∆i(t)Si(t)σij(t), j = 1, . . . , d, (5.4.29)

are satisfied. These are d equations in m unknown processes ∆1(t), . . . , ∆m(t).

Theorem 5.4.9 (Second fundamental theorem of asset pricing). Consider a market
model that has a risk-neutral probability measure. The model is complete if and only
if the risk-neutral probability measure is unique.

SKETCH OF PROOF: We first assume that the model is complete. We wish to show
that there can be only one risk-neutral measure. Suppose the model has two risk-
neutral measures, P̃1 and P̃2. Let A be a set in F , which we assumed at the beginning
of this section is the same as F(T ). Consider the derivative security with payoff
V (T ) = IA 1

D(T ) . Because the model is complete, a short position in this derivative
security can be hedged (i.e., there is a portfolio value process with some initial con-
dition X(0) that satisfies X(T ) = V (T )). Since both P̃1 and P̃2 are risk-neutral, the
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discounted portfolio value process D(t)X(t) is a martingale under both P̃1 and P̃2. It
follows that

P̃1(A) = Ẽ1

[
D(T )V (T )

]
= Ẽ1

[
D(T )X(T )

]
= X(0)

= Ẽ2

[
D(T )X(T )

]
= Ẽ2

[
D(T )V (T )

]
= P̃2(A).

Since A is an arbitrary set in F and P̃1(A) = P̃2(A), these two risk-neutral measures
are really the same.

For the converse, suppose there is only one risk-neutral measure. This means first
of all that the filtration for the model is generated by the d-dimensional Brownian
motion driving the assets. If that were not the case (i.e., if there were other sources of
uncertainty in the model besides the driving Brownian motions), then we could assign
arbitrary probabilities to those sources of uncertainty without changing the distribu-
tions of the driving Brownian motions and hence without changing the distributions
of the assets. This would permit us to create multiple risk-neutral measures. Because
the driving Brownian motions are the only sources of uncertainty, the only way mul-
tiple risk-neutral measures can arise is via multiple solutions to the market price of
risk equations (5.4.18). Hence, uniqueness of the risk-neutral measure implies that
the market price of risk equations (5.4.18) have only one solution

(
Θ1(t), . . . , Θd(t)

)
.

For fixed t and ω, these equations are of the form

Ax = b, (5.4.30)

where A is the m× d-dimensional matrix

A =




σ11(t) σ11(t) . . . σ11(t)

σ21(t) σ22(t) . . . σ2d(t)

. . . . . .
...

σm1(t) σm2(t) . . . σmd(t)




, (5.4.31)

x is the d-dimensional column vector

x =




Θ1(t)

Θ2(t)

...

Θd(t)




,
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said b is the m-dimensional column vector

b =




α1(t)−R(t)

α2(t)−R(t)

...

αm(t)−R(t)




.

Our assumption that there is only one risk-neutral measure means that the system of
equations (5.4.30) has a unique solution x.

In order to be assured that every derivative security can be hedged, we must be able
to solve the hedging equations (5.4.29) for ∆1(t), . . . , ∆m(t) no matter what values of
eΓ(t)
D(t) appear on the left-hand side. For fixed t and ω, the hedging equations are of the
form

A′y = c, (5.4.32)

where A′ is the transpose of the matrix in (5.4.31), y is the m-dimensional vector

y =




y1

y2

...

ym




=




∆1(t)S1(t)

∆2(t)S2(t)

...

∆m(t)Sm(t)




,

and c is the d-dimensional vector

c =




eΓ1(t)
D(t)

eΓ2(t)
D(t)

...

eΓd(t)
D(t)




.

In order to be assured that the market is complete, there must be a solution y to the
system of equations (5.4.32), no matter what vector c appears on the right-hand side.
If there is always a solution y1, . . . , ym, then there are portfolio processes ∆i(t) = yi

Si(t)

satisfying the hedging equations (5.4.29), no matter what processes appear on the
left-hand side of those equations. We could then conclude that a short position in an
arbitrary derivative security can be hedged.

The uniqueness of the solution x to (5.4.30) implies the existence of a solution y

to (5.4.32). We give a proof of this fact in Appendix C. Consequently, uniqueness of
the risk-neutral measure implies that the market model is complete.
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5.5 Dividend-Paying Stocks

According to Definition 5.4.3, discounted stock prices are martingales under the risk-
neutral measure. This is the case provided the stock pays no dividend. The key
feature of a risk-neutral measure is that it causes discounted portfolio values to be
martingales (see Lemma 5.4.5), and that ensures the absence of arbitrage (First Fun-
damental Theorem of Asset Pricing, Theorem 5.4.7). In order for the discounted
value of a portfolio that invests in a dividend-paying stock to be a martingale, the
discounted value of the stock with the dividends reinvested must be a martingale, but
the discounted stock price itself is not a martingale. This section works out the de-
tails of this situation. We consider a single stock price driven by a single Brownian
motion, although the results we obtain here also apply when there are multiple stocks
and multiple Brownian motions.

5.5.1 Continuously Paying Dividend

Consider a stock, modeled as a generalized geometric Brownian motion, that pays
dividends continuously over time at a rate A(t) per unit time. Here A(t), 0 ≤ t ≤ T , is
a nonnegative adapted process. A continuously paid dividend is not a bad model for
a mutual fund, which collects lump sum dividends at a variety of times on a variety
of stocks. In the case of a single stock, it is more reasonable to assume there are
periodic lump sum dividend payments. We consider that case in Subsections 5.5.3
and 5.5.4.

Dividends paid by a stock reduce its value, and so we shall take as our model of
the stock price

dS(t) = α(t)S(t)dt + σ(t)S(t)dW (t)− A(t)S(t)dt. (5.5.1)

If the stock were to withhold dividends, its mean rate of return would be α(t). Equiv-
alently, if an agent holding the stock were to reinvest the dividends, the mean rate
of return on his investment would be α(t). The mean rate of return α(t), the volatil-
ity σ(t), and the interest rate R(t) appearing in (5.5.2) below are all assumed to be
adapted processes.

An agent who holds the stock receives both the capital gain or loss due to stock
price movements and the continuously paying dividend. Thus, if ∆(t) is the number
of shares held at time t, then the portfolio value X(t) satisfies

dX(t) = ∆(t)dS(t) + ∆(t)A(t)S(t)dt + R(t)
[
X(t)−∆(t)S(t)

]
dt

= R(t)X(t)dt +
(
α(t)−R(t)

)
∆(t)S(t)dt + σ(t)∆(t)S(t)dW (t)

= R(t)X(t)dt + ∆(t)S(t)σ(t)
[
Θ(t)dt + dW (t)

]
,

(5.5.2)

where
Θ(t) =

α(t)−R(t)

σ(t)
(5.5.3)

is the usual market price of risk.
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We define

W̃ (t) = W (t) +

∫ t

0
Θ(u)du (5.5.4)

and use Girsanov’s Theorem to change to a measure P̃ under which W̃ is a Brownian
motion, so we may rewrite (5.5.2) as

dX(t) = R(t)X(t)dt + ∆(t)S(t)σ(t)dW̃ (t).

The discounted portfolio value satisfies

d
[
D(t)X(t)

]
= ∆(t)D(t)S(t)σ(t)dW̃ (t).

In particular, under the risk-neutral measure P̃, the discounted portfolio process is a
martingale. Here we denote by D(t) = e−

R t

0
R(u)du the usual discount process.

If we now wish to hedge a short position in a derivative security paying V (T ) at
time T , where V (T ) is an F(T )-measurable random variable, we will need to choose
the initial capital X(0) and the portfolio process ∆(t), 0 ≤ t ≤ T , so that X(T ) =

V (T ). Because D(t)X(t) is a martingale under P̃, we must have

D(t)X(t) = Ẽ
[
D(T )V (T )|F(t)

]
, 0 ≤ t ≤ T.

The value X(t) of this portfolio at each time t is the value (price) of the derivative
security at that time, which we denote by V (t). Making this replacement in the
formula above, we obtain the risk-neutral pricing formula

D(t)V (t) = Ẽ
[
D(T )V (T )|F(t)

]
, 0 ≤ t ≤ T. (5.5.5)

We have obtained the same risk-neutral pricing formula (5.2.30) as in the case of
no dividends. Furthermore, conditions that guarantee that a short position can be
hedged, and hence risk-neutral pricing is fully justified, are the same as in the no-
dividend case; see Section 5.3.

The difference between the dividend and no-dividend cases is in the evolution of
the underlying stock under the risk-neutral measure. From (5.5.1) and the definition
of W̃ (t), we see that

dS(t) =
[
R(t)− A(t)

]
S(t)dt + σ(t)S(t)dW̃ (t). (5.5.6)

Under the risk-neutral measure, the stock does not have mean rate of return R(t), and
consequently the discounted stock price is not a martingale. Indeed,

S(t) = S(0) exp

{∫ t

0
σ(u)dW̃ (u) +

∫ t

0

[
R(u)− A(u)− 1

2
σ2(u)

]
du

}
. (5.5.7)

The process

e
R t

0
A(u)duD(t)S(t) = exp

{∫ t

0
σ(u)dW̃ (u)− 1

2

∫ t

0
σ2(u)du

}

is a martingale. This is the interest-rate-discounted value at time t of an account that
initially purchases one share of the stock and continuously reinvests the dividends in
the stock.
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5.5.2 Continuously Paying Dividend with Constant Coefficients

In the event that the volatility σ, the interest rate r, and the dividend rate a are con-
stant, the stock price at time t, given by (5.5.7), is

S(t) = S(0) exp

{
σW̃ (t) +

(
r − a− 1

2
σ2

)
t

}
. (5.5.8)

For 0 ≤ t ≤ T , we have

S(t) = S(t) exp

{
σ

(
W̃ (T )− W̃ (t)

)
+

(
r − a− 1

2
σ2

)
(T − t)

}
.

According to the risk-neutral pricing formula, the price at time t of a European call
expiring at time T with strike K is

V (t) = Ẽ
[
e−r(T−t)

(
S(T )−K

)+∣∣F(t)
]
. (5.5.9)

To evaluate this, we first compute

c(t, x) = Ẽ

[
e−r(T−t)

(
x exp

{
σ

(
W̃ (T )− W̃ (t)

)
+

(
r − a− 1

2
σ2

)
(T − t)

}
−K

)+
]

= Ẽ

[
e−rτ

(
x exp

{
−σ
√

τY +

(
r − a− 1

2
σ2

)
τ

}
−K

)+
]

,

(5.5.10)

where τ = T − t and

Y = −W̃ (T )− W̃ (t)√
T − t

is a standard normal random variable under P̃. We define

d±(τ, x) =
1

σ
√

τ

[
log

x

K
+

(
r − a± 1

2
σ2

)
τ

]
. (5.5.11)

We note that the random variable whose expectation we are computing in (5.5.10) is
nonzero (the call expires in the money) if and only if Y < d−(τ, x). Therefore,

c(t, x) =
1√
2π

∫ d−(τ,x)

−∞
e−rτ

(
x exp

{
−σ
√

τy +

(
r − a− 1

2
σ2

)
τ

}
−K

)
e−

1
2
y2

dy

=
1√
2π

∫ d−(τ,x)

−∞
x exp

{
−σ
√

τy −
(

a +
1

2
σ2

)
τ − 1

2
y2

}
dy

− 1√
2π

∫ d−(τ,x)

−∞
e−rτKe−

1
2
y2

dy

=
1√
2π

∫ d−(τ,x)

−∞
xe−aτ exp

{
−1

2
(y + σ

√
τ)2

}
dy − e−rτKN

(
d−(τ, x)

)
.

We make the change of variable z = y + σ
√

τ in the integral, which leads us to the
formula

c(t, x) =
1√
2π

∫ d+(τ,x)

−∞
xe−aτe−

z2

2 dz − e−rτKN
(
d−(τ, x)

)

= xe−aτN
(
d+(τ, x)

)− e−rτKN
(
d−(τ, x)

)
.

(5.5.12)
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According to the Independence Lemma, Lemma 2.3.4, the option price V (t) in (5.5.9)
is c(t, S(t)). The only differences between this formula and the one for a non-
dividend-paying stock is in the definition (5.5.11) of d±(τ, x) (see (5.2.33) and (5.2.34))
and in the presence of e−aτ in the first term on the right-hand side of (5.5.12).

5.5.3 Lump Payments of Dividends

Finally, let us consider the case when the dividend is paid in lumps. That is to say
there are times 0 < t1 < t2 < tn < T and, at each time tj , the dividend paid is
ajS(tj−), where S(tj−) denotes the stock price just prior to the dividend payment.
The stock price after the dividend payment is the stock price before the dividend
payment less the dividend payment:

S(tj) = S(tj−)− ajS(tj−) = (1− aj)S(tj−). (5.5.13)

We assume that each aj is an F(tj)-measurable random variable taking values in
[0,1]. If aj = 0, no dividend is paid at time tj . If aj = 1, the full value of the stock
is paid as a dividend at time tj and the stock value is zero thereafter. To simplify
the notation, we set t0 = 0 and tn+1 = T . However, neither t0 = 0 nor tn+1 = T is a
dividend payment date (i.e., a0 = 0 and an+1 = 0). We assume that, between dividend
payment dates, the stock price follows a generalized geometric Brownian motion:

dS(t) = α(t)S(t)dt + σ(t)S(t)dW (t), tj ≤ t < tj+1, j = 0, 1, . . . , n. (5.5.14)

Equations (5.5.13) and (5.5.14) fully determine the evolution of the stock price.
Between dividend payment dates, the differential of the portfolio value corre-

sponding to a portfolio process ∆(t), 0 ≤ t ≤ T , is

dX(t) = ∆(t)dS(t) + R(t)
[
X(t)−∆(t)S(t)

]
dt

= R(t)X(t)dt + (α(t)−R(t))∆(t)S(t)dt + σ(t)∆(t)S(t)dW (t)

= R(t)X(t)dt + ∆(t)a(t)S(t)
[
Θ(t)dt + dW (t)

]
,

where the market price of risk Θ(t) is again defined by (5.5.3). At the dividend
payment dates, the value of the portfolio stock holdings drops by aj∆(tj)S(tj−), but
the portfolio collects the dividend aj∆(tj)S(tj−), and so the portfolio value does not
jump. It follows that

dX(t) = R(t)X(t)dt + ∆(t)a(t)S(t)
[
Θ(t)dt + dW (t)

]
(5.5.15)

is the correct formula for the evolution of the portfolio value at all times t. We again
define W̃ by (5.5.4), change to a measure P̃ under which W̃ is a Brownian motion,
and obtain the risk-neutral pricing formula (5.5.5).

5.5.4 Lump Payments of Dividends with Constant Coefficients

We price a European call under the assumption that σ, r, and each aj are constant.
From (5.5.14) and the definition of W̃ , we have

dS(t) = rS(t)dt + σS(t)dW̃ (t), tj ≤ t < tj+1, j = 0, 1, . . . , n.
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Therefore,

S(tj+1−) = S(tj) exp

{
σ

(
W̃ (tj+1)− W̃ (tj)

)
+

(
r − 1

2
σ2

)
(tj+1 − tj)

}
. (5.5.16)

From (5.5.13), we see that

S(tj+1) = (1− aj+1)S(tj) exp

{
σ

(
W̃ (tj+1)− W̃ (tj)

)
+

(
r − 1

2
σ2

)
(tj+1 − tj)

}

or, equivalently, for j = 0, 1, . . . , n,

S(tj+1)

S(tj)
= (1− aj+1) exp

{
σ

(
W̃ (tj+1)− W̃ (tj)

)
+

(
r − 1

2
σ2

)
(tj+1 − tj)

}
.

It follows that
S(T )

S(0)
=

S(tn+1)

S(t0)

=
n∏

j=0

S(tj+1)

S(tj)

=
n−1∏

j=0

(1− aj+1) · exp

{
σW̃ (T ) +

(
r − 1

2
σ2

)
T

}
.

In other words,

S(T ) = S(0)
n−1∏

j=0

(1− aj+1) · exp

{
σW̃ (T ) +

(
r − 1

2
σ2

)
T

}
. (5.5.17)

This is the same formula we would have for the price at time T of a geometric Brow-
nian motion not paying dividends if the initial stock price were S(0)

∏n−1
j=0 (1− aj+1)

ratHer than S(0). Therefore, the price at time zero of a European call on this dividend-
paying asset, a call that expires at time T with strike price K, is obtained by replacing
the initial stock price by S(0)

∏n−1
j=0 (1 − aj+1) in the classical Black-Scholes-Merton

formula. This results in the call price

S(0)
n−1∏

j=0

(1− aj+1)N(d+)− e−rT KN(d−),

where

d± =
1

σ
√

T


log

S(0)

K
+

n−1∑

j=0

log(1− aj+1) +

(
r ± 1

2
σ2

)
T


 .

A similar formula holds for the call price at times t between 0 and T . In those cases,
one includes only the terms (1 − aj+1) corresponding to the dividend dates between
times t and T .

5.6 Forwards and Futures

In this section, we assume there is a unique risk-neutral measure P̃, and all assets
satisfy the risk-neutral pricing formula. Under this assumption, we study forward



5.6 Forwards and Futures 225

and futures prices and the relationship between them. The formulas we develop
apply to any tradable, non-dividend-paying asset, not just to a stock. In a binomial
model, these topics were addressed in Sections 6.3 and 6.5 of Volume I.

5.6.1 Forward Contracts

Let S(t), 0 ≤ t ≤ T̄ , be an asset price process, and let R(t), 0 ≤ t ≤ T̄ , be an interest
rate process. We choose here some large time T̄ , and all bonds and derivative secu-
rities we consider will mature or expire at or before time T̄ . As usual, we define the
discount process D(t) = e−

R t

0
R(u)du. According to the risk-neutral pricing formula

(5.2.30), the price at time t of a zero-coupon bond paying 1 at time T is

B(t, T ) =
1

D(t)
Ẽ

[
D(T )|F(t)

]
, 0 ≤ t ≤ T ≤ T̄ . (5.6.1)

This pricing formula guarantees that no arbitrage can be found by trading in these
bonds because any such portfolio, when discounted, will be a martingale under the
risk-neutral measure. The details of this argument in the binomial model are pre-
sented in Theorem 6.2.6 and Remark 6.2.7 of Volume I.

Definition 5.6.1. A forward contract is an agreement to pay a specified delivery price
K at a delivery date T , where 0 ≤ T ≤ T̄ , for the asset whose price at time t is S(t).
The T -forward price ForS(t, T ) of this asset at time t, where 0 ≤ t ≤ T ≤ T̄ , is the
value of K that makes the forward contract have no-arbitrage price zero at time t.

Theorem 5.6.2. Assume that zero-coupon bonds of all maturities can be traded. Then

ForS(t, T ) =
S(t)

B(t, T )
, 0 ≤ t ≤ T̄ . (5.6.2)

Proof. Suppose that at time t an agent sells the forward contract with delivery date T

and delivery price K. Suppose further that the value K is chosen so that the forward
contract has price zero at time t. Then selling the forward contract generates no
income. Having sold the forward contract at time t, suppose the agent immediately
shorts S(t)

B(t,T ) zero-coupon bonds and uses the income S(t) generated to buy one share
of the asset. The agent then does no further trading until time T , at which time she
owns one share of the asset, which she delivers according to the forward contract.
In exchange, she receives K. After covering the short bond position, she is left with
K − S(t)

B(t,T ) . If this is positive, the agent has found an arbitrage. If it is negative, the
agent could instead have taken the opposite position, going long the forward, long
the T -maturity bond, and short the asset, to again achieve an arbitrage. In order to
preclude arbitrage, K must be given by (5.6.2).

Remark 5.6.3. The proof of Theorem 5.6.2 does not use the notion of risk-neutral
pricing. It shows that the forward price must be given by (5.6.2) in order to preclude
arbitrage. Because we have assumed the existence of a risk-neutral measure and are
pricing all assets by the risk-neutral pricing formula, we must be able to obtain (5.6.2)
from the risk-neutral pricing formula as well. Indeed, using (5.2.30), (5.6.1), and the
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fact that the discounted asset price is a martingale under P̃, we compute the price at
time t of the forward contract to be

1

D(t)
Ẽ

[
D(T )

(
S(T )−K

)|F(t)
]

=
1

D(t)
Ẽ

[
D(T )S(T )|F(t)

]− K

D(t)
Ẽ

[
D(T )|F(t)

]

= S(t)−KB(t, T ).

In order for this to be zero, K must be given by (5.6.2).

5.6.2 Futures Contracts

Consider a time interval [0, T ], which we divide into subintervals using the partition
points 0 = t0 < t1 < t2 < · · · < tn = T . We shall refer to each subinterval [tk, tk+1) as
a “day.”

Suppose the interest rate is constant within each day. Then the discount process is
given by D(0) = 1 and, for k = 0, 1, . . . , n− 1,

D(tk+1) = exp

{
−

∫ tk+1

0
R(u)du

}
= exp



−

k∑

j=0

R(tj)(tj+1 − tj)



 ,

which is F(tk)-measurable. According to the risk-neutral pricing formula (5.6.1), the
zero-coupon bond paying 1 at maturity T has time-tk price

B(tk, T ) =
1

D(tk)
Ẽ

[
D(T )|F(tk)

]
.

An asset whose price at time t is S(t) has time-tk forward price

ForS(tk, T ) =
S(tk)

B(tk, T )
, (5.6.3)

an F(tk)-measurable quantity. Suppose we take a long position in the forward con-
tract at time tk (i.e., agree to receive S(T ) and pay ForS(tk, T ) at time T ). The value
of this position at time tj ≥ tk is

Vk,j =
1

D(tj)
Ẽ

[
D(T )

(
S(T )− S(tk)

B(tk, T )

)∣∣∣∣F(tj)

]

=
1

D(tj)
Ẽ

[
D(T )S(T )|F(tj)

]− S(tk)

B(tk, T )
· 1

D(tj)
Ẽ

[
D(T )|F(tj)

]

= S(tj)− S(tk) ·
B(tj , T )

B(tk, T )
.

If tj = tk, this is zero, as it should be. However, for tj > tk, it is generally different
from zero. For example, if the interest rate is a constant r so that B(t, T ) = e−r(T−t)

then
Vk,j = S(tj)− er(tj−tk)S(tk).



5.6 Forwards and Futures 227

If the asset grows faster than the interest rate, the forward contract takes on a positive
value. Otherwise, it takes on a negative value. In either case, one of the parties to the
forward contract could become concerned about default by the other party.

To alleviate the problem of default risk, parties to a forward contract could agree to
settle one day after the contract is entered. The original forward contract purchaser
could then seek to purchase a new forward contract one day later than the initial
purchase. By repeating this process, the forward contract purchaser could generate
the cash flow

V0,1 = S(t1)− S(t0) · B(t1, T )

B(t0, T )
= S(t1)− S(0) · B(t1, T )

B(t0, T )
,

V1,2 = S(t2)− S(t1) · B(t2, T )

B(t1, T )
,

...

Vn−1,n = S(tn)− S(tn−1) · B(tn, T )

B(tn−1, T )
= S(T )− S(0) · B(tn−1, T )

B(tn−1, T )
.

There are two problems with this. First of all, the purchaser of the for- ward
contract was presumably motivated by a desire to hedge against a price increase in
the underlying asset. It is not clear the extent to which receiving this cash flow
provides such a hedge. Second, this daily buying and selling of forward contracts
requires that there be a liquid market each day for forward contracts initiated that day
and forward contracts initiated one day before. This is too much to expect.

A better idea than daily repurchase of forward contracts is to create a futures price
FutS(t, T ), and use it as described below. If an agent holds a long futures position
between times tk and tk+1, then at time tk+1 he receives a payment

FutS(tk+1, T )− FutS(tk, T )

This is called marking to margin. The stochastic process FutS(t, T ) is constructed so
that FutS(t, T ) is F(tk)-measurable for every t and

FutS(T, T ) = S(T ).

Therefore, the sum of payments received by an agent who purchases a futures con-
tract at time zero and holds it until delivery date T is
(
FutS(t1, T )− FutS(t0, T )

)
+

(
FutS(t2, T )− FutS(t1, T )

)
+

(
FutS(tn, T )− FutS(tn−1, T )

)

= FutS(T, T )− FutS(0, T )

= S(T )− FutS(0, T ).

If the agent takes delivery of the asset at time T , paying market price S(T ) for it,
his total income from the futures contract and the delivery payment is −FutS(0, T ).
Ignoring the time value of money, he has effectively paid the price FutS(0, T ) for the
asset, a price that was locked in at time zero.

In contrast to the case of a forward contract, the payment from holding a futures
contract is distributed over the life of the contract rather than coming solely at the
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end. The mechanism for these payments is the margin account, which the owner of
the futures contract must open at the time of purchase of the contract and to which he
must contribute or from which he may withdraw money, depending on the trajectory
of the futures price. Whereas the owner of a forward contract is exposed to coun-
terparty default risk, the owner of a futures contract is exposed to the risk that some
of the intermediate payments (margin calls) will force him to close out his position
prematurely.

In addition to satisfying FutS(T, T ) = S(T ), the futures price process is chosen so
that at each time tk the value of the payment to be received at time tk+1, and indeed
at all future times tj > tk, is zero. This means that at any time one may enter or close
out a position in the contract without incurring any cost other than payments already
made. The condition that the value at time tk of the payment to be received at time
tk+1 be zero may be written as

0 =
1

D(tk)
Ẽ

[
D(tk+1)

(
FutS(tk+1, T )− FutS(tk, T )

)|F(tk)
]

=
D(tk+1)

D(tk)

{
Ẽ

[
FutS(tk+1, T )|F(tk)

]− FutS(tk, T )
}

,

where we have used the fact that D(tk+1) is F(tk)-measurable to take D(tk+1) out of
the conditional expectation. From the equation above, we see that

Ẽ
[
FutS(tk+1, T )|F(tk)

]
= FutS(tk, T ), k = 0, 1, . . . , n− 1. (5.6.4)

This shows that FutS(tk, T ) must be a discrete-time martingale under P̃. But we also
require that FutS(T, T ) = S(T ), from which we conclude that the futures prices must
be given by the formula

FutS(tk, T ) = Ẽ
[
S(T )|F(tk)

]
, k = 0, 1, . . . , n. (5.6.5)

Indeed, under the condition that FutS(T, T ) = S(T ), equations (5.6.4) and (5.6.5) are
equivalent.

We note finally that with FutS(t, T ) given by (5.6.5), the value at time tk of the
payment to be received at time tj is zero for every j ≥ k + 1. Indeed, using the
F(tj−1)-measurability of D(tj) and the martingale property for FutS(t, T ), we have

1

D(tk)
Ẽ

[
D(tj)

(
FutS(tj , T )− FutS(tj−1, T )

)|F(tk)
]

=
1

D(tk)
Ẽ

[
Ẽ

[
D(tj)

(
FutS(tj , T )− FutS(tj−1, T )

)|F(tk)
]∣∣∣F(tk)

]

=
1

D(tk)
Ẽ

[
D(tj)Ẽ[FutS(tj , T )|F(tj−1)]−D(tj)FutS(tj−1, T )

∣∣∣F(tk)
]

=
1

D(tk)
Ẽ

[
D(tj)FutS(tj−1, T )−D(tj)FutS(tj−1, T )

∣∣∣F(tk)
]

= 0.

These considerations lead us to make the following definition for the fully con-
tinuous case (i.e., the case when R(t) is assumed only to be an adapted stochastic
process, not necessarily constant on time intervals of the form [tk, tk+1)).
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Definition 5.6.4. The futures price of an asset whose value at time T is S(T ) is given
by the formula

FutS(t, T ) = Ẽ
[
S(T )|F(t)

]
, 0 ≤ t ≤ T. (5.6.6)

A long position in the futures contract is an agreement to receive as a cash flow the
changes in the futures price (which may be negative as well as positive) during the
time the position is held. A short position in the futures contract receives the opposite
cash flow.

Theorem 5.6.5. The futures price is a martingale under the risk-neutral measure P̃,
it satisfies FutS(T, T ) = S(T ), and the value of a long (or a short) futures position to
be held over an interval of time is always zero.

OUTLINE OF PROOF: The usual iterated conditioning argument shows that FutS(t, T )

given by (5.6.6) is a P̃-martingale satisfying the terminal condition FutS(T, T ) =

S(T ). In fact, this is the only P̃-martingale satisfying this terminal condition.
If the filtration F(t), 0 ≤ t ≤ T , is generated by a Brownian motion W (t), 0 ≤ t ≤

T , then Corollary 5.3.2 of the Martingale Representation Theorem implies that

FutS(t, T ) = FutS(0, T ) +

∫ t

0
Γ̃(u)dW̃ (u), 0 ≤ t ≤ T,

for some adapted integrand process Γ̃ (i.e., dFutS(t, T ) = Γ̃(t)dW̃ (t)). Let 0 ≤ t0 <

t1 ≤ T be given and consider an agent who at times t between times t0 and t1 holds
∆(t) futures contracts. It costs nothing to change the position in futures contracts,
but because the futures contracts generate cash flow, the agent may have cash to
invest or need to borrow in order to execute this strategy. He does this investing
and/or borrowing at the interest rate R(t) prevailing at the time of the investing or
borrowing. The agent’s profit X(t) from this trading satisfies

dX(t) = ∆(t)dFutS(t, T ) + R(t)X(t)dt = ∆(t)Γ̃(t)dW̃ (t) + R(t)X(t)dt,

and thus
d
(
D(t)X(t)

)
= D(t)∆(t)Γ̃(t)dW̃ (t).

Assume that at time t0 tne agent’s profit is X(t0) = 0. At time t1, the agent’s profit
X(t1) will satisfy

D(t1)X(t1) =

∫ t1

t0

D(u)∆(u)Γ̃(u)dW̃ (u). (5.6.7)

Because Itô integrals are martingales, we have

Ẽ
[
D(t1)X(t1)|F(t0)

]

= Ẽ
[∫ t1

0
D(u)∆(u)Γ̃(u)dW̃ (u)−

∫ t0

0
D(u)∆(u)Γ̃(u)dW̃ (u)

∣∣∣∣F(t0)

]

= Ẽ
[∫ t1

0
D(u)∆(u)Γ̃(u)dW̃ (u)

∣∣∣∣F(t0)

]
−

∫ t0

0
D(u)∆(u)Γ̃(u)dW̃ (u)

= 0.
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According to the risk-neutral pricing formula, the value at time t0 of a payment of
X(t1) at time t1 is 1

D(t0)
Ẽ

[
D(t1)X(t1)|F(t0)

]
, and we have just shown that this is zero.

The value of owning a long futures position over the interval t0 to t1 is obtained by
setting ∆(u) = 1 for all u; the value of holding a short position is obtained by setting
∆(u) = −1 for all u. In both cases, we see that this value is zero.

If the filtration F(t), 0 ≤ t ≤ T , is not generated by a Brownian motion, so that we
cannot use Corollary 5.3.2, then we must write (5.6.7) as

D(t1)X(t1) =

∫ t1

t0

D(u)∆(u)dFutS(u, T ). (5.6.8)

This integral can be defined and it will be a martingale. We will again have

Ẽ
[
D(t1)X(t1)|F(t0)

]
= 0.

Remark 5.6.6. (Risk-neutral valuation of a cash flow).

Suppose an asset generates a cash flow so that between times 0 and u a total of
C(u) is paid, where C(u) is F(u)-measurable. Then a portfolio that begins with one
share of this asset at time t and holds this asset between times t and T , investing or
borrowing at the interest rate r as necessary, satisfies

dX(u) = dC(u) + R(u)X(u)du,

or equivalently
d
(
D(u)X(u)

)
= D(u)dC(u).

Suppose X(t) = 0. Then integration shows that

D(T )X(T ) =

∫ T

t
D(u)dC(u).

The risk-neutral value at time t of X(T ), which is the risk-neutral value at time t of
the cash flow received between times t and T , is thus

1

D(t)
Ẽ

[
D(T )X(T )

]
=

1

D(t)
Ẽ

[∫ T

t
D(u)dC(u)

∣∣∣∣∣F(t)

]
, 0 ≤ t ≤ T. (5.6.9)

Formula (5.6.10) generalizes the risk-neutral pricing formula (5.2.30) to allow for a
cash flow rather than payment at the single time T . In (5.6.10), the process C(u) can
represent a succession of lump sum payments A1, A2, . . . , An at times t1 < t2 < · · · <
tn, where each Ai is an F(ti)-measurable random variable. The formula for this is

C(u) =
n∑

i=1

AiI[0,u](ti).

In this case, ∫ T

t
D(u)dC(u) =

n∑

i=1

D(ti)AiI(t,T ](ti).
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Only payments made strictly later than time t appear in this sum. Equation (5.6.10)
says that the value at time t of the string of payments to be made strictly later than
time t is

1

D(t)
Ẽ

[
n∑

i=1

D(ti)AiI(t,T ](ti)

∣∣∣∣∣F(t)

]
=

n∑

i=1

I(t,T ](ti)
1

D(t)
Ẽ

[
D(ti)Ai|F(t)

]
,

which is the sum of the time-t values of the payments made strictly later than time t.
The process C(u) can also be continuous, as in (5.6.9). The process C(u) may

decrease as well as increase (i.e., the cash flow may be negative as well as positive).

¤

5.6.3 Forward-Futures Spread

We conclude with a comparison of forward and futures prices. We have defined these
prices to be

ForS(t, T ) = er(T−t)S(t),

FutS(t, T ) = erT Ẽ
[
e−rT S(T )|F(t)

]
= erT e−rtS(t) = er(T−t)S(t).

In this case, the forward and futures prices agree.
We compare ForS(0, T ) and FutS(0, T ) in the case of a random interest rate. In this

case, B(0, T ) = ẼD(T ), and the so-called forward-futures spread is

ForS(0, T )− FutS(0, T ) =
S(0)

ẼD(T )
− ẼS(T )

=
1

ẼD(T )

{
Ẽ[D(T )S(T )]− ẼD(T ) · ẼS(T )

}

=
1

B(0, T )
Cov

(
D(T ), S(T )

)
,

(5.6.10)

where Cov
(
D(T ), S(T )

)
denotes the covariance of D(T ) and S(T ) under the risk-

neutral measure. If the interest rate is nonrandom, this covariance is zero and the
futures price agrees with the forward price.

One can explain this last formula as follows. If D(T ) and S(T ) are positively cor-
related, then higher asset prices tend to correspond to higher discount levels, which
tend to correspond to lower interest rates. But when the asset goes up, the long posi-
tion in the futures contract receives a payment (because the futures price is positively
correlated with the underlying asset price). The long position in the futures contract
thus receives money when the interest rate for investing is unfavorable (low) and con-
versely must pay money when the interest rate at which money can be borrowed is
also unfavorable (high). The owner of the futures contract would have rather owned
the forward contract, in which all payments are postponed until the end. Therefore,
to make the futures contract attractive, the futures price must be lower than the for-
ward price. (Recall that this price is what the investor ultimately pays for the asset.)
This creates a positive forward-futures spread when the discount factor D(T ) and the
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asset price S(T ) are positively correlated. Note that all correlations in this argument
are computed under the risk-neutral measure, not the actual probability measure. In a
Brownian-motion-driven model, in which the multidimensional Girsanov Theorem,
Theorem 5.4.1, is used to change to the risk-neutral measure, instantaneous asset
correlations are the same under both measures (see Exercise 5.12). However, corre-
lations between random variables (as opposed to instantaneous correlations between
stochastic processes) can be affected by changes of measure (see Exercise 5.13).

5.7 Summary

This chapter treats the application to finance of two major theorems, Girsanov (The-
orem 5.4.1) and Martingale Representation (Theorem 5.4.2). These lead to the two
Fundamental Theorems of Asset Pricing, Theorem 5.4.7 and Theorem 5.4.9. Both of
these are stated for models with multiple assets whose prices are driven by multiple
Brownian motions.

According to the Fundamental Theorems of Asset Pricing, there are three possible
situations when we build a mathematical model of a multiasset market.

Case 1. There is no risk-neutral measure (i.e., the market price of risk equations
(5.4.18) cannot be solved for Θ1(t), . . . , Θd(t)). This is a bad model. There must be
some way to form an arbitrage by trading at the prices given by this model. Do not
use this model.

Case 2. There are multiple risk-neutral measures (i.e., the market price of risk
equations (5.4.18) have more than one solution). The different risk-neutral measures
lead to different prices for derivative securities in the model. Any derivative security
that has more than one price cannot be synthesized by trading in the model (i.e.,
a position in this derivative security cannot be hedged). (If the derivative security
could be hedged, this would determine a unique price; see the proof of Theorem
5.4.9.) It may still be possible to calibrate the model (i.e., determine its parameters
by getting it to match market prices, and the model might then give reasonable prices
for nontraded instruments). However, it cannot be used to fully hedge the exposure
associated with derivative positions.

At the present time, credit derivative models fall into Case 2. They are used for
pricing, but are incomplete because the derivatives in question pay off contingent
upon the default of some party and it is impossible to perfectly hedge default risk by
trading in primary assets. These models have multiple risk-neutral measures, all of
which can be consistent with market prices of the primary assets but give different
prices for derivatives. In practical applications, one of these risk-neutral measures is
singled out and used for pricing. Which of the risk-neutral measures is chosen for
this purpose depends on the way the model is specified and calibrated.

Case 3. There is one and only one set of processes Θ1(t), . . . , Θd(t) that solve
the market price of risk equations (5.4.18). There is a unique risk-neutral measure,
and risk-neutral pricing is justified. In other words,the price (value) at time t of any
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security that pays V (T ) at time T is

V (t) =
1

D(t)
Ẽ[D(T )V (T )|F(t)]. (5.7.1)

In particular, the price at time zero of the security is its risk-neutral expected dis-
counted payoff. The risk-neutral price of a derivative security is the initial capital
that permits an agent to set up a perfect hedge for a short position in that deriva-
tive security. These perfect hedges are the solutions ∆1(t), . . . , ∆m(t) of the hedging
equations (5.4.29), and these solutions are guaranteed to exist (by the second part
of the proof of Theorem 5.4.9). However, we do not generally attempt to determine
the hedging positions ∆1(t), . . . , ∆m(t) by solving (5.4.29). Instead, we determine
hedges by the technique presented in Chapter 6.

When assets pay dividends, their discounted prices are no longer martingales un-
der the risk-neutral measure. Instead, the martingale under the risk-neutral measure
is the discounted value of any portfolio that trades in the assets and receives dividends
in proportion to its position in the assets at the time of dividend payment. For the case
of a continuous payment of dividends at a constant rate, the Black-Scholes-Merton
formula is given by (5.5.12). If dividend payments are made in lump sums, the nec-
essary modification to the classical Black-Scholes-Merton formula is presented in
Subsection 11.5.4.

The forward price of an asset is defined to be that price that one can agree today
to pay at a future delivery date so that the present value of the forward contract is
zero. For assets that pay no dividends (and, unlike most commodities, cost nothing
to hold), the forward price is the asset price divided by the price of a zero-coupon
bond maturing on the delivery date and having face value 1:

ForS(t, T ) =
S(t)

B(t, T )
, 0 ≤ t ≤ T.

The futures price of an asset is an adapted stochastic process FutS(t, T ) with two
properties.

(i) The futures price agrees with the asset price on the delivery date (i.e., FutS(t, T ) =

S(T )).

(ii) The value of holding the futures contract over a period of time and receiving the
cash flows associated with this position is zero:

1

D(t0)
Ẽ

[∫ t1

t0

D(u)dFutS(u, T )

∣∣∣∣F(t)

]
= 0, 0 ≤ t0 < t1 ≤ T.

The unique process having these two properties is

FutS(t, T ) = Ẽ[S(T )|F(t)], 0 ≤ t ≤ T.

When the interest rate process is nonrandom, forward and futures prices agree. When
interest rates are random, the difference between forward and futures prices is propor-
tional to the covariance under the risk-neutral measure between the discount factor
D(T ) and the underlying asset price S(T ) (see (5.6.11)).
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5.8 Notes

The idea of risk-neutral pricing is implicit in the classical papers by Black and Sc-
holes [17] and Merton [122] but was not fully developed and appreciated until the
work of Ross [140], Harrison and Kreps [77], and Harrison and Pliska [78], [79].
Ross [140] treats a one-period model, Harrison and Kreps [77] treat a continuous-
time model with trading at discrete dates, and Harrison and Pliska [78], [79] treat a
continuous-time model with continuous trading. The closely related concept of state
price density (see Exercise 5.2) is due to Arrow and Debreu [5].

Girsanov’s Theorem, Theorem 5.2.3, in the generality stated here is due to Gir-
sanov [72], although the result for constant θ was established much earlier by Cameron
and Martin [26]. The theorem requires a technical condition to ensure that EZ(T ) = 1

so that P̃ is a probability measure. For this purpose, we imposed (5.2.13). An easier
condition to verify, due to Novikov [128], is

E

{
1

2

∫ T

0
Θ2(u)du

}
< ∞;

see Karatzas and Shreve [101], page 198. The multidimensional version of both
Girsanov’s Theorem and the Martingale Representation Theorem (Theorems 5.4.1
and 5.4.2) can be found in Karatzas and Shreve [101] as Theorems 5.1 and 4.15 of
Chapter 3. A mathematically rigorous application of these theorems to Brownian-
motion-driven models in finance is provided by Karatzas and Shreve [102].

The application of the Girsanov Theorem to risk-neutral pricing is due to Harrison
and Pliska [78]. This methodology frees the Brownian-motion-driven model from
the assumption of a constant interest rate and volatility. When both of these are
stochastic, the Brownian-motion-driven model is mathematically the most general
possible for continuous stock prices that do not admit arbitrage. In particular, the
log-normal model for asset prices is just one special case of the Brownian-motion-
driven model.

The Fundamental Theorems of Asset Pricing, Theorems 5.4.7 and 5.4.9, can be
found in Harrison and Pliska [78], [79]. It is tempting to believe the converse of
Theorem 5.4.7 (i.e., that the absence of arbitrage implies the existence of a risk-
neutral measure). This is true in discrete-time models (see Dalang, Merton, and
Willinger [45]), but in continuous-time models a slightly stronger condition is needed
to guarantee existence of a risk-neutral measure. See Delbaen and Schachermayer
[49] for a summary of relevant results.

The distinction between forward contracts and futures was pointed out by Mar-
grabe [118] and Black [13]. No-arbitrage pricing of futures in a discrete- time model
was developed by Cox, Ingersoll, and Ross [40] and Jarrow and Oldfield [98].

5.9 Exercises

Exercise 5.1.
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Consider the discounted stock price D(t)S(t) of (5.2.19). In this problem, we
derive the formula (5.2.20) for d

(
D(t)S(t)

)
by two methods.

(i) Define f(x) = S(0)ex and set

X(t) =

∫ t

0
σ(s)dW (s) +

∫ t

0

(
α(s)−R(s)− 1

2
σ2(s)

)
ds

so that D(t)S(t) = f
(
X(t)

)
. Use the Itô-Doeblin formula to compute df

(
X(t)

)
.

(ii) According to Itô’s product rule,

d
(
D(t)S(t)

)
= S(t)dD(t) + D(t)dS(t) + dD(t)dS(t).

Use (5.2.15) and (5.2.18) to work out the right-hand side of this equation.

Exercise 5.2 (State price density process).

Show that the risk-neutral pricing formula (5.2.30) may be rewritten as

D(t)Z(t)V (t) = E
[
D(T )Z(T )V (T )|F(t)

]
. (5.9.1)

Here Z(t) is the Radon-Nikodym derivative process (5.2.11) when the market price
of risk process Θ(t) is given by (5.2.21) and the conditional expectation on the right-
hand side of (5.9.1) is taken under the actual probability measure P, not the risk-
neutral measure P̃. In particular, if for some A ∈ F(T ) a derivative security pays off
IA (i.e., pays 1 if A occurs and 0 if A does not occur), then the value of this derivative
security at time zero is E[D(T )Z(T )IA]. The process D(t)Z(t) appearing in (5.9.1) is
called the state price density process.

Exercise 5.3.

According to the Black-Scholes-Merton formula, the value at time zero of a Eu-
ropean call on a stock whose initial price is S(0) = x is given by

c(0, x) = xN
(
d+(T, x)

)−Ke−rT N
(
d−(T, x)

)
,

where

d+(T, x) =
1

σ
√

T

[
log

x

K
+

(
r +

1

2
σ2

)
T

]
,

d−(T, x) = d+(T, x)− σ
√

T .

The stock is modeled as a geometric Brownian motion with constant volatility σ > 0,
the interest rate is constant r, the call strike is K, and the call expiration time is T .
This formula is obtained by computing the discounted expected payoff of the call
under the risk-neutral measure,

c(0, x) = Ẽ
[
e−rT

(
S(T )−K

)+
]

= Ẽ

[
e−rT

(
x exp

{
σW̃ (T ) +

(
r − 1

2
σ2

)
T

}
−K

)+
]

,
(5.9.2)
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where W̃ is a Brownian motion under the risk-neutral measure P̃. In Exercise 4.9(ii),
the delta of this option is computed to be cx(0, x) = N

(
d+(T, x)

)
. This problem

provides an alternate way to compute cx(0, x).

(i) We begin with the observation that if h(s) = (s−K)+, then

h′(s) =





0 if s < K,

1 if s > K.

If s = K, then h′(s) is undefined, but that will not matter in what follows because
S(T ) has zero probability of taking the value K. Using the formula for h′(s),
differentiate inside the expected value in (5.9.2) to obtain a formula for cx(0, x).

(ii) Show that the formula you obtained in (i) can be rewritten as

cx(0, x) = P̂
(
S(T ) > K

)
,

where P̂ is a probability measure equivalent to P̃. Show that

Ŵ (t) = W̃ (t)− σt

is a Brownian motion under P̂.

(iii) Rewrite S(T ) in terms of Ŵ (T ), and then show that

P̂{S(T ) > K} = P̂

{
−Ŵ (T )√

T
< d+(T, x)

}
= N

(
d+(T, x)

)
.

Exercise 5.4 (Black-Scholes-Merton formula for time-varying, nonrandom interest
rate and volatility).

Consider a stock whose price differential is

dS(t) = r(t)S(t)dt + σ(t)dW̃ (t),

where r(t) and σ(t) are nonrandom functions of t and W̃ is a Brownian motion under
the risk-neutral measure P. Let T > 0 be given, and consider a European call, whose
value at time zero is

c
(
0, S(0)

)
= E

[
exp

{
−

∫ T

0
r(t)dt

}
(
S(T )−K

)+

]
.

(i) Show that S(T ) is of the form S(0)eX , where X is a normal random variable,
and determine the mean and variance of X.

(ii) Let

BSM(T, x; K, R, Σ) = xN

(
1

Σ
√

T

[
log

x

K
+ (R + Σ2/2)T

])

− e−RT KN

(
1

Σ
√

T

[
log

x

K
+ (R− Σ2/2)T

])
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denote the value at time zero of a European call expiring at time T when the
underlying stock has constant volatility Σ and the interest rate R is constant.
Show that

c
(
0, S(0)

)
= BSM


S(0), T,

1

T

∫ T

0
r(t)dt,

√
1

T

∫ T

0
σ2(t)dt


 .

Exercise 5.5.

Prove Corollary 5.3.2 by the following steps,

(i) Compute the differential of 1
Z(t) , where Z(t) is given in Corollary 5.3.2.

(ii) Let M̃(t), 0 ≤ t ≤ T , be a martingale under P̃. Show that M(t) = Z(t)M̃(t) is a

martingale under P.

(iii) According to Theorem 5.3.1, there is an adapted process Γ(u), 0 ≤ u ≤ T , such
that

M(t) = M(0) +

∫ T

0
Γ(u)dW (u), 0 ≤ t ≤ T.

Write M̃(t) = M(t) · 1
Z(t) and take its differential using Itô’s product rule.

(iv) Show that the differential of M(t) is the sum of an adapted process, which we
call Γ̃(t), times dW̃ (t), and zero times dt. Integrate to obtain (5.3.2).

Exercise 5.6.

Use the two-dimensional Levy Theorem, Theorem 4.6.5, to prove the two-dimensional
Girsanov Theorem (i.e., Theorem 5.4.1 with d = 2).

Exercise 5.7.

(i) Suppose a multidimensional market model as described in Section 5.4.2 has an
arbitrage. In other words, suppose there is a portfolio value process satisfying
X1(0) = 0 and

P{X1(T ) ≥ 0} = 1, P{X1(T ) > 0} > 0, (5.4.23)

for some positive T . Show that if X2(0) is positive, then there exists a portfolio
value process X2(t) starting at X2(0) and satisfying

P
{

X2(T ) ≥ X2(0)

D(T )

}
= 1, P

{
X2(T ) >

X2(0)

D(T )

}
> 0. (5.4.24)

(ii) Show that if a multidimensional market model has a portfolio value process
X2(t) such that X2(0) is positive and (5.4.24) holds, then the model has a port-
folio value process X1(0) such that X1(0) = 0 and (5.4.23) holds.

Exercise 5.8 (Every strictly positive asset is a generalized geometric Brownian mo-
tion).
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Let (Ω,F ,P) be a probability space on which is defined a Brownian motion W (t),
0 ≤ t ≤ T . Let F(t), 0 ≤ t ≤ T , be the nitration generated by this Brownian
motion. Assume there is a unique risk-neutral measure P̃, and let W̃ (t), 0 ≤ t ≤ T ,
be the Brownian motion under P̃ obtained by an application of Girsanov’s Theorem,
Theorem 5.2.3.

Corollary 5.3.2 of the Martingale Representation Theorem asserts that every mar-
tingale M̃(t), 0 ≤ t ≤ T , under P̃ can be written as a stochastic integral with respect
to W̃ (t), 0 ≤ t ≤ T . In other words, there exists an adapted process Γ̃(t), 0 ≤ t ≤ T ,
such that

M̃(t) = M̃(0) +

∫ t

0
Γ̃(u)dB̃(u), 0 ≤ t ≤ T.

Now let V (T ) be an almost surely positive (“almost surely” means with probability
one under both P and P̃ since these two measures are equivalent), F(T )-measurable
random variable. According to the risk-neutral pricing formula (5.2.31), the price at
time t of a security paying V (T ) at time T is

V (t) = Ẽ
[
e−
R T

t
R(u)duV (T )

∣∣∣F(t)
]
, 0 ≤ t ≤ T.

(i) Show that there exists an adapted process Γ̃(t), 0 ≤ t ≤ T , such that

dV (t) = R(t)V (t)dt +
Γ̃(t)

D(t)
dW̃ (t), 0 ≤ t ≤ T.

(ii) Show that, for each t ∈ [0, T ], the price of the derivative security V (t) at time t

is almost surely positive,

(iii) Conclude from (i) and (ii) that there exists an adapted process σ(t), 0 ≤ t ≤ T ,
such that

dV (t) = R(t)V (t)dt + σ(t)V (t)dW̃ (t), 0 ≤ t ≤ T.

In other words, prior to time T , the price of every asset with almost surely positive
price at time T follows a generalized (because the volatility may be random) geomet-
ric Brownian motion.

Exercise 5.9 (Implying the risk-neutral distribution).

Let S(t) be the price of an underlying asset, which is not necessarily a geometric
Brownian motion (i.e., does not necessarily have constant volatility). With S(0) = x,
the risk-neutral pricing formula for the price at time zero of a European call on this
asset, paying

(
S(T )−K

)+ at time T , is

c(0, T, x, K) = Ẽ
[
e−rT

(
S(T )−K

)+
]
.

(Normally we consider this as a function of the current time 0 and the current stock
price x, but in this exercise we shall also treat the expiration time T and the strike
price K as variables, and for that reason we include them as arguments of c.) We
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denote by p̃(0, T, x, y) the risk-neutral density in the y variable of the distribution of
S(T ) when S(0) = x. Then we may rewrite the risk-neutral pricing formula as

c(0, T, x, K) = e−rT

∫ ∞

K
(y −K)p̃(0, T, x, y)dy. (5.9.3)

Suppose we know the market prices for calls of all strikes (i.e., we know c(0, T, x, K)

for all K > 0)2. We can then compute cK(0, T, x, K) and cKK(0, T, x, K), the first and
second derivatives of the option price with respect to the strike. Differentiate (5.9.3)
twice with respect to K to obtain the equations

cK(0, T, x, K) = −e−rT

∫ ∞

K
p̃(0, T, x, y)dy = −e−rT P̃{S(T ) > K},

cKK(0, T, x, K) = −e−rT p̃(0, T, x, K).

The second of these equations provides a formula for the risk-neutral distribution of
S(T ) in terms of call prices:

p̃(0, T, x, K) = erT cKK(0, T, x, K) for all K > 0.

Exercise 5.10 (Chooser option).

Consider a model with a unique risk-neutral measure P̃ and constant interest rate
r. According to the risk-neutral pricing formula, for 0 ≤ t ≤ T , the price at time t of
a European call expiring at time T is

C(t) = Ẽ
[
e−r(T−t)

(
S(T )−K

)+
∣∣∣F(t)

]
,

where S(T ) is the underlying asset price at time T and K is the strike price of the
call. Similarly, the price at time t of a European put expiring at time T is

P (t) = Ẽ
[
e−r(T−t)

(
K − S(T )

)+
∣∣∣F(t)

]
.

Finally, because e−rtS(t) is a martingale under P̃, the price at time t of a forward
contract for delivery of one share of stock at time T in exchange for a payment of K

at time T is

F (t) = Ẽ
[
e−r(T−t)

(
S(T )−K

)∣∣∣F(t)
]

= ertẼ
[
e−rT S(T )|F(t)

]
− e−r(T−t)K

= S(t)− e−r(T−t)K.

Because (
S(T )−K

)+ − (
K − S(T )

)+
= S(T )−K,

we have the put-call parity relationship

C(t)− P (t) = Ẽ
[
e−r(T−t)

(
S(T )−K

)+ − e−r(T−t)
(
K − S(T )

)+
∣∣∣F(t)

]

= Ẽ
[
e−r(T−t)

(
S(T )−K

)∣∣∣F(t)
]

= F (t).

2In practice, we do not have this many prices. We have the prices of calls at some strikes, and we can infer
the prices of calls at other strikes by knowing the prices of puts and using put-call parity. We must create prices
for the calls of other strikes by interpolation of the prices we do have.
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Now consider a date t0 between 0 and T , and consider a chooser option, which
gives the right at time t0 to choose to own either the call or the put.

(i) Show that at time t0 the value of the chooser option is

C(t0) + max{0,−F (t0)} = C(t0) +
(
e−r(T−t0)K − S(t0)

)+
.

(ii) Show that the value of the chooser option at time 0 is the sum of the value of
a call expiring at time T with strike price K and the value of a put expiring at
time t0 with strike price e−r(T−t0)K.

Exercise 5.11 (Hedging a cash flow).

Let W (t), 0 ≤ t ≤ T , be a Brownian motion on a probability space (Ω,F ,P), and
let F(t), W (t), 0 ≤ t ≤ T , be the filtration generated by this Brownian motion. Let
the mean rate of return α(t), the interest rate R(t), and the volatility σ(t) be adapted
processes, and assume that σ(t) is never zero. Consider a stock price process whose
differential is given by (5.2.15):

dS(t) = α(t)S(t)dt + σ(t)S(t)dW (t), 0 ≤ t ≤ T.

Suppose an agent must pay a cash flow at rate C(t) at each time t, where C(t),
0 ≤ t ≤ T , is an adapted process. If the agent holds ∆(t) shares of stock at each time
t, then the differential of her portfolio value will be

dX(t) = ∆(t)dS(t) + R(t)
(
X(t)−∆(t)S(t)

)
dt− C(t)dt. (5.9.4)

Show that there is a nonrandom value of X(0) and a portfolio process ∆(t), 0 ≤ t ≤ T ,
such that X(T ) = 0 almost surely. (Hint: Define the risk-neutral measure and apply
Corollary 5.3.2 of the Martingale Representation Theorem to the process

M̃(t) = Ẽ

[∫ T

0
D(u)C(u)du

∣∣∣∣∣F(t)

]
, 0 ≤ t ≤ T, (5.9.5)

where D(t) is the discount process (5.2.17).)

Exercise 5.12 (Correlation under change of measure).

Consider the multidimensional market model of Subsection 5.4.2, and let Bi(t) be
defined by (5.4.7). Assume that the market price of risk equations (5.4.18) have a
solution Θ1(t), . . . , Θd(t), and let P̃ be the corresponding risk-neutral measure under
which

W̃j(t) = Wj(t) +

∫ t

0
Θj(u)du, j = 1, . . . , d,

are independent Brownian motions,

(i) For i = 1, . . . , d, define γi(t) =
∑d

j=1
σij(t)θj(t)

σi(t)
. Show that

B̃i(t) = Bi(t) +

∫ t

0
γi(u)du

is a Brownian motion under P̃.
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(ii) We saw in (5.4.8) that

dSi(t) = αi(t)Si(t)dt + σi(t)Si(t)dBi(t), i = 1, . . . , m.

Show that

dSi(t) = R(t)Si(t)dt + σiSi(t)dB̃i(t), i = 1, . . . , m.

(iii) We saw in (5.4.9) that dBi(t)dBk(t) = ρik(t). This is the instantaneous cor-
relation between Bi(t) and Bk(t). Because (5.4.9) makes no reference to the
probability measure, Exercise 4.17 of Chapter 4 implies that under both P and
P̃, the correlation between the pair of increments B1(t0 + ε)−B1(t0) and B2(t0 +

ε)−B2(t0) is approximately ρik(t0). Show that

dB̃i(t)dB̃k(t) = ρik(t).

This formula means that, conditioned on F(t0), under both P and P̃ the correla-
tion between the pair of increments B̃1(t0 + ε)− B̃1(t0) and B̃2(t0 + ε)− B̃2(t0)

is approximately ρik(t0).

(iv) Show that if ρik(t) is not random (although it may still depend on t), then for
every t ≥ 0,

E
[
Bi(t)Bk(t)

]
= Ẽ

[
B̃i(t)B̃k(t)

]
=

∫ t

0
ρik(u)du.

Since Bi(t) and Bk(t) both have variance t under P and B̃i(t) and B̃k(t) both
have variance t under P̃, this shows that the correlation between Bi(t) and Bk(t)

under P is the same as the correlation between B̃i(t) and B̃k(t) under P̃. In both
cases, this correlation is 1

t

∫ t
0 ρik(u)du. If ρik is constant, then the correlation is

simply ρik.

(v) When ρik(t) is random, we can have

E
[
Bi(t)Bk(t)

] 6= Ẽ[
B̃i(t)B̃k(t)

]
.

Even though instantaneous correlations are unaffected by a change of measure,
correlations can be. To see this, we take m = d = 2 and let W1(t) and W2(t) be
independent Brownian motions under P. Take σ11(t) = σ21(t) = 0, σ12(t) = 1,
and σ22(t) = sign

(
W1(t)

)
, where

sign(x) =





1 if x ≥ 0,

−1 if x < 0.

Then σ1(t) = 1, σ2(t) = 1, ρ11(t) = 1, ρ22(t) = 1 and ρ12(t) = ρ21(t) =

sign
(
W1(t)

)
. Take Θ1(t) = 1 and Θ2(t) = 0, so that W̃1(t) = W1(t) + t and

W̃2(t) = W2(t). Then γ1(t) = γ2(t) = 0. We have

B1(t) = W2(t), B2(t) =

∫ t

0
sign

(
W1(u)

)
dW2(u),

B̃1(t) = B1(t), B̃2(t) = B2(t).
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Show that
E

[
B1(t)B2(t)

] 6= Ẽ[
B̃1(t)B̃2(t)

]
for all t > 0.

Exercise 5.13.

In part (v) of Exercise 5.12, we saw that when we change measures and change
Brownian motions, correlations can change if the instantaneous correlations are ran-
dom. This exercise shows that a change of measure without a change of Brownian
motions can change correlations if the market prices of risk are random.

Let W1(t) and W2(t) be independent Brownian motions under a probability mea-
sure P̃. Take Θ1(t) = 0 and Θ2(t) = W1(t) in the multidimensional Girsanov Theo-
rem, Theorem 5.4.1. Then W̃1(t) = W1(t) and W̃2(t) = W2(t) +

∫ t
0 W1(u)du.

(i) Because W̃1(t) and W̃2(t) are Brownian motions under P̃, the equation ẼW̃1(t) =

ẼW̃2(t) = 0 must hold for all t ∈ [0, T ]. Use this equation to conclude that

ẼW1(t) = ẼW2(t) = 0 for all t ∈ [0, T ].

(ii) From Itô’s product rule, we have

d
(
W1(t)W2(t)

)
= W1(t)dW2(t) + W2(t)dW1(t).

Use this equation to show that

C̃ov
[
W1(T ),W2(T )

]
= Ẽ

[
W1(T ),W2(T )

]
= −1

2
T 2.

This is different from

Cov
[
W1(T ),W2(T )

]
= E

[
W1(T ),W2(T )

]
= 0.

Exercise 5.14 (Cost of carry).

Consider a commodity whose unit price at time t is S(t). Ownership of a unit of
this commodity requires payment at a rate a per unit time (cost of carry) for storage.
Note that this payment is per unit of commodity, not a fraction of the price of the
commodity. Thus, the value of a portfolio that holds ∆(t) units of the commodity at
time t and also invests in a money market account with constant rate of interest r has
differential

dX(t) = ∆(t)dS(t)− a∆(t)dt + r
(
X(t)−∆(t)S(t)

)
dt. (5.9.6)

As with the dividend-paying stock in Section 5.5, we must choose the risk-neutral
measure so that the discounted portfolio value e−rtX(t) is a martingale. We shall
assume a constant volatility, so in place of (5.5.6) we have

dS(t) = rS(t)dt + σS(t)dW̃ (t) + adt, (5.9.7)

where W̃ (t) is a Brownian motion under the risk-neutral measure P̃.
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(i) Show that when dS(t) is given by (5.9.7), then under P̃ the discounted portfolio
value process e−rtX(t), where X(t) is given by (5.9.6), is a martingale,

(ii) Define

Y (t) = exp

{
σW̃ (t) +

(
r − 1

2
σ2

)
t

}
.

Verify that, for 0 ≤ t ≤ T ,

dY (t) = rY (t)dt + σY (t)dW̃ (t),

that e−rtY (t) is a martingale under P̃, and that

S(t) = S(0)Y (t) + Y (t)

∫ t

0

a

Y (s)
ds (5.9.8)

satisfies (5.9.7).

(iii) For 0 ≤ t ≤ T , derive a formula for Ẽ[S(T )|F(t)] in terms of S(t) by writing

Ẽ[S(T )|F(t)] = S(0)Ẽ[Y (T )|F(t)] + Ẽ[Y (T )|F(t)]

∫ t

0

a

Y (s)
ds

+ a

∫ T

t
Ẽ

[
Y (T )

Y (s)

∣∣∣∣F(t)

]
ds

(5.9.9)

and then simplifying the right-hand side of this equation.

(iv) The process Ẽ[S(T )|F(t)] is the futures price process for the commodity (i.e.,
FutS(t, T ) = Ẽ[S(T )|F(t)]). This must be a martingale under P̃. To check the
formula you obtained in (iii), differentiate it and verify that Ẽ[S(T )|F(t)] is a
martingale under P̃.

(v) Let 0 ≤ t ≤ T be given. Consider a forward contract entered at time t to
purchase one unit of the commodity at time T for price K paid at time T . The
value of this contract at time t when it is entered is

Ẽ
[
e−r(T−t)

(
S(T )−K

)∣∣F(t)
]
. (5.9.10)

The forward price ForS(t, T ) is the value of K that makes the contract value
(5.9.10) equal to zero. Show that ForS(t, T ) = FutS(t, T ).

(vi) Consider an agent who takes a short position in a forward contract at time zero.
This costs nothing and generates no income at time zero. The agent hedges
this position by borrowing S(0) from the money market account and purchasing
one unit of the commodity, which she holds until time T . At time T , the agent
delivers the commodity under the forward contract and receives the forward
price ForS(0, T ) set at time zero. Show that this is exactly what the agent needs
to cover her debt to the money market account, which has two parts. First of all,
at time zero, the agent borrows S(0) from the money market account in order
to purchase the unit of the commodity. Second, between times zero and T , the
agent pays the cost of carry a per unit time, borrowing from the money market
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account to finance this. (Hint: The value of the agent’s portfolio of commodity
and money market account begins at X(0) = 0 (one unit of the commodity and
a money market position of −S(0)) and is governed by (5.9.6) with ∆(t) = 1.
Write this equation, determine d

(
e−rtX(t)

)
, integrate both sides from zero to

T , and solve for X(T ). You will need the fact that e−rt
(
dS(t) − rS(t)dt

)
=

d
(
e−rtS(t)

)
. You should get X(T ) = S(T )− ForS(0, T ).)



Chapter 6

Connections with Partial Differential
Equations

6.1 Introduction

There are two ways to compute a derivative security price: (1) use Monte Carlo simu-
lation to generate paths of the underlying security or securities under the risk-neutral
measure and use these paths to estimate the risk-neutral expected discounted payoff;
or (2) numerically solve a partial differential equation. This chapter addresses the
second of these methods by showing how to connect the risk-neutral pricing prob-
lem to partial differential equations. Section 6.2 explains the concept of stochastic
differential equations, which is used to model asset prices. Solutions to stochastic
differential equations have the Markov property, as is discussed in Section 6.3. Be-
cause of this, related to each stochastic differential equation there are two partial
differential equations, one that includes discounting and one that does not. These
partial differential equations and their derivations are the subject of Section 6.4. Sec-
tion 6.5 shows how these ideas can be applied to interest rate models to compute
bond prices and the prices of derivatives on bonds. The discussion of Sections 6.2-
6.5 concerns one-dimensional processes. The multidimensional theory is outlined in
Section 6.6, and a representative example that uses this theory, pricing and hedging
an Asian option, is presented in that section.

6.2 Stochastic Differential Equations

A stochastic differential equation is an equation of the form

dX(u) = β
(
u,X(u)

)
du + γ

(
u,X(u)

)
dW (u). (6.2.1)

Here β(u, x) and γ(u, x) are given functions, called the drift and diffusion, respec-
tively. In addition to this equation, an initial condition of the form X(t) = x, where
t ≥ 0 and x ∈ R, is specified. The problem is then to find a stochastic process X(T ),
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defined for T ≥ t, such that

X(t) = x, (6.2.2)

X(T ) = X(t) +

∫ T

t
β
(
u,X(u)

)
du +

∫ T

t
γ
(
u,X(u)

)
dW (u). (6.2.3)

Under mild conditions on the functions β(u, x) and γ(u, x), there exists a unique
process X(T ), T ≥ t, satisfying (6.2.2) and (6.2.3). However, this process can be
difficult to determine explicitly because it appears on both the left- and right-hand
sides of equation (6.2.3).

The solution X(T ) at time T will be F(T )-measurable (i.e., X(T ) only depends
on the path of the Brownian motion up to time T .) In fact, since the initial condition
X(t) = x is specified, all that is really needed to determine X(T ) is the path of the
Brownian motion between times t and T .

Although stochastic differential equations are, in general, difficult to solve, a one-
dimensional linear stochastic differential equation can be solved explicitly. This is a
stochastic differential equation of the form

dX(u) =
(
a(u) + b(u)X(u)

)
du +

(
γ(n) + σ(u)X(u)

)
dW (u), (6.2.4)

where a(u), b(u), σ(u), and γ(u) are nonrandom functions of time. Indeed, this equa-
tion can even be solved when a(u), b(u), γ(u), and σ(u) are adapted random processes
(see Exercise 6.1), although it is then no longer of the form (6.2.1). In order to guar-
antee that the solution to (6.2.1) has the Markov property discussed in Section 6.3
below, the only randomness we permit on the right-hand side of (6.2.1) is the ran-
domness inherent in the solution X(u) and in the driving Brownian motions W (u).
There cannot be additional randomness such as would occur if any of the processes
a(u), b(u), γ(u), and σ(u) appearing in (6.2.4) were themselves random. The next
two examples are special cases of (6.2.4) in which a(u), b(u), γ(u), and σ(u) are
nonrandom.

Example 6.2.1. (Geometric Brownian motion).

The stochastic differential equation for geometric Brownian motion is

dS(u) = αS(u)du + σS(u)dW (u).

In the notation of (6.2.1), β(u, x) = αx and γ(u, x) = σx. We know the formula for
the solution to this stochastic differential equation when the initial time is zero and
the initial position is S(0), namely

S(t) = S(0) exp

{
σW (t) +

(
α− 1

2
σ2

)
t

}
.

Similarly, for T ≥ t,

S(T ) = S(0) exp

{
σW (T ) +

(
α− 1

2
σ2

)
T

}
.
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Dividing S(T ) by S(t), we obtain

S(T )

S(t)
= exp

{
σ
(
W (T )−W (t)

)
+

(
α− 1

2
σ2

)
(T − t)

}
.

If the initial condition is given at time t rather than at time zero and is S(t) = x, then
this last equation becomes

S(T ) = x exp

{
σ
(
W (T )−W (t)

)
+

(
α− 1

2
σ2

)
(T − t)

}
.

As expected, when we use the initial condition S(t) = x, then S(T ) depends only on
the path of the Brownian motion between times t and T .

Example 6.2.2. (Hull-White interest rate model).

Consider the stochastic differential equation

dR(u) =
(
a(u)− b(u)R(u)

)
du + σ(u)dW̃ (u),

where a(u), b(u), and σ(u) are nonrandom positive functions of the time variable u

and W̃ (u) is a Brownian motion under a risk-neutral measure P̃. In this case, we use
the dummy variable r rather than x, and β(u, r) = a(u)− b(u)r, γ(u, r) = σ(u). Let us
take the initial condition R(t) = r. We can solve the stochastic differential equation
by first using the stochastic differential equation to compute

d
(
e
R u

0
b(v)dvR(u)

)
= e

R u

0
b(v)dv

(
b(u)R(u)du + dR(u)

)

= e
R u

0
b(v)dv

(
α(u)du + σ(u)dW̃ (u)

)
.

Integrating both sides from t to T and using the initial condition R(t) = r, we obtain
the formula

e
R T

0
b(v)dvR(T ) = re

R t

0
b(v)dv +

∫ T

t
e
R u

0
b(v)dvα(u)du +

∫ T

t
e
R u

0
b(v)dvσ(u)dW̃ (u),

which we can solve for R(T ):

R(T ) = re−
R T

t
b(v)dv +

∫ T

t
e−
R T

u
b(v)dvα(u)du +

∫ T

t
e−
R T

u
b(v)dvσ(u)dW̃ (u).

This is an explicit formula for the solution R(T ). The right-hand side of the final
equation does not involve the interest rate process R(u) apart from the initial con-
dition R(t) = r; it contains only this initial condition, an integral with respect to
time, and an Itô integral of given functions. Note also that the Brownian motion path
between times t and T only enters this formula.

Recall from Theorem 4.4.9 that the Itô integral
∫ T
t e−

R T

u
b(v)dvσ(u)dW̃ (u) of the

nonrandom integrand e−
R T

u
b(v)dvσ(u) is normally distributed with mean zero and vari-

ance
∫ T
t e−2

R T

u
b(v)dvσ2(u)du. The other terms appearing in the formula above for

R(T ) are nonrandom. Therefore, under the risk-neutral measure P̃, R(T ) is normally
distributed with mean

re−
R T

t
b(v)dv +

∫ T

t
e−
R T

u
b(v)dvα(u)du
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and variance ∫ T

t
e−2

R T

u
b(v)dvσ2(u)du.

In particular, there is a positive probability that R(T ) is negative. This is one of the
principal objections to the Hull-White model.

¤

Example 6.2.3. (Cox-Ingersoll-Ross interest rate model).

In the Cox-Ingersoll-Ross (CIR) model, the interest rate is given by the stochastic
differential equation

dR(u) =
(
a− bR(u)

)
du + σ

√
R(u)dW̃ (u), (6.2.5)

where a, b, and σ are positive constants. Suppose an initial condition R(t) = r is
given. Although there is no formula for R(T ), there is one and only one solution
to this differential equation starting from the given initial condition. This solution
can be approximated by Monte Carlo simulation, and many of its properties can be
determined, even though we do not have an explicit formula for it. For instance, in
Example 4.4.11, the mean and variance of R(T ) were computed when the initial time
is t = 0 and the initial interest rate is R(0).

Unlike the interest rate in the Hull-White model, the interest rate in the Cox-
Ingersoll-Ross model cannot take negative values. When the interest rate approaches
zero, the term σ

√
R(u)dW̃ (u) also approaches zero. With the volatility disappearing,

the behavior of the interest rate near zero depends on the drift term a−bR(u), and this
is a > 0 when R(u) = 0. The positive drift prevents the interest rate from crossing
zero into negative territory.

More information about the solution to (6.2.5) is provided in Exercise 6.6 and
Remark 6.9.1 following that exercise.

¤

6.3 The Markov Property

Consider the stochastic differential equation (6.2.1). Let 0 ≤ t ≤ T be given, and let
h(y) be a Borel-measurable function. Denote by

g(t, x) = Et,xh
(
X(T )

)
(6.3.1)

the expectation of h
(
X(T )

)
, where X(T ) is the solution to (6.2.1) with initial con-

dition X(t) = x. (We assume that Et,x|h(
X(T )

)| < ∞.) Note that there is nothing
random about g(t, x); it is an ordinary (actually, Borel-measurable) function of the
two dummy variables t and x.

If we do not have an explicit formula for the distribution of X(T ), we could com-
pute g(t, x) numerically by beginning at X(t) = x and simulating the stochastic dif-
ferential equation. One way to do this would be to use the Euler method, a particular
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type of Monte Carlo method: choose a small positive step size δ, and then set

X(t + δ) = x + β(t, x)δ + γ(t, x)
√

δε1,

where ε1 is a standard normal random variable. Then set

X(t + 2δ) = X(t + δ) + β
(
t + δ,X(t + δ)

)
δ + γ

(
t + δ,X(t + δ)

)√
δε2,

where ε2 is a standard normal random variable independent of ε1. By this device,
one eventually determines a value for X(T ) (assuming δ is chosen so that T−t

δ is an
integer). This gives one realization of X(T ) (corresponding to one ω). Now repeat
this process many times and compute the average of h(X(T )) over all these simula-
tions to get an approximate value for g(t, x). Note that if one were to begin with a
different time t and initial value x, one would get a different answer (i.e., the answer
is a function of t and x). This dependence on t and x is emphasized by the notation
Et,x in (6.3.1).

Theorem 6.3.1. Let X(u), u ≥ 0, be a solution to the stochastic differential equation
(6.2.1) with initial condition given at time 0. Then, for 0 ≤ t ≤ T ,

E
[
h(X(T ))|F(t)

]
= g

(
t,X(t)

)
. (6.3.2)

While the details of the proof of Theorem 6.3.1 are quite technical and will not be
given, the intuitive content is clear. Suppose the process X(u) begins at time zero,
being generated by the stochastic differential equation (6.2.1), and one watches it
up to time t. Suppose now that one is asked, based on this information, to compute
the conditional expectation of h(X(T )), where T ≥ t. Then one should pretend that
the process is starting at time t at its current position, generate the solution to the
stochastic differential equation corresponding to this initial condition, and compute
the expected value of h(X(T )) generated in this way. In other words, replace X(t)

by a dummy x in order to hold it constant, compute g(t, x) = Et,xh(X(T )), and after
computing this function put the random variable X(t) back in place of the dummy x.
This is the procedure set forth in the Independence Lemma, Lemma 2.3.4, and it is
applicable here because the value of X(T ) is determined by the value of X(t), which
is F(t)-measurable, and the increments of the Brownian motion between times t and
T , which are independent of F(t).

Notice in the discussion above that although one watches the stochastic process
X(u) for 0 ≤ u ≤ t, the only relevant piece of information when computing E

[
h(X(T ))|F(t)

]

is the value of X(t). This means that X(t) is a Markov process (see Definition 2.3.6).
We highlight this fact as a corollary.

Corollary 6.3.2. Solutions to stochastic differential equations are Markov processes.

6.4 Partial Differential Equations

The Feynman-Kac Theorem below relates stochastic differential equations and par-
tial differential equations. When this partial differential equation is solved (usually
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numerically), it produces the function g(t, x) of (6.3.1). The Euler method described
in the previous section for determining this function converges slowly and gives the
function value for only one pair (t, x). Numerical algorithms for solving equation
(6.4.1) below converge quickly in the case of one-dimensional x being considered
here and give the function g(t, x) for all values of (t, x) simultaneously. The rela-
tionship between geometric Brownian motion and the Black-Scholes-Merton partial
differential equation is a special case of the relationship between stochastic differen-
tial equations and partial differential equations developed in the following theorems.

Theorem 6.4.1 (Feynman-Kac). Consider the stochastic differential equation

dX(u) = β
(
u,X(u)

)
du + γ

(
u,X(u)

)
dW (u). (6.2.1)

Let h(y) be a Borel-measurable function. Fix T > 0, and let t ∈ [0, T ] be given.
Define the function

g(t, x) = Et,xh(X(T )). (6.3.1)

(We assume that Et,x|h(X(T ))| < ∞ for all t and x.) Then g(t, x) satisfies the partial
differential equation

gt(t, x) + β(t, x)gx(t, x) +
1

2
γ2(t, x)gxx(t, x) = 0 (6.4.1)

and the terminal condition

g(T, x) = h(x) for all x. (6.4.2)

The proof of the Feynman-Kac Theorem depends on the following lemma.

Lemma 6.4.2. Let X(u) be a solution to the stochastic differential equation (6.2.1)
with initial condition given at time 0. Let h(y) be a Borel-measurable function, fix
T > 0, and let g(t, x) be given by (6.3.1). Then the stochastic process

g(t,X(t)), 0 ≤ t ≤ T,

is a martingale.

Proof. Let 0 ≤ s ≤ t ≤ T be given. Theorem 6.3.1 implies

E
[
h(X(T ))|F(s)

]
= g(s,X(s)),

E
[
h(X(T ))|F(t)

]
= g(t,X(t)).

Take conditional expectations of the second equation, using iterated conditioning and
the first equation, to obtain

E
[
g(t,X(t))|F(s)

]
= E

[
E[h(X(T ))|F(t)]|F(s)

]

= E
[
h(X(T ))|F(s)

]

= g(s,X(s)).
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OUTLINE OF PROOF OF THEOREM 6.4.1: Let X(t) be the solution to the stochas-
tic differential equation (6.2.1) starting at time zero. Since g(t,X(t)) is a martingale,
the net dt term in the differential dg(t,X(t)) must be zero. If it were positive at any
time, then g(t,X(t)) would have a tendency to rise at that time; if it were negative,
g(t,X(t)) would have a tendency to fall. Omitting the argument (t,X(t)) in several
places below, we compute

dg
(
t,X(t)

)
= gtdt + gxdX +

1

2
gxxdXdX

= gtdt + βgxdt + γgxdW +
1

2
γ2gxxdt

=

[
gt + βgx +

1

2
γ2gxx

]
dt + γgxdW.

Setting the dt term to zero and putting back the argument (t,X(t)), we obtain

gt

(
t,X(t)

)
+ β

(
t,X(t)

)
gx

(
t,X(t)

)
+

1

2
γ2

(
t,X(t)

)
gxx

(
t,X(t)

)
= 0

along every path of X. Therefore,

gt(t, x) + β(t, x)gx(t, x) +
1

2
γ2(t, x)gxx(t, x) = 0

at every point (t, x) that can be reached by (t,X(t)). For example, if X(t) is a geomet-
ric Brownian motion, then (6.4.1) must hold for every t ∈ [0, T ) and every x > 0. On
the other hand, if X(t) is a Hull-White interest rate process, which can take any posi-
tive or negative value, then (6.4.1) must hold for every t ∈ [0, T ) and every x ∈ R.

The general principle behind the proof of the Feynman-Kac theorem is:

1. find the martingale,

2. take the differential, and

3. set the dt term equal to zero.

This gives a partial differential equation, which can then be solved numerically. We
illustrate this three-step procedure in the following theorem and subsequent exam-
ples.

Theorem 6.4.3 (Discounted Feynman-Kac). Consider the stochastic differential equa-
tion

dX(u) = β
(
u,X(u)

)
du + γ

(
u,X(u)

)
dW (u). (6.4.3)

Let h(y) be a Borel-measurable function and let r be constant. Fix T > 0, and let
t ∈ [0, T ] be given. Define the function

f(t, x) = Et,x
[
e−r(T−t)h(X(T ))

]
. (6.2.1)

(We assume that Et,x|h(X(T ))| < ∞ for all t and x.) Then f(t, x) satisfies the partial
differential equation

ft(t, x) + β(t, x)fx(t, x) +
1

2
δ2(t, x)fxx(t, x) = rf(t, x) (6.4.4)
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and the terminal condition

f(T, x) = h(x) for all x. (6.4.5)

OUTLINE OF PROOF: Let X(t) be the solution to the stochastic differential equation
(6.2.1) starting at time zero. Then

f
(
t,X(t)

)
= E

[
e−r(T−t)h(X(T ))|F(t)

]
.

However, it is not the case that f(t,X(t)) is a martingale. Indeed, if 0 ≤ s ≤ t ≤ T ,
then

E
[
f
(
t,X(t)

)|F(s)
]

= E
[
E

[
e−r(T−t)h(X(T ))|F(t)

]∣∣∣F(s)
]

= E
[
e−r(T−t)h(X(T ))|F(s)

]
,

which is not the same as

f
(
s,X(s)

)
= E

[
e−r(T−s)h(X(T ))|F(s)

]
.

because of the differing discount terms. The difficulty here is that in order to get
the martingale property from iterated conditioning, we need the random variable be-
ing estimated not to depend on t, the time of the conditioning. To achieve this, we
“complete the discounting,” observing that

e−rtf
(
t,X(t)

)
= E

[
e−rT h(X(T ))|F(t)

]
.

We may now apply iterated conditioning to show that e−rtf
(
t,X(t)

)
is a martingale.

The differential of this martingale is

d
(
e−rtf

(
t,X(t)

))
= e−rt

[
−rfdt + ftdt + fxdX +

1

2
fxxdXdX

]

= e−rt

[
−rf + ft + βfx +

1

2
γ2fxx

]
dt + e−rtγfxdW.

Setting the dt term equal to zero, we obtain (6.4.4).

Example 6.4.4. (Options on a geometric Brownian motion).

Let h(S(T )) be the payoff at time T of a derivative security whose underlying asset
is the geometric Brownian motion

dS(u) = αS(u)du + σS(u)dW (u). (6.4.6)

We may rewrite this as

dS(u) = rS(u)du + σS(u)dW̃ (u), (6.4.7)

where W̃ (u) is a Brownian motion under the risk-neutral probability measure P̃. Here
we assume that σ and the interest rate r are constant. According to the risk-neutral
pricing formula (5.2.31), the price of the derivative security at time t is

V (t) = Ẽ
[
e−r(T−t)h(S(T ))|F(t)

]
. (6.4.8)
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Because the stock price is Markov and the payoff is a function of the stock price
alone, there is a function v(t, x) such that V (t) = v(t, S(t)). Moreover, the function
v(t, x) must satisfy the discounted partial differential equation (6.4.4). This is the
Black-Scholes-Merton equation

vt(t, x) + rxvx(t, x) +
1

2
σ2x2vxx(t, x) = rv(t, x). (6.4.9)

When the underlying asset is a geometric Brownian motion, this is the right pricing
equation for a European call, a European put, a forward contract, and any other option
that pays off some function of S(T ) at time T .

Note that to derive (6.4.9) we use the discounted partial differential equation
(6.4.4) when the stochastic differential equation for the underlying process is (6.4.7)
rather than (6.4.6) (i.e., we have rxvx(t, x) in (6.4.9) rather than αxvx(t, x)). This
is because we are computing the conditional expectation in (6.4.8) under the risk-
neutral measure P̃ and hence must use the differential equation that represents S(u)

in terms of W̃ (u), the Brownian motion under P. In other words, we are using the
Discounted Feynman-Kac Theorem with W̃ (u) replacing W (u) and P̃ replacing P.

¤

In the previous example, if σ were a function of time and stock price (i.e., σ(t, x)),
then the stock price would no longer be a geometric Brownian motion and the Black-
Scholes-Merton formula would no longer apply. However, one can still solve for
the option price by solving the partial differential equation (6.4.9), where now the
constant σ2 is replaced by σ2(t, x):

vt(t, x) + rxvx(t, x) +
1

2
σ2(t, x)x2vxx(t, x) = rv(t, x). (6.4.10)

This equation is not difficult to solve numerically.
It has been observed in markets that if one assumes a constant volatility, the param-

eter σ that makes the theoretical option price given by (6.4.9) agree with the market
price, the so-called implied volatility, is different for options having different strikes.
In fact, this implied volatility is generally a convex function of the strike price. One
refers to this phenomenon as the volatility smile.

One simple model with nonconstant volatility is the constant elasticity of variance
(CEV) model, in which σ(t, x) = σxδ−1 depends on x but not t. The parameter
δ ∈ (0, 1) is chosen so that the model gives a good fit to option prices across different
strikes at a single expiration date. For this model, the stock price is governed by the
stochastic differential equation

dS(t) = rS(t)dt + σSδ(t)dW̃ (t).

The volatility σSδ−1(t) is a decreasing function of the stock price.
When one wishes to account for different volatilities implied by options expiring

at different dates as well as different strikes, one needs to allow σ to depend on t as
well as x. This function σ(t, x) is called the volatility surface (see Exercise 6.10).
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6.5 Interest Rate Models

The simplest models for fixed income markets begin with a stochastic differential
equation for the interest rate, e.g.,

dR(t) = β
(
t, R(t)

)
dt + γ

(
t, R(t)

)
dW̃ (t), (6.5.1)

where W̃ (t) is a Brownian motion under a risk-neutral probability measure P̃. In
these models, one begins with a risk-neutral measure P̃ and uses the risk-neutral
pricing formula to price all assets. This guarantees that discounted asset prices are
martingales under the risk-neutral measure, and hence there is no arbitrage. The issue
of calibration of these models (i.e., choosing the model and the model parameters so
that they give a good fit to market prices) is not discussed in this text.

Models for the interest rate R(t) are sometimes called short-rate models because
R(t) is the interest rate for short-term borrowing. When the interest rate is determined
by only one stochastic differential equation, as is the case in this section, the model
is said to have one factor. The primary shortcoming of one-factor models is that they
cannot capture complicated yield curve behavior; they tend to produce parallel shifts
in the yield curve but not changes in its slope or curvature.

The discount process is as given in (5.2.17),

D(t) = e−
R t

0
R(s)ds,

and we denote the money market account price process to be
1

D(t)
= e

R t

0
R(s)ds.

This is the value at time t of one unit of currency invested in the money market
account at time zero and continuously rolled over at the short-term interest rate R(s),
s ≥ 0. As discussed following (5.2.18), we have the differential formulas

dD(t) = −R(t)D(t)dt, d

(
1

D(t)

)
=

R(t)

D(t)
dt.

A zero-coupon bond is a contract promising to pay a certain “face” amount, which
we take to be 1, at a fixed maturity date T . Prior to that, the bond makes no payments.
The risk-neutral pricing formula (5.2.30) says that the discounted price of this bond
should be a martingale under the risk-neutral measure. In other words, for 0 ≤ t ≤ T ,
the price of the bond B(t, T ) should satisfy

D(t)B(t, T ) = Ẽ
[
D(T )|F(t)

]
. (6.5.2)

(Note that B(T, T ) = 1.) This gives us the zero-coupon bond pricing formula

B(t, T ) = Ẽ
[
e−
R T

t
R(s)ds

∣∣F(t)
]
, (6.5.3)

which we take as a definition. Once zero-coupon bond prices have been computed,
we can define the yield between times t and T to be

Y (t, T ) = − 1

T − t
log B(t, T )
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or, equivalently,
B(t, T ) = e−Y (t,T )(T−t).

The yield Y (t, T ) is the constant rate of continuously compounding interest between
times t and T that is consistent with the bond price B(t, T ). The 30-year rate at time
t is Y (t, 30 + t); this is an example of a long rate. Notice that once we adopt a model
(6.5.1) for the short rate, the long rate is determined by the formulas above; we may
not model the long rate separately.

Since R is given by a stochastic differential equation, it is a Markov process and
we must have

B(t, T ) = f
(
t, R(t)

)

for some function f(t, r) of the dummy variables t and r. This is a slight step beyond
the way we have used the Markov property previously because the random variable
e−
R T

t
R(s)ds being estimated in (6.5.3) depends on the path segment R(s), t ≤ s ≤ T ,

not just on R(T ). However, the only relevant part of the path of R before time t is its
value at time t, and so the bond price B(t, T ) must be a function of time t and R(t).

To find the partial differential equation for the unknown function f(t, r), we find a
martingale, take its differential, and set the dt term equal to zero. The martingale in
this case is D(t)B(t, T ) = D(t)f

(
t, R(t)

)
. Its differential is

d
(
D(t)f

(
t, R(t)

))
= f

(
t, R(t)

)
dD(t) + D(t)df

(
t, R(t)

)

= D(t)

[
−Rfdt + ftdt + frdR +

1

2
frrdRdR

]

= D(t)

[
−Rf + ft + βfr +

1

2
γ2frr

]
dt + D(t)γfrdW̃ .

Setting the dt term equal to zero, we obtain the partial differential equation

ft(t, r) + β(t, r)fr(t, r) +
1

2
γ2(t, r)frr(t, r) = rf(t, r). (6.5.4)

We also have the terminal condition

f(T, r) = 1 for all r (6.5.5)

because the value of the bond at maturity is its face value 1.

Example 6.5.1. (Hull-White interest rate model).

In the Hull-White model, the evolution of the interest rate is given by

dR(t) =
(
a(t)− b(t)R(t)

)
dt + σ(t)dW̃ (t),

where a(t), b(t), and σ(t) are nonrandom positive functions of time. The partial dif-
ferential equation (6.5.4) for the zero-coupon bond price becomes

ft(t, r) +
(
a(t)− b(t)r

)
fr(t, r) +

1

2
σ2(t)frr(t, r) = rf(t, r). (6.5.6)

We initially guess and subsequently verify that the solution has the form

f(t, r) = e−rC(t,T )−A(t,T )
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for some nonrandom functions C(t, T ) and A(t, T ) to be determined. These are func-
tions of t ∈ [0, T ]; the maturity T is fixed. In this case, the yield

Y (t, T ) = − 1

T − t
log f(t, r) =

1

T − t

(
rC(t, T ) + A(t, T )

)

is an affine function of r (i.e., a number times r plus another number). The Hull-White
model is a special case of a class of models called affine yield models.

Furthermore,

ft(t, r) =
(− rC ′(t, T )− A′(t, T )

)
f(t, r),

fr(t, r) = −C(t, T )f(t, r),

frr(t, r) = C2(t, T )f(t, r),

where C ′(t, T ) = ∂
∂tC(t, T ) and A′(t, T ) = ∂

∂tA(t, T ). Substitution into the partial
differential equation (6.5.6) gives
[(− C ′(t, T ) + b(t)C(t, T )− 1

)
r − A′(t, T )− a(t)C(t, T ) +

1

2
σ2(t)C2(t, T )

]
f(t, r) = 0.

(6.5.7)
Because this equation must hold for all r, the term that multiplies r in this equation
must be zero. Otherwise, changing the value of r would change the value of the left-
hand side of (6.5.7), and hence it could not always be equal to zero. This gives us an
ordinary differential equation in t:

C ′(t, T ) = b(t)C(t, T )− 1. (6.5.8)

Setting this term equal to zero in (6.5.7), we now see that

A′(t, T ) = −a(t)C(t, T ) +
1

2
σ2(t)C2(t, T ). (6.5.9)

The terminal condition (6.5.5) must hold for all r, and this implies that C(T, T ) =

A(T, T ) = 0. Equations (6.5.8) and (6.5.9) and these terminal conditions provide
enough information to determine the functions A(t, T ) and C(t, T ) for 0 ≤ t ≤ T .
They are

C(t, T ) =

∫ T

t
e−
R s

t
b(v)dvds, (6.5.10)

A(t, T ) =

∫ T

t

(
a(s)C(s, T )− 1

2
σ2(s)C2(s, T )

)
ds. (6.5.11)

It is clear that these formulas give functions that satisfy C(T, T ) = A(T, T ) = 0.
The verification that these formulas provide the unique solutions to (6.5.8) and (6.5.9)
is Exercise 6.3. In conclusion, we have derived an explicit formula for the price of a
zero-coupon bond as a function of the interest rate in the Hull-White model. It is

B(t, T ) = e−R(t)C(t,T )−A(t,T ), 0 ≤ t ≤ T,

where C(t, T ) and A(t, T ) are given by (6.5.10) and (6.5.11).
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Example 6.5.2. (Cox-Ingersoll-Ross interest rate model).

In the CIR model, the evolution of the interest rate is given by

dR(t) =
(
a− bR(t)

)
dt + σ

√
R(t)dW̃ (t),

where a, b, and σ are positive constants. The partial differential equation (6.5.4) for
the bond price becomes

ft(t, r) + (a− br)fr(t, r) +
1

2
σ2rfrr(t, r) = rf(t, r). (6.5.12)

Again, we initially guess and subsequently verify that the solution has the form

f(t, r) = e−rC(t,T )−A(t,T ).

The Cox-Ingersoll-Ross model is another example of an affine yield model. Substi-
tution into the differential equation (6.5.12) gives

[(
−C ′(t, T ) + bC(t, T ) +

1

2
σ2C2(t, T )− 1

)
r − A′(t, T )− aC(t, T )

]
f(t, r) = 0.

(6.5.13)
We can again conclude that the term multiplying r must be zero and then conclude
that the other term must also be zero, thereby obtaining two ordinary differential
equations in t:

C ′(t, T ) = bC(t, T ) +
1

2
σ2C2(t, T )− 1, (6.5.14)

A′(t, T ) = −aC(t, T ). (6.5.15)

The solutions to these equations satisfying the terminal conditions C(T, T ) = A(T, T ) =

0 are

C(t, T ) =
sinh

(
γ(T − t)

)

γ cosh
(
γ(T − t)

)
+ 1

2b sinh
(
γ(T − t)

) , (6.5.16)

A(t, T ) = −2a

σ2
log

[
γe

1
2
b(T−t)

γ cosh
(
γ(T − t)

)
+ 1

2b sinh
(
γ(T − t)

)
]

, (6.5.17)

where γ = 1
2

√
b2 + 4σ2, sinh u = eu−e−u

2 , and cosh u = eu+e−u

2 . The verification of this
assertion is Exercise 6.4.

¤

Example 6.5.3. (Option on a bond).

Consider the general short-rate model (6.5.1). Let 0 ≤ t ≤ T1 < T2 be given. In
this example, the fixed time T2 is the maturity date for a zero-coupon bond. The fixed
time T1 is the expiration date for a European call on this bond. We wish to determine
the value of this call at time t.
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Suppose we have solved for the function f(t, r) satisfying the partial differential
equation (6.5.4) together with the terminal condition (6.5.5). This gives us the price
of the zero-coupon bond as a function of time and the underlying interest rate.

According to the risk-neutral pricing formula (5.2.31) and the Markov property,
the value of the call at time t is

c(t, R(t)) = Ẽ
[
e−
R T1

t
R(s)ds

(
f
(
T1, R(T1)

)−K
)+

∣∣∣F(t)
]

=
1

D(t)
Ẽ

[
D(T1)

(
f
(
T1, R(T1)

)−K
)+

∣∣∣F(t)
]

for some function c(t, r) of the dummy variables t and r. The discounted call price

D(t)c(t, R(t)) = Ẽ
[
D(T1)

(
f
(
T1, R(T1)

)−K
)+

∣∣∣F(t)
]
, 0 ≤ t ≤ T1,

is a martingale. The differential of the discounted call price is

d
(
D(t)c(t, R(t))

)
= c(t, R(t))dD(t) + D(t)dc(t, R(t))

= D

[
−Rcdt + ctdt + crdR +

1

2
crrdRdR

]

= D

[
−Rc + ct + βcr +

1

2
γ2crr

]
dt + DγcrdW̃ .

Setting the dt term to zero, we obtain the partial differential equation

ct(t, r) + β(t, r) + cr(t, r) +
1

2
γ2(t, r)crr(t, r) = rc(t, r).

This is the same partial differential equation that governs f(t, r). However, c(t, r) and
f(t, r) have different terminal conditions. The terminal condition for c(t, r) is

c(T1, r) =
(
f(T1, r)−K

)+ for all r.

One can use these conditions to numerically determine the call price function c(t, r).

¤

6.6 Multidimensional Feynman-Kac Theorems

The Feynman-Kac and Discounted Feynman-Kac Theorems, Theorems 6.4.1 and
6.4.3, have multidimensional versions. The number of differential equations and
the number of Brownian motions entering those differential equations can both be
larger than one and do not need to be the same. We illustrate the general situation
by working out the details for two stochastic differential equations driven by two
Brownian motions.

Let W (t) =
(
W1(t),W2(t)

)
be a two-dimensional Brownian motion (i.e., a vector

of two independent, one-dimensional Brownian motions). Consider two stochastic
differential equations

dX1(u) = β1

(
u,X1(u), X2(u)

)
du + γ11

(
u,X1(u), X2(u)

)
dW1(u)

+ γ12

(
u,X1(u), X2(u)

)
dW2(u),

dX2(u) = β2

(
u,X1(u), X2(u)

)
du + γ21

(
u,X1(u), X2(u)

)
dW1(u)

+ γ22

(
u,X1(u), X2(u)

)
dW2(u).
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The solution to this pair of stochastic differential equations, starting at X1(t) = x1

and X2(t) = x2, depends on the specified initial time t and the initial positions x1 and
x2. Regardless of the initial condition, the solution is a Markov process.

Let a Borel-measurable function h(y1, y2) be given. Corresponding to the initial
condition t, x1, x2, where 0 ≤ t ≤ T , we define

g(t, x1, x2) = Et,x1,x2h
(
X1(T ), X2(T )

)
, (6.6.1)

f(t, x1, x2) = Et,x1,x2

[
e−r(T−t)h

(
X1(T ), X2(T )

)]
. (6.6.2)

Then

gt +β1gx1 +β2gx2 +
1

2
(γ2

11 + γ2
12)gx1x1 +(γ11γ21 + γ12γ22)gx1x2 +

1

2
(γ2

21 + γ2
22)gx2x2 = 0,

(6.6.3)
ft +β1fx1 +β2fx2 +

1

2
(γ2

11 +γ2
12)fx1x1 +(γ11γ21 +γ12γ22)fx1x2 +

1

2
(γ2

21 +γ2
22)fx2x2 = rf.

(6.6.4)
Of course, these functions also satisfy the terminal conditions

g(T, x1, x2) = f(T, x1, x2) = h(x1, x2) for all x1 and x2.

Equations (6.6.3) and (6.6.4) are derived by starting the pair of processes X1, X2

at time zero, observing that the processes g
(
t,X1(t), X2(t)

)
and e−rtf

(
t,X1(t), X2(t)

)

are martingales, taking their differentials, and setting the dt terms equal to zero.
When taking the differentials, one uses the fact that W1 and W2 are independent.
We leave the details to the reader in Exercise 6.5. This exercise also provides the
counterparts of (6.6.3) and (6.6.4) when W1 and W2 are correlated Brownian mo-
tions.

Example 6.6.1. (Asian option).

We show by example how the Discounted Feynman-Kac Theorem can be used
to find prices and hedges, even for path-dependent options. The option we choose
for this example is an Asian option. A more detailed discussion of this option is
presented in Section 7.5. The payoff we consider is

V (T ) =

(
1

T

∫ T

0
S(u)du−K

)+

,

where S(u) is a geometric Brownian motion, the expiration time T is fixed and pos-
itive, and K is a positive strike price. In terms of the Brownian motion W̃ (u) under
the risk-neutral measure P̃, we may write the stochastic differential equation for S(u)

as
dS(u) = rS(u)du + σS(u)dW̃ (u). (6.6.5)

Because the payoff depends on the whole path of the stock price via its integral, at
each time t prior to expiration it is not enough to know just the stock price in order to
determine the value of the option. We must also know the integral of the stock price,

Y (t) =

∫ t

0
S(u)du,
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up to the current time t. Similarly, it is not enough to know just the integral Y (t). We
must also know the current stock price S(t). Indeed, for the same value of Y (t), the
Asian option is worth more for high values of S(t) than for low values because the
high values of S(t) make it more likely that the option will have a high payoff.

For the process Y (u), we have the stochastic differential equation

dY (u) = S(u)du. (6.6.6)

Because the pair of processes
(
S(u), Y (u)

)
is given by the pair of stochastic dif-

ferential equations (6.6.5) and (6.6.6), the pair of processes
(
S(u), Y (u)

)
is a two-

dimensional Markov process.
Note that Y (u) alone is not a Markov process because its stochastic differential

equation involves the process S(u). However, the pair
(
S(u), Y (u)

)
is Markov be-

cause the pair of stochastic differential equations for these pro- cesses involves only
these processes (and, of course, the driving Brownian motion W̃ (u)).

If we use (6.6.5) and (6.6.6) to generate the processes S(u) and Y (u) starting with
initial values S(0) > 0 and Y (0) = 0 at time zero, then the payoff of the Asian option
at expiration time T is V (T ) =

(
1
T Y (T )−K

)+. According to the risk-neutral pricing
formula (5.2.31), the value of the Asian option at times prior to expiration is

V (t) = Ẽ

[
e−r(T−t)

(
1

T
Y (T )−K

)+
∣∣∣∣∣F(t)

]
, 0 ≤ t ≤ T.

Because the pair of processes
(
S(u), Y (u)

)
is Markov, this can be written as some

function of the time variable t and the values at time t of these processes. In other
words, there is a function v(t, x, y) such that

v
(
t, S(t), Y (t)

)
= V (t) = Ẽ

[
e−r(T−t)

(
1

T
Y (T )−K

)+
∣∣∣∣∣F(t)

]
.

Note that this function must satisfy the terminal condition

v(T, x, y) =
( y

T
−K

)+
for all x and y. (6.6.7)

Using iterated conditioning, it is easy to see that the discounted option value
e−rtv

(
t, S(t), Y (t)

)
is martingale. Its differential is

d
(
e−rtv(t, S(t), Y (t))

)

= e−rt

[
−rvdt + vtdt + vxdS + vydY +

1

2
vxxdSdS + vxydSdY +

1

2
vyydY dY

]

= e−rt

[
−rvdt + vtdt + vx

(
rSdt + σSdW̃

)
+ vySdt +

1

2
σ2S2vxxdt

]

= e−rt
[
− rv

(
t, S(t), Y (t)

)
+ vt

(
t, S(t), Y (t)

)
+ rS(t)vx

(
t, S(t), Y (t)

)

+ S(t)vy

(
t, S(t), Y (t)

)
+

1

2
σ2S2(t)vxx

(
t, S(t), Y (t)

)]
dt

+ e−rtσS(t)vx

(
t, S(t), Y (t)

)
dW̃ (t).

(6.6.8)
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Because the discounted option price is a martingale, the dt term in this differential
must be zero. We obtain the partial differential equation

vt(t, x, y) + rxvx(t, x, y) + xvy(t, x, y) +
1

2
σ2x2vxx(t, x, y) = rv(t, x, y). (6.6.9)

This is an example of the Discounted Feynman-Kac Theorem, a special case of equa-
tion (6.6.4). In particular, (6.6.8) simplifies to

d
(
e−rtv(t, S(t), Y (t))

)
= e−rtσS(t)vx

(
t, S(t), Y (t)

)
dW̃ (t). (6.6.10)

Recall from (5.2.27) that the discounted value of a portfolio satisfies the equation

d
(
e−rtX(t)

)
= e−rtσS(t)∆(t)dW̃ (t). (6.6.11)

If we sell the Asian option at time zero for v(0, S(0), 0) and use this as the initial
capital for a hedging portfolio (i.e., take X(0) = v(0, S(0), 0)), and at each time t use
the portfolio process ∆(t) = vx(t, S(t), Y (t)), then we will have

d
(
e−rtX(t)

)
= d

(
e−rtv(t, S(t), Y (t))

)

for all times t, and hence

X(T ) = v
(
T, S(T ), Y (T )

)
=

(
1

T
Y (T )−K

)+

.

This procedure hedges a short position in the Asian option. We have obtained the
usual formula that the number of shares held to hedge a short position in the option is
the derivative of the option value with respect to the underlying stock price. However,
the Asian option price is the solution to a partial differential equation that contains a
term xvy(t, x, y) that does not appear in the partial differential equation for the price
of a European option.

¤

6.7 Summary

When the underlying price of an asset is given by a stochastic differential equation,
the asset price is Markov and the price of any non-path-dependent derivative secu-
rity based on that asset is given by a partial differential equation. In order to price
path-dependent securities, one first seeks to determine the variables on which the
path-dependent payoff depends and then introduce one or more additional stochastic
differential equations in order to have a system of such equations that describes the
relevant variables. If this can be done, then again the price of the derivative security
is given by a partial differential equation.

This leads to the following four-step procedure for finding the pricing differential
equation and for constructing a hedge for a derivative security.
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1. Determine the variables on which the derivative security price depends. In ad-
dition to time t, these are the underlying asset price S(t) and possibly other
stochastic processes. We call these stochastic processes the state processes. One
must be able to represent the derivative security payoff in terms of these state
processes.

2. Write down a system of stochastic differential equations for the state processes.
Be sure that, except for the driving Brownian motions, the only random pro-
cesses appearing on the right-hand sides of these equations are the state pro-
cesses themselves. This ensures that the vector of state processes is Markov.

3. The Markov property guarantees that the derivative security price at each time
is a function of time and the state processes at that time. The discounted option
price is a martingale under the risk-neutral measure. Compute the differential of
the discounted option price, set the dt term equal to zero, and obtain thereby a
partial differential equation.

4. The terms multiplying the Brownian motion differentials in the discounted deriva-
tive security price differential must be matched by the terms multiplying the
Brownian motion differentials in the evolution of the hedging portfolio value;
see (5.4.27). Matching these terms determines the hedge for a short position in
the derivative security.

6.8 Notes

Conditions for the existence and uniqueness of solutions to stochastic differential
equations are provided by Karatzas and Shreve [101], Chapter 5, Section 2, who also
show in Chapter 5, Section 4, that solutions to stochastic differential equations have
the Markov property. This is based on work of Stroock and Varadhan [151]. The
ideas behind the Feynman-Kac Theorem, although not the presentation we give here,
trace back to Feynman [65] and Kac [99].

Hull and White presented their interest rate model in [88], in which they general-
ized a model of Vasicek [154] to allow time-varying coefficients. The origin of the
Cox-Ingersoll-Ross model is [41], where one can find a closed-form formula for the
distribution of the interest rate in the model. These are examples of affine-yield mod-
els, a class identified by Duffie and Kan [58]. They are sometimes called multifactor
CIR models.

Example 6.6.1 obtains a partial differential equation for the price of an Asian
option but does not address computational issues. In the form given here, the equation
is difficult to handle numerically. Vecer [156] and Rogers and Shi [139] present
transformations of this equation that are numerically more stable. See also Andreasen
[4] for an application of the change-of-numéraire idea of Chapter 9 to discretely
sampled Asian options. The transformation of Vecer and its use for both continuously
sampled and discretely sampled Asian options is presented in Section 7.5.
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The Heston stochastic volatility model of Exercise 6.7 is taken from Heston [84].
Exercise 6.10 on implying the volatility surface comes from Dupire [61]. The same
idea for binomial trees was worked out by Derman et al. [50], [51].

6.9 Exercises

Exercise 6.1.

Consider the stochastic differential equation

dX(u) =
(
a(u) + b(u)X(u)

)
du +

(
γ(n) + σ(u)X(u)

)
dW (u), (6.2.4)

where W (u) is a Brownian motion relative to a filtration F(u), u ≥ 0, and we allow
a(u), b(u), γ(u), and σ(u) to be processes adapted to this filtration. Fix an initial time
t ≥ 0 and an initial position x ∈ R. Define

Z(u) = exp

{∫ u

t
σ(v)dW (v) +

∫ u

t

(
b(v)− 1

2
σ2(v)

)
dv

}
,

Y (u) = x +

∫ u

t

a(v)− σ(v)γ(v)

Z(v)
dv +

∫ u

t

γ(v)

Z(v)
dW (v).

(i) Show that Z(t) = 1 and

dZ(u) = b(u)Z(u)du + σ(u)Z(u)dW (u), u ≥ t.

(ii) By its very definition, Y (u) satisfies Y (t) = x and

dY (u) =
a(u)− σ(u)γ(u)

Z(u)
du +

γ(u)

Z(u)
dW (u), u ≥ t.

Show that X(u) = Y (u)Z(u) solves the stochastic differential equation (6.2.4)
and satisfies the initial condition X(t) = x.

Exercise 6.2 (No-arbitrage derivation of bond-pricing equation).

In Section 6.5, we began with the stochastic differential equation (6.5.1) for the
interest rate under the risk-neutral measure P̃, used the risk-neutral pricing formula
(6.5.3) to consider a zero-coupon bond maturing at time T whose price B(t, T ) at time
t before maturity is a function f

(
t, R(t)

)
of the time and the interest rate, and derived

the partial differential equation (6.5.4) for the function f(t, r). In this exercise, we
show how to derive this partial differential equation from no-arbitrage considerations
rather than by using the risk-neutral pricing formula.

Suppose the interest rate is given by a stochastic differential equation

dR(t) = α
(
t, R(t)

)
dt + γ

(
t, R(t)

)
dW (t), (6.9.1)

where W (t) is a Brownian motion under a probability measure P not assumed to be
risk-neutral. Assume further that, for each T , the T -maturity zero-coupon bond price
is a function f

(
t, R(t), T

)
of the current time t, the current interest rate R(t), and
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the maturity of the bond T . We do not assume that this bond price is given by the
risk-neutral pricing formula (6.5.3).

Assume for the moment that fr(t, r, T ) 6= 0 for all values of r and 0 ≤ t ≤ T , so
we can define

β(t, r, T ) = − 1

fr(t, r, T )

[
−rf(t, r, T ) + ft(t, r, T ) +

1

2
γ2(t, r)frr(t, r, T )

]
, (6.9.2)

and then have

ft(t, r, T ) + β(t, r, T )fr(t, r, T ) +
1

2
γ2(t, r)frr(t, r, T ) = rf(t, r, T ). (6.9.3)

Equation (6.9.3) will reduce to (6.5.4) for the function f(t, r, T ) if we can show that
β(t, r, T ) does not depend on T .

(i) Consider two maturities 0 ≤ T1 ≤ T2, and consider a portfolio that at each time
t ≤ T1 holds ∆1(t) bonds maturing at time T1 and ∆2(t) bonds maturing at time
T2, financing this by investing or borrowing at the interest rate R(t). Show that
the value of this portfolio satisfies

d
(
D(t)X(t)

)

= ∆1(t)D(t)
[
−R(t)f

(
t, R(t), T1

)
+ ft

(
t, R(t), T1

)

+ α
(
t, R(t)

)
fr

(
t, R(t), T1

)
+

1

2
γ2

(
t, R(t)

)
frr

(
t, R(t), T1

)]
dt

+ ∆2(t)D(t)
[
−R(t)f

(
t, R(t), T2

)
+ ft

(
t, R(t), T2

)

+ α
(
t, R(t)

)
fr

(
t, R(t), T2

)
+

1

2
γ2

(
t, R(t)

)
frr

(
t, R(t), T2

)]
dt

+ D(t)γ
(
t, R(t)

)[
∆1(t)fr

(
t, R(t), T1

)
+ ∆2(t)

(
t, R(t), T2

)]
dW (t)

= ∆1(t)D(t)
[
α
(
t, R(t)

)− β
(
t, R(t), T1

)]
fr

(
t, R(t), T1

)
dt

+ ∆2(t)D(t)
[
α
(
t, R(t)

)− β
(
t, R(t), T2

)]
fr

(
t, R(t), T2

)
dt

+ D(t)γ
(
t, R(t)

)[
∆1(t)fr

(
t, R(t), T1

)
+ ∆2(t)

(
t, R(t), T2

)]
dW (t).

(6.9.4)

(ii) Denote

sign(x)





1 if x > 0,

0 if x = 0,

−1 if x < 0,

and

S(t) = sign
{[

β
(
t, R(t), T2

)− β
(
t, R(t), T1

)]
fr

(
t, R(t), T1

)
fr

(
t, R(t), T2

)}
.

Show that the portfolio processes ∆1(t) = S(t)fr

(
t, R(t), T2

)
and ∆2(t) = −S(t)fr

(
t, R(t), T1

)

result in arbitrage unless β
(
t, R(t), T1

)
= β

(
t, R(t), T2

)
. Since T1 and T2 are ar-

bitrary, we conclude that β(t, r, T ) does not depend on T .
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(iii) Now let a maturity T > 0 be given and consider a portfolio ∆(t) that invests
only in the bond of maturity T , financing this by investing or borrowing at the
interest rate R(t). Show that the value of this portfolio satisfies

d
(
D(t)X(t)

)

= ∆(t)D(t)
[
−R(t)f

(
t, R(t), T

)
+ ft

(
t, R(t), T

)

+ α
(
t, R(t)

)
fr

(
t, R(t), T

)
+

1

2
γ2

(
t, R(t)

)
frr

(
t, R(t), T

)]
dt

+ D(t)∆(t)γ
(
t, R(t)

)
fr

(
t, R(t), T

)
dW (t).

(6.9.5)

Show that if fr(t, r, T ) = 0, then there is an arbitrage unless

fr(t, r, T ) +
1

2
γ2(t, r)frr(t, r, T ) = rf(t, r, T ). (6.9.6)

In other words, if fr(t, r, T ) = 0, then (6.9.3) must hold no matter how we
choose β(t, r, T ).

In conclusion, we have shown that if trading in the zero-coupon bonds presents no
arbitrage opportunity, then for all t, r, and T such that fr(t, r, T ) 6= 0, we can define
β(t, r) by (6.9.2) because the right-hand side of (6.9.2) does not depend on T . We
then have

ft(t, r, T ) + β(t, r)fr(t, r, T ) +
1

2
γ2(t, r)frr(t, r, T ) = rf(t, r, T ), (6.9.7)

which is (6.5.4) for the T -maturity bond. If fr(t, r, T ) = 0, then (6.9.6) holds, so
(6.9.7) must still hold, no matter how β(t, r) is defined. If we now change to a mea-
sure P̃ under which

W̃ (t) = W (t) +

∫ t

0

1

γ
(
u,R(u)

)[
α
(
u,R(u)

)− β
(
u,R(u)

)]
du

is a Brownian motion, then (6.9.1) can be rewritten as (6.5.1). The probability mea-
sure P̃ is risk-neutral.

Exercise 6.3 (Solution of Hull-White model).

This exercise solves the ordinary differential equations (6.5.8) and (6.5.9) to pro-
duce the solutions C(t, T ) and A(t, T ) given in (6.5.10) and (6.5.11).

(i) Use equation (6.5.8) with s replacing t to show that

d

ds

[
e−
R s

0
b(v)dvC(s, T )

]
= −e−

R s

0
b(v)dv.

(ii) Integrate the equation in (i) from s = t to s = T , and use the terminal condition
C(T, T ) to obtain (6.5.10).

(iii) Replace t by s in (6.5.9), integrate the resulting equation from s = t to s = T ,
use the terminal condition A(T, T ) = 0, and obtain (6.5.11).

Exercise 6.4 (Solution of Cox-Ingersoll-Ross model).
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This exercise solves the ordinary differential equations (6.5.14) and (6.5.15) to
produce the solutions C(t, T ) and A(t, T ) given in (6.5.16) and (6.5.17).

(i) Define the function

ϕ(t) = exp

{
1

2
σ2

∫ T

t
C(u, T )du

}
.

Show that

C(t, T ) = − 2ϕ′(t)
σ2ϕ(t)

, (6.9.8)

C ′(t, T ) = −2ϕ′′(t)
σ2ϕ(t)

+
1

2
σ2C2(t, T ). (6.9.9)

(ii) Use the equation (6.5.14) to show that

ϕ′′(t)− bϕ′(t)− 1

2
σ2ϕ(t) = 0. (6.9.10)

(iii) This is a constant-coefficient linear ordinary differential equation. All solutions
are of the form

ϕ(t) = a1e
λ1t + a2e

λ2t,

where λ1 and λ2 are solutions of the so-called characteristic equation λ2 − λ−
1
2σ2 = 0, and a1 and a2 are constants.

(iv) Show that ϕ(t) must be of the form

ϕ(t) =
c1

1
2b + γ

e−( 1
2
b+γ)(T−t) − c2

1
2b− γ

e−( 1
2
b−γ)(T−t) (6.9.11)

for some constants c1 and c2, where γ = 1
2

√
b2 + 2σ2.

(v) Show that
ϕ′(t) = c1e

−( 1
2
b+γ)(T−t) − c2e

−( 1
2
b−γ)(T−t). (6.9.12)

Use the fact that C(T, T ) = 0 to show that c1 = c2.

(vi) Show that

ϕ(t) = c1e
− 1

2
b(T−t)

[
1
2b− γ

1
4b2 − γ2

e−γ(T−t) −
1
2b + γ

1
4b2 − γ2

eγ(T−t)

]

=
2c1

σ2
e−

1
2
b(T−t)

[
b sinh

(
γ(T − t)

)
+ 2γ cosh

(
γ(T − t)

)]

ϕ′(t) = −2c1e
− 1

2
b(T−t) sinh

(
γ(T − t)

)
.

Conclude that C(t, T ) is given by (6.5.16).

(vii) From (6.5.15) and (6.9.8), we have

A′(t, T ) =
2aϕ′(t)
σ2ϕ(t)

.

Replace t by s in this equation, integrate from s = t to s = T , and show that
A(t, T ) is given by (6.5.17).
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Exercise 6.5 (Two-dimensional Feynman-Kac).

(i) With g(t, x1, x2) and f(t, x1, x2) defined by (6.6.1) and (6.6.2), show that g
(
t,X1(t), X2(t)

)

and e−rtf
(
t,X1(t), X2(t)

)
are martingales.

(ii) Assuming that W1 and W2 are independent Brownian motions, use the Itô-
Doeblin formula to compute the differentials of g

(
t,X1(t), X2(t)

)
and e−rtf

(
t,X1(t), X2(t)

)
,

set the dt term to zero, and thereby obtain the partial differential equations
(6.6.3) and (6.6.4).

(iii) Now consider the case that dW1(t)dW2(t) = ρdt, where ρ is a constant. Compute
the differentials of g

(
t,X1(t), X2(t)

)
and e−rtf

(
t,X1(t), X2(t)

)
, set the dt term

to zero, and obtain the partial differential equations

gt + β1gx1 + β2gx2 +

(
1

2
γ2
11 + ργ11γ12 +

1

2
γ2
12

)
gx1x1

+(γ11γ21 + ργ11γ22 + ργ12γ21 + γ12γ22)gx1x2

+

(
1

2
γ2
21 + ργ21γ22 +

1

2
γ2
22

)
gx2x2 = 0,

(6.9.13)

ft + β1fx1 + β2fx2 +

(
1

2
γ2
11 + ργ11γ12 +

1

2
γ2
12

)
fx1x1

+(γ11γ21 + ργ11γ22 + ργ12γ21 + γ12γ22)fx1x2

+

(
1

2
γ2
21 + ργ21γ22 +

1

2
γ2
22

)
fx2x2 = rf.

(6.9.14)

Exercise 6.6 (Moment-generating function for Cox-Ingersoll-Ross process).

(i) Let W1, . . . , Wd be independent Brownian motions and let a and σ be positive
constants. For j = 1, . . . , d, let Xj(t) be the solution of the Ornstein-Uhlenbeck
stochastic differential equation

dXj(t) = − b

2
Xj(t)dt +

1

2
σdWj(t). (6.9.15)

Show that

Xj(t) = e−
1
2
bt

[
Xj(0) +

σ

2

∫ t

0
e

1
2
budWj(u)

]
. (6.9.16)

Show further that for fixed t, the random variable Xj(t) is normal with

EXj(t) = e−
1
2
btXj(0), Var(Xj(t)) =

σ2

4b

[
1− e−bt

]
. (6.9.17)

(Hint: Use Theorem 4.4.9.)

(ii) Define

R(t) =
d∑

j=1

X2
j (t), (6.9.18)

and show that
dR(t) =

(
a− bR(t)

)
dt + σ

√
R(t)dB(t), (6.9.19)
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where a = dσ2

4 and

B(t) =
d∑

j=1

∫ t

0

Xj(s)√
R(s)

dWj(s) (6.9.20)

is a Brownian motion. In other words, R(t) is a Cox-IngersoU-Ross interest rate
process (Example 6.5.2). (Hint: Use Levy’s Theorem, Theorem 4.6.4, to show
that B(t) is a Brownian motion.)

(iii) Suppose R(0) > 0 is given, and define

Xj(0) =

√
R(0)

d
.

Show then that X1(t), . . . , Xd(t) are independent, identically distributed, normal
random variables, each having expectation

µ(t) = e−
1
2
bt

√
R(0)

d

and variance
v(t) =

σ2

4b

[
1− e−bt

]
.

(iv) Part (iii) shows that R(t) given by (6.9.18) is the sum of squares of independent,
identically distributed, normal random variables and hence has a noncentral χ2

distribution, the term “noncentral” referring to the fact that µ(t) = EXj(t) is not
zero. To compute the moment-generating function of R(t), first compute the
moment-generating function

E exp{uX2
j (t)} =

1√
1− 2v(t)u

exp

{
uµ2(t)

1− 2v(t)u

}
for all u <

1

2v(t)
.

(6.9.21)
(Hint: You will need to complete a square, first deriving and then using the
equation

ux2 − 1

2v(t)

(
x− µ(t)

)2
= −1− 2v(t)u

2v(t)

(
x− µ(t)

1− 2v(t)u

)2

+
uµ2(t)

1− 2v(t)u

The integral from −∞ to ∞ of the normal density with mean µ(t)/(1 − 2v(t)u)

and variance v(t)/(1− 2v(t)u),
√

1− 2v(t)u

2πv(t)
exp

{
−1− 2v(t)u

2v(t)

(
x− µ(t)

1− 2v(t)u

)2
}

,

is equal to 1.)

(v) Show that R(t) given by (6.9.19) has moment-generating function

EeuR(t) =

(
1

1− 2v(t)u

)d/2

exp

{
e−btuR(0)

1− 2v(t)u

}

=

(
1

1− 2v(t)u

)2a/σ2

exp

{
e−btuR(0)

1− 2v(t)u

}
for all u <

1

2v(t)
.

(6.9.22)
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Remark 6.9.1. (Cox-Ingersoll-Ross process hitting zero). Although we have derived
(6.9.22) under the assumption that d is a positive integer, the second line of (6.9.22)
is expressed in terms of only the parameters a, b, and σ entering (6.9.19), and this
formula is valid for all a > 0, b > 0, and σ > 0. When d ≥ 2 (i.e., a ≥ 1

2σ2), the
multidimensional process

(
X1(t), . . . , Xd(t)

)
never hits the origin in Rd, and hence

R(t) is never zero. In fact, R(t) is never zero if and only if a ≥ 1
2σ2. If 0 < a < 1

2σ2,
then R(t) hits zero repeatedly but after each hit becomes positive again.

Exercise 6.7 (Heston stochastic volatility model).

Suppose that under a risk-neutral measure P̃ a stock price is governed by

dS(t) = rS(t)dt +
√

V (t)S(t)dW̃1(t), (6.9.23)

where the interest rate r is constant and the volatility
√

V (t) is itself a stochastic
process governed by the equation

dV (t) =
(
a− bV (t)

)
dt + σ

√
V (t)dW̃2(t). (6.9.24)

The parameters a, b, and σ are positive constants, and W̃1(t) and W̃2(t) are correlated
Brownian motions under P̃ with

dW̃1(t)dW̃2(t) = ρdt

for some ρ ∈ (−1, 1). Because the two-dimensional process
(
S(t), V (t)

)
is gov-

erned by the pair of stochastic differential equations (6.9.23) and (6.9.24), it is a
two-dimensional Markov process.

So long as trading takes place only in the stock and money market account, this
model is incomplete. One can create a one-parameter family of risk-neutral measures
by changing the dt term in (6.9.24) without affecting (6.9.23).

At time t, the risk-neutral price of a call expiring at time T ≥ t in this stochastic
volatility model is Ẽ

[
e−r(T−t)

(
S(T ) − K

)+|F(t)
]
. Because of the Markov property,

there is a function c(t, s, v) such that

c
(
t, S(t), V (t)

)
= Ẽ

[
e−r(T−t)

(
S(T )−K

)+
∣∣∣F(t)

]
, 0 ≤ t ≤ T. (6.9.25)

This problem shows that the function c(t, s, v) satisfies the partial differential equation

ct + rscs + (a− bv)cv +
1

2
s2vcss + ρσsvcsv +

1

2
σ2vcvv = rc (6.9.26)

in the region 0 ≤ t < T , s ≥ 0, and v ≥ 0. The function c(t, s, v) also satisfies the
boundary conditions

c(T, S, v) = (s−K)+ for all s ≥ 0, v ≥ 0, (6.9.27)

c(t, 0, v) = 0 for all 0 ≤ t ≤ T, v ≥ 0, (6.9.28)

c(t, s, 0) =
(
s− e−r(T−t)K

)+ for all 0 ≤ t ≤ T, s ≥ 0, (6.9.29)

lim
s→∞

c(t, s, v)

s−K
= 1 for all 0 ≤ t ≤ T, v ≥ 0, (6.9.30)

lim
s→∞ c(t, s, v) = s for all 0 ≤ t ≤ T, s ≥ 0. (6.9.31)

In this problem, we shall be concerned only with (6.9.27).
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(i) Show that e−rtc
(
t, S(t), V (t)

)
is a martingale under P̃, and use this fact to obtain

(6.9.26).

(ii) Suppose there are functions f(t, x, v) and g(t, x, v) satisfying

ft +

(
r +

1

2
v

)
fx +(a− bv + ρσv)fv +

1

2
vfxx + ρσvfxv +

1

2
σ2vfvv = 0, (6.9.32)

gt +

(
r − 1

2
v

)
gx + (a− bv)gv +

1

2
vgxx + ρσvgxv +

1

2
σ2vgvv = 0, (6.9.33)

in the region 0 ≤ t < T , −∞ < x < ∞, and v ≥ 0. Show that if we define

c(t, s, v) = sf(t, log s, v)− e−r(T−t)Kg(t, log s, v), (6.9.34)

(iii) Suppose a pair of processes
(
X(t), V (t)

)
is governed by the stochastic differen-

tial equations

dX(t) =

(
r +

1

2
V (t)

)
dt +

√
V (t)dW1(t), (6.9.35)

dX(t) =
(
a− bV (t) + ρσV (t)

)
dt +

√
V (t)dW2(t), (6.9.36)

where W1(t) and W2(t) are Brownian motions under some probability measure
P with dW1(t)dW2(t) = ρdt. Define

f(t, x, v) = Et,x,vI{X(T )≥log K}. (6.9.37)

Show that f(t, x, v) satisfies the partial differential equation (6.9.32) and the
boundary condition

f(T, x, v) = I{x≥log K} for all x ∈ R, v ≥ 0. (6.9.38)

(iv) Suppose a pair of processes
(
X(t), V (t)

)
is governed by the stochastic differen-

tial equations

dX(t) =

(
r − 1

2
V (t)

)
dt +

√
V (t)dW1(t), (6.9.39)

dV (t) =
(
a− bV (t)

)
dt + σ

√
V (t)dW2(t), (6.9.40)

where W1(t) and W2(t) are Brownian motions under some probability measure
P with dW1(t)dW2(t) = ρdt. Define

g(t, x, v) = Et,x,vI{X(T )≥log K}. (6.9.41)

Show that g(t, x, v) satisfies the partial differential equation (6.9.33) and the
boundary condition

g(T, x, v) = I{x≥log K} for all x ∈ R, v ≥ 0. (6.9.42)

(v) Show that with f(t, x, v) and g(t, x, v) as in (iii) and (iv), the function c(t, x, v)

of (6.9.34) satisfies the boundary condition (6.9.27).
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Remark 6.9.2. In fact, with f(t, x, v) and g(t, x, v) as in (iii) and (iv), the function
c(t, x, v) of (6.9.34) satisfies all the boundary conditions (6.9.27)-(6.9.31) and is the
function appearing on the left-hand side of (6.9.25).

Exercise 6.8 (Kolmogorov backward equation).

Consider the stochastic differential equation

dX(u) = β
(
u,X(u)

)
du + γ

(
u,X(u)

)
dW (u).

We assume that, just as with a geometric Brownian motion, if we begin a process at
an arbitrary initial positive value X(t) = x at an arbitrary initial time t and evolve
it forward using this equation, its value at each time T > t could be any positive
number but cannot be less than or equal to zero. For 0 ≤ t < T , let p(t, T, x, y) be the
transition density for the solution to this equation (i.e., if we solve the equation with
the initial condition X(t) = x, then the random variable X(T ) has density p(t, T, x, y)

in the y variable). We are assuming that p(t, T, x, y) = 0 for 0 ≤ t < T and y ≤ 0.
Show that p(t, T ; x, y) satisfies the Kolmogorov backward equation

−pt(t, T, x, y) = β(t, x)px(t, T, x, y) +
1

2
γ2(t, x)pxx(t, T, x, y). (6.9.43)

(Hint: We know from the Feynman-Kac Theorem, Theorem 6.4.1, that, for any func-
tion h(y), the function

g(t, x) = Et,xh(X(T )) =

∫ ∞

0
h(y)p(t, T, x, y)dy (6.9.44)

satisfies the partial differential equation

gt(t, x) + β(t, x)gx(t, x) +
1

2
γ2(t, x)gxx(t, x) = 0. (6.9.45)

Use (6.9.44) to compute gt, gx, and gxx, and then argue that the only way (6.9.45)
can hold regardless of the choice of the function h(y) is for p(t, T, x, y) to satisfy the
Kolmogorov backward equation.)

Exercise 6.9 (Kolmogorov forward equation).

(Also called the Fokker-Planck equation). We begin with the same stochastic
differential equation,

dX(u) = β
(
u,X(u)

)
du + γ

(
u,X(u)

)
dW (u), (6.9.46)

as in Exercise 6.8, use the same notation p(t, T, x, y) for the transition density, and
again assume that p(t, T, x, y) = 0 for 0 ≤ t < T and y ≤ 0. In this problem, we show
that p(t, T, x, y) satisfies the Kolmogorov forward equation

∂

∂T
p(t, T, x, y) = − ∂

∂y

(
β(t, y)p(t, T, x, y)

)
+

1

2

∂2

∂y2

(
γ2(T, y)p(t, T, x, y)

)
. (6.9.47)

In contrast to the Kolmogorov backward equation, in which T and y were held con-
stant and the variables were t and x, here t and x are held constant and the variables
are y and T . The variables t and x are sometimes called the backward variables, and
T and y are called the forward variables.
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(i) Let b be a positive constant and let hb(y) be a function with continuous first and
second derivatives such that hb(x) = 0 for all x ≤ 0, h′b(x) = 0 for all x ≥ b, and
hb(b) = h′b(b) = 0. Let X(u) be the solution to the stochastic differential equa-
tion with initial condition X(t) = x ∈ (0, b), and use Itô’s formula to compute
dhb(X(u)).

(ii) Let 0 ≤ t < T be given, and integrate the equation you obtained in (i) from t

to T . Take expectations and use the fact that X(u) has density p(t, u, x, y) in the
y-variable to obtain

∫ b

0
hb(y)p(t, T, x, y)dy = hb(x) +

∫ T

t

∫ b

0
β(u, y)p(t, T, x, y)h′b(y)dydu

+
1

2

∫ T

t

∫ b

0
γ2(u, y)p(t, T, x, y)h′′b (y)dy.

(6.9.48)

(iii) Integrate the integrals
∫ b
0 · · · dy on the right-hand side of (6.9.48) by parts to

obtain
∫ b

0
hb(y)p(t, T, x, y)dy = hb(x)−

∫ T

t

∫ b

0

∂

∂y

[
β(u, y)p(t, u, x, y)

]
hb(y)dydu

+
1

2

∫ T

t

∫ b

0

∂2

∂y2

[
γ2(u, y)p(t, u, x, y)

]
hb(y)dydu.

(6.9.49)

(iv) Differentiate (6.9.49) with respect to T to obtain
∫ b

0
hb(y)

[
∂

∂T
p(t, T, x, y) +

∂

∂y

(
β(T, y)p(t, T, x, y)

)

−1

2

∂2

∂y2

(
γ2(T, y)p(t, T, x, y)

)]
dy = 0.

(6.9.50)

(v) Use (6.9.50) to show that there cannot be numbers 0 < y1 < y2 such that

∂

∂T
p(t, T, x, y) +

∂

∂y

(
β(T, y)p(t, T, x, y)

)− 1

2

∂2

∂y2

(
γ2(T, y)p(t, T, x, y)

)
> 0

for all y ∈ (y1, y2).

Similarly, there cannot be numbers 0 < y1 < y2 such that

∂

∂T
p(t, T, x, y) +

∂

∂y

(
β(T, y)p(t, T, x, y)

)− 1

2

∂2

∂y2

(
γ2(T, y)p(t, T, x, y)

)
< 0

for all y ∈ [y1, y2].

This is as much as you need to do for this problem. It is now obvious that if

∂

∂T
p(t, T, x, y) +

∂

∂y

(
β(T, y)p(t, T, x, y)

)− 1

2

∂2

∂y2

(
γ2(T, y)p(t, T, x, y)

)

is a continuous function of y, then this expression must be zero for every y > 0,
and hence p(t, T, x, y) satisfies the Kolmogorov forward equation stated at the
beginning of this problem.
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Exercise 6.10 (Implying the volatility surface).

Assume that a stock price evolves according to the stochastic differential equation

dS(u) = rS(u)dt + σ
(
u, S(u)

)
S(u)dW̃ (u),

where the interest rate r is constant, the volatility σ(u, x) is a function of time and the
underlying stock price, and W̃ is a Brownian motion under the risk-neutral measure P̃.
This is a special case of the stochastic differential equation (6.9.46) with β(u, x) = rx

and γ(u, x) = σ(u, x)x. Let p̃(t, T, x, y) denote the transition density.
According to Exercise 6.9, the transition density p̃(t, T, x, y) satisfies the Kol-

mogorov forward equation

∂

∂T
p̃(t, T, x, y) = − ∂

∂y

(
ryp̃(t, T, x, y)

)
+

1

2

∂2

∂y2

(
σ2(T, y)y2p̃(t, T, x, y)

)
. (6.9.51)

Let
c(0, T, x, K) = e−rT

∫ ∞

K
(y −K)p̃(0, T, x, y)dy (6.9.52)

denote the time-zero price of a call expiring at time T , struck at K, when the initial
stock price is S(0) = x. Note that

cT (0, T, x, K) = −rc(0, T, x, K) + e−rT

∫ ∞

K
(y −K)p̃T (0, T, x, y)dy. (6.9.53)

(i) Integrate once by parts to show that

−
∫ ∞

K
(y −K)

∂

∂y

(
ryp̃(0, T, x, y)

)
dy =

∫ ∞

K
ryp̃(0, T, x, y)dy. (6.9.54)

You may assume that

lim
y→∞(y −K)ryp̃(0, T, x, y) = 0. (6.9.55)

(ii) Integrate by parts and then integrate again to show that

1

2

∫ ∞

K
(y −K)

∂2

∂y2

(
σ2(T, y)y2p̃(0, T, x, y)

)
dy =

1

2
σ2(T, K)K2p̃(0, T, x, K).

(6.9.56)
You may assume that

lim
y→∞(y −K)

∂

∂y

(
σ2(T, y)y2p̃(0, T, x, y)

)
= 0, (6.9.57)

lim
y→∞σ2(T, y)y2p̃(0, T, x, y) = 0. (6.9.58)

(iii) Now use (6.9.53), (6.9.52), (6.9.51), (6.9.54), (6.9.56), and Exercise 5.9 of
Chapter 5 in that order to obtain the equation

cT (0, T, x, K) = e−rT rK

∫ ∞

K
p̃(0, T, x, y)dy +

1

2
e−rT σ2(T, K)K2p̃(0, T, x, K)

= −rKcK(0, T, x, K) +
1

2
σ2(T, K)K2cKK(0, T, x, K).

(6.9.59)
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This is the end of the problem. Note that under the assumption that cKK(0, T, x, K) 6=
0, (6.9.59) can be solved for the volatility term σ2(T, K) in terms of the quantities
cT (0, T, x, K), cK(0, T, x, K), and cKK(0, T, x, K), which can be inferred from market
prices.



Chapter 7

Exotic Options

7.1 Introduction

The European calls and puts considered thus far in this text are sometimes called
vanilla or even plain vanilla options. Their payoffs depend only on the final value
of the underlying asset. Options whose payoffs depend on the path of the underlying
asset are called path-dependent or exotic.

In this chapter, we present three types of exotic options on a geometric Brownian
motion asset and work out a detailed analysis for one option of each type. The types
considered are barrier options, lookback options, and Asian options. In each case, we
work out the standard partial differential equation governing the option price. The
first two options have explicit pricing formulas, which are based on the reflection
principle for Brownian motion. Such a formula for Asian options is not known.
However, for the Asian option there is a change-of-numéraire argument that reduces
the pricing partial differential equation to a simple form that can easily be solved
numerically. We present this argument in Subsection 7.5.3.

7.2 Maximum of Brownian Motion with Drift

In this section, we derive the joint density for a Brownian motion with drift and its
maximum to date. This density is used in Sections 7.3 and 7.4 to obtain explicit
pricing formulas for a barrier option and a lookback option. To derive this formula,
we begin with a Brownian motion W̃ (t), 0 ≤ t ≤ T , defined on a probability space
(Ω,F , P̃). Under P̃, the Brownian motion W̃ (t) has zero drift (i.e., it is a martingale).
Let α be a given number, and define

Ŵ (t) = αt + W̃ (t), 0 ≤ t ≤ T. (7.2.1)

This Brownian motion Ŵ (t) has drift α under P̃. We further define

M̂(T ) = max
0≤t≤T

Ŵ (t). (7.2.2)

Because Ŵ (0) = 0, we have M̂(T ) ≥ 0. We also have Ŵ (T ) ≤ M̂(T ). Therefore, the
pair of random variables

(
M̂(t), Ŵ (T )

)
takes values in the set {(m,w); w ≤ m,m ≥ 0}

shown in Figure 7.2.1.
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Theorem 7.2.1. The joint density under P̃ of the pair
(
M̂(T ), Ŵ (T )

)
is

f̃cM(T ),cW (T )
(m,w) =

2(2m− w)

T
√

2πT
eαw− 1

2
α2T− 1

2T
(2m−w)2 , w ≤ m,m ≥ 0, (7.2.3)

and is zero for other values of m and w.

Proof. We define the exponential martingale

Ẑ(t) = e−αfW (t)− 1
2
α2t = e−αcW (t)+ 1

2
α2t, 0 ≤ t ≤ T,

and use Ẑ(T ) to define a new probability measure P̂ by

P̂(A) =

∫

A
Z(T )dP̃ for all A ∈ F .

According to Girsanov’s Theorem, Theorem 5.2.3, Ŵ (t) is a Brownian motion (with
zero drift) under P̂. Theorem 3.7.3 gives us the joint density of

(
M̂(T ), Ŵ (T )

)
under

P̂, which is

f̂cM(T ),cW (T )
(m,w) =

2(2m− w)

T
√

2πT
e−

1
2T

(2m−w)2 , w ≤ m,m ≥ 0, (7.2.4)

and is zero for other values of m and w. To work out the density of
(
M̂(T ), Ŵ (T )

)

under P̃, we use Lemma 5.2.1, which implies

P̃
{

M̂(T ) ≤ m, Ŵ (T ) ≤ w
}

= Ẽ
[
I{cM(T )≤m,cW (T )≤w}

]

= Ê

[
1

Ẑ(T )
I{cM(T )≤m,cW (T )≤w}

]

= Ê
[
eαcW (T )− 1

2
α2T I{cM(T )≤m,cW (T )≤w}

]

=

∫ w

−∞

∫ m

−∞
eαy− 1

2
α2T f̂cM(T ),cW (T )

(x, y)dxdy.
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Therefore, the density of
(
M̂(T ), Ŵ (T )

)
under P̃ is

∂2

∂m∂w
P̃

{
M̂(T ) ≤ m, Ŵ (T ) ≤ w

}
= eαw− 1

2
α2T f̂cM(T ),cW (T )

(m,w). (7.2.5)

When w ≤ m and m ≥ 0, this is formula (7.2.3). For other values of m and w, we
obtain zero because f̂cM(T ),cW (T )

(m,w) is zero.

Corollary 7.2.2. We have

P̃{M̂(T ) ≤ m} = N

(
m− αT√

T

)
− e2αmN

(−m− αT√
T

)
, m ≥ 0, (7.2.6)

and the density under P̃ of the random variable M̂(T ) is

f̃cM(T )
(m) =

2√
2πT

e−
1

2T
(m−αT )2 − 2αe2αmN

(−m− αT√
T

)
, m ≥ 0, (7.2.7)

and is zero for m < 0.

Proof. We integrate the density (7.2.3) over the region in Figure 7.2.2 to compute

P̃{Ŵ (T ) ≤ m} =

∫ m

0

∫ m

w

2(2µ− w)

T
√

2πT
eαw− 1

2
α2T− 1

2T
(2µ−w)2dµdw

+

∫ 0

∞

∫ m

0

2(2µ− w)

T
√

2πT
eαw− 1

2
α2T− 1

2T
(2µ−w)2dµdw

= −
∫ m

0

1√
2πT

eαw− 1
2
α2T− 1

2T
(2µ−w)2

∣∣∣
µ=m

µ=w
dw

−
∫ 0

−∞
1√
2πT

eαw− 1
2
α2T− 1

2T
(2µ−w)2

∣∣∣
µ=m

µ=0
dw

= − 1√
2πT

∫ m

0
eαw− 1

2
α2T− 1

2T
(2m−w)2dw +

1√
2πT

∫ m

0
eαw− 1

2
α2T− 1

2T
w2

dw

− 1√
2πT

∫ 0

−∞
eαw− 1

2
α2T− 1

2T
(2m−w)2dw +

1√
2πT

∫ 0

−∞
eαw− 1

2
α2T− 1

2T
w2

dw

= − 1√
2πT

∫ m

−∞
eαw− 1

2
α2T− 1

2T
(2m−w)2dw +

1√
2πT

∫ m

−∞
eαw− 1

2
α2T− 1

2T
w2

dw.

We complete the squares. Observe that

− 1

2T
(w − 2m− αT )2 = −(2m− w)2

2T
+ αw + 2αm− 1

2
α2T,

− 1

2T
(w − αT )2 = −w2

2T
+ αw − 1

2
α2T.

Therefore,

P̃{W̃ (T ) ≤ m} = − e2αm

√
2πT

∫ m

−∞
e−

1
2T

(w−2m−αT )2dw +
1√
2πT

∫ m

−∞
e−

1
2T

(w−αT )2dw.

We make the change of variable y = w−2m−αT√
T

in the first integral and y = w−αT√
T

in
the second, thereby obtaining
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P̃{M̂(T ) ≤ m} =
e2αm

√
2π

∫ −m−αT√
T

−∞
e−

1
2
y2

dy +
1√
2π

∫ m−αT√
T

−∞
e−

1
2
y2

dy

= −e2αmN

(−m− αT√
T

)
+ N

(
m− αT√

T

)
.

This establishes (7.2.6).
To obtain the density (7.2.7), we differentiate (7.2.6) with respect to m:

d

dm
P̃{M̂(T ) ≤ m} = N ′

(
m− αT√

T

)(
1√
T

)
− 2αe2αmN

(−m− αT√
T

)

− e2αmN ′
(−m− αT√

T

)(
− 1√

T

)

=
1√
2πT

e−
1

2T
(m−αT )2 − 2αe2αmN

(−m− αT√
T

)

+
e2αm

√
2πT

e−
1

2T
(−m−αT )2 .

The exponent in the third term is

2αm− (−m− αT )2

2T
=

4αm

2T
− m2 + 2αmT + α2T 2

2T

= −m2 − 2αmT + α2T 2

2T

= −(m− αT )2

2T
,

which is the exponent in the first term. Combining the first and third terms, we obtain
(7.2.7).
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7.3 Knock-out Barrier Options

There are several types of barrier options. Some “knock out” when the underlying
asset price crosses a barrier (i.e., they become worthless). If the underlying asset price
begins below the barrier and must cross above it to cause the knock-out, the option is
said to be up-and-out. A down-and-out option has the barrier below the initial asset
price and knocks out if the asset price falls below the barrier. Other options “knock
in” at a barrier (i.e., they pay off zero unless they cross a barrier). Knock-in options
also fall into two classes, up-and-in and down-and-in. The payoff at expiration for
barrier options is typically either that of a put or a call. More complex barrier options
require the asset price to not only cross a barrier but spend a certain amount of time
across the barrier in order to knock in or knock out.

In this section, we treat an up-and-out call on a geometric Brownian motion. The
methodology we develop works equally well for up-and-in, down-and-out, and down-
and-in puts and calls.

7.3.1 Up-and-Out Call

Our underlying risky asset is geometric Brownian motion

dS(t) = rS(t)dt + σS(t)dW̃ (t),

where W̃ (t), 0 ≤ t ≤ T , is a Brownian motion under the risk-neutral measure P̃.
Consider a European call, expiring at time T , with strike price K and up-and-out
barrier B. We assume K < B; otherwise, the option must knock out in order to
be in the money and hence could only pay off zero. The solution to the stochastic
differential equation for the asset price is

S(t) = S(0)eefW (t)+(r− 1
2
σ2)t = S(0)eσcW (t), (7.3.1)

where Ŵ (t) = αt + W̃ (t), and

α =
1

σ

(
r − 1

2
σ2

)
.

We define M̂(T ) = max0≤t≤T Ŵ (t), so

max
0≤t≤T

S(t) = S(0)eσcM(T ).

The option knocks out if and only if S(0)eσcM(T ) > B; if S(0)eσcM(T ) ≤ B, the option
pays off

(
S(T )−K

)=
(
S(0)eσcW (T ) −K

)+
.

In other words, the payoff of the option is

V (T ) =
(
S(0)eσcW (T ) −K

)+
I{S(0)eσcM(T )≤B}

=
(
S(0)eσcW (T ) −K

)
I{S(0)eσcW (T )≥K,S(0)eσcM(T )≤B}

=
(
S(0)eσcW (T ) −K

)
I{cW (T )≥k,cM(T )≤b},

(7.3.2)
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where
k =

1

σ
log

K

S(0)
, b =

1

σ
log

B

S(0)
. (7.3.3)

7.3.2 Black-Scholes-Merton Equation

The price of an up-and-out call satisfies a Black-Scholes-Merton equation that has
been modified to account for the barrier. This equation can be used to solve for the
price. In this particular case, we do not need to find the price this way because it
can be computed analytically (see Subsection 7.3.3). However, we provide the equa-
tion and its derivation because this methodology works in situations where analytical
solutions cannot be obtained.

Theorem 7.3.1. Let v(t, x) denote the price at time t of the up-and-out call under
the assumption that the call has not knocked out prior to time t and S(t) = x. Then
v(t, x) satisfies the Black-Scholes-Merton partial differential equation

vt(t, x) + rxvx(t, x) +
1

2
σ2x2vxx(t, x) = rv(t, x) (7.3.4)

in the rectangle {(t, x); 0 ≤ t < T, 0 ≤ x ≤ B} and satisfies the boundary conditions

v(t, 0) = 0, 0 ≤ t ≤ T, (7.3.5)

v(t, B) = 0, 0 ≤ t < T, (7.3.6)

v(T, x) = (x−K)+, 0 ≤ x ≤ B. (7.3.7)

The lower boundary condition (7.3.5) follows as in the usual Black-Scholes-Merton
framework: If the asset price begins at zero, it stays there and the option expires out
of the money. The upper boundary condition follows from the fact that when the geo-
metric Brownian S(t) hits the level B, it immediately rises above B. In fact, because
it has nonzero quadratic variation, the asset price S(t) oscillates, rising and falling
across the level B infinitely many times immediately after hitting it. The option price
is zero when the asset price hits B because the option is on the verge of knocking out.
The only exception to this is if the level B is first reached at the expiration time T ,
for then there is no time left for the knock-out. In this case, the option price is given
by the terminal condition (7.3.7). In particular, the function v(t, x) is not continuous
at the corner of its domain where t = T and x = B. It is continuous everywhere else
in the rectangle {(t, x); 0 ≤ t ≤ T, 0 ≤ x ≤ B}.

Exercise 7.8 outlines the steps to verify the Black-Scholes-Merton equation by di-
rect computation, starting with the analytical formula (7.3.20) obtained in Subsection
7.3.3. Here we derive this partial differential equation (7.3.4) by the simpler but more
generally applicable argument used previously: (1) find the martingale, (2) take the
differential, and (3) set the dt term equal to zero.

Let us begin with an initial asset price S(0) ∈ (0, B). We then define the option
payoff V (T ) by (7.3.2). The price of the option at time t between initiation and
expiration is given by the risk-neutral pricing formula
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V (t) = Ẽ
[
e−r(T−t)V (T )

∣∣∣F(t)
]
, 0 ≤ t ≤ T. (7.3.8)

The usual iterated conditioning argument (e.g., (5.3.3)) shows that

e−rtV (t) = Ẽ
[
e−rT V (T )

∣∣∣F(t)
]
, 0 ≤ t ≤ T. (7.3.9)

is a martingale. We would like to use the Markov property as we did in Example 6.4.4
to say that V (t) = v(t, S(t)), where v(t, x) is the function in Theorem 7.3.1. However,
this equation does not hold for all values of t along all paths. Recall that v(t, S(t))

is the value of the option under the assumption that it has not knocked out prior to t,
whereas V (t) is the value of the option with- out any assumption. In particular, if the
underlying asset price rises above the barrier B and then returns below the barrier by
time t, then V (t) will be zero because the option has knocked out, but v(t, S(t)) will
be strictly positive because v(t, x) given by (7.3.20) is strictly positive for all values
of 0 ≤ t < T and 0 < x < B. The process V (t) is path-dependent and remembers that
the option has knocked out. The process v(t, S(t)) is not path-dependent, and when
S(t) < B, it gives the price of the option under the assumption that it has not knocked
out, even if that assumption is incorrect.

We resolve this annoyance by defining ρ to be the first time t at which the asset
price reaches the barrier B. In other words, ρ is chosen in a path-dependent way so
that S(t) < B for 0 ≤ t ≤ ρ and S(ρ) = B. Since the asset price almost surely exceeds
the barrier immediately after reaching it, we may regard ρ as the time of knock-out.
If the asset price does not reach the barrier before expiration, we set ρ = ∞. If the
asset price first reaches the barrier at time T , then ρ = T but knock-out does not
occur because there is no time left for the asset price to exceed the barrier. However,
the probability that the asset price first reaches the barrier at time T is zero, so this
anomaly does not matter.

The random variable ρ is a stopping time because it chooses its value based on
the path of the asset price up to time ρ. Stopping times in the binomial model were
defined in Definition 4.3.1 of Volume I. The Optional Sampling Theorem, Theorem
4.3.2 of Volume I, asserts that a martingale stopped at a stopping time is still a mar-
tingale. The same is true in continuous time. In particular, the process

e−r(t∧ρ)V (t ∧ ρ) =





e−rtV (t) if 0 ≤ t ≤ ρ,

e−rρV (ρ) if ρ < t ≤ T,

(7.3.10)

is a P̃-martingale. Before t gets to ρ, this is just the martingale e−rtV (t). Once t gets
to ρ, although the time parameter t can march on, the value of the process is frozen
at e−rρV (ρ). A process that does not move is trivially a martingale. The only way
the martingale property could be ruined would be if ρ “looked ahead” when deciding
to stop the process. If ρ stopped at a time because the process was about to go up
and let the process continue if it was about to go down, the stopped process would
have a downward tendency. So long as ρ makes the decision to stop at the current
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time based only on the path up to and perhaps including the current time, the act of
stopping a martingale at time ρ preserves the martingale property.

Lemma 7.3.2. We have

V (t) = v
(
t, S(t)

)
, 0 ≤ t ≤ ρ. (7.3.11)

In particular, e−rtv(t, S(t)) is P̃-martingale up to time ρ, or, put another way, the
stopped process

e−r(t∧ρ)v
(
t ∧ ρ, S(t ∧ ρ)

)
, 0 ≤ t ≤ T, (7.3.12)

is a martingale under P̃.

SKETCH OF PROOF: Because v(t, S(t)) is the value of the up-and-out call under the
assumption that it has not knocked out before time t, and for t ≤ ρ this assumption is
correct, we have (7.3.11) for t ≤ ρ. From (7.3.11), we conclude that the process in
(7.3.12) is the P̃-martingale (7.3.10).

PROOF OF THEOREM 7.3.1: We compute the differential

d
(
e−rtv

(
t, S(t)

))

= e−rt

[
−rv

(
t, S(t)

)
dt + vt

(
t, S(t)

)
dt + vx

(
t, S(t)

)
dS(t) +

1

2
vxx

(
t, S(t)

)
dS(t)dS(t)

]

= e−rt

[
−rv

(
t, S(t)

)
+ vt

(
t, S(t)

)
+ rS(t)vx

(
t, S(t)

)
+

1

2
σ2S2(t)vxx

(
t, S(t)

)]
dt

+ e−rtσS(t)vx

(
t, S(t)

)
dW̃ (t).

(7.3.13)

The dt term must be zero for 0 ≤ t ≤ ρ, (i.e., before the option knocks out). But
since (t, S(t)) can reach any point in {(t, x); 0 ≤ t < T, 0 ≤ x ≤ B} before the option
knocks out, the Black-Scholes-Merton equation (7.3.4) must hold for every t ∈ [0, T )

and x ∈ [0, B],

Remark 7.3.3. From Theorem 7.3.1 and its proof, we see how to construct a hedge,
at least theoretically. Setting the dt term in (7.3.13) equal to zero, we obtain

d
(
e−rtv

(
t, S(t)

))
= e−rtσS(t)vx

(
t, S(t)

)
dW̃ (t), 0 ≤ t ≤ ρ. (7.3.14)

The discounted value of a portfolio that at each time t holds ∆(t) shares of the under-
lying asset is given by (see (5.2.27))

d
(
e−rtX(t)

)
= e−rtσS(t)∆(t)dW̃ (t).

At least theoretically, if an agent begins with a short position in the up-and-out call
and with initial capital X(0) = v(0, S(0)), then the usual delta-hedging formula

∆(t) = vx

(
t, S(t)

)
(7.3.15)

will cause her portfolio value X(t) to track the option value v(t, S(t)) up to the time
ρ of knock-out or up to expiration T , whichever comes first.
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In practice, the delta hedge is impossible to implement if the option has not
knocked out and the underlying asset price approaches the barrier near expiration
of the option. The function v(T, x) is discontinuous at x = B, jumping from B−K to
0 at that point. For t near T and x just below B, the function v(t, x) is approaching a
discontinuity and has large negative delta vx(t, x) and large negative gamma vxx(t, x)

values. Near expiration near the barrier, the delta-hedging formula (5.3.15) requires
the agent to take a large short position in the underlying asset and to make large ad-
justments in the position (because of the large negative gamma) whenever the asset
price moves. The Black-Scholes-Merton model assumes the bid-ask spread is zero,
and here that assumption is a poor model of reality. The delta-hedging formula calls
for such a large amount of trading that the bid-ask spread becomes significant. The
common industry practice is to price and hedge the up-and-out call as if the barrier
were at a level slightly higher than B. In this way, the large delta and gamma values
of the option occur in the region above the contractual barrier B, and the hedging
position will be closed out upon knock-out at the contractual barrier before the asset
price reaches this region.

7.3.3 Computation of the Price of the Up-and-Out Call

The risk-neutral price at time zero of the up-and-out call with payoff V (T ) given by
(7.3.2) is V (0) = E[e−rT V (T )]. We use the density formula (7.2.3) to compute this.
If k ≥ 0, we must integrate over the region {(m,w); k ≤ w ≤ m ≤ b}. On the other
hand, if k < 0, we integrate over the region {(m,w); k ≤ w ≤ m, 0 ≤ m ≤ b}. In both
cases, the region can be described as {(m,w); k ≤ w ≤ b, w+ ≤ m ≤ b}; see Figure
7.3.1. We assume here that S(0) ≤ B so that b > 0. Otherwise, the region over which
we integrate has zero area, and the time-zero value of the call is zero rather than the
integral computed below. We also assume S(0) > 0 so that b and k are finite.

When 0 < S(0) ≤ B, the time-zero value of the up-and-out call is

V (0) =

∫ b

k

∫ b

w+

e−rT
(
S(0)eσw −K

)2(2m− w)

T
√

2πT
eαw− 1

2
α2T− 1

2T
(2m−w)2dmdw

= −
∫ b

k
e−rT

(
S(0)eσw −K

) 1√
2πT

eαw− 1
2
α2T− 1

2T
(2m−w)2

∣∣∣
m=b

m=w+
dw

=
1√
2πT

∫ b

k

(
S(0)eσw −K

)
e−rT+αw− 1

2
α2T− 1

2T
w2

dw

− 1√
2πT

∫ b

k

(
S(0)eσw −K

)
e−rT+αw− 1

2
α2T− 1

2T
(2b−w)2dw

= S(0)I1 −KI2 − S(0)I3 + KI4,

where
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I1 =
1√
2πT

∫ b

k
eσw−rT+αw− 1

2
α2T− 1

2T
w2

dw,

I2 =
1√
2πT

∫ b

k
e−rT+αw− 1

2
α2T− 1

2T
w2

dw,

I3 =
1√
2πT

∫ b

k
eσw−rT+αw− 1

2
α2T− 1

2T
(2b−w)2dw

=
1√
2πT

∫ b

k
eσw−rT+αw− 1

2
α2T− 2

T
b2+ 2

T
bw− 1

2T
w2

dw,

I4 =
1√
2πT

∫ b

k
e−rT+αw− 1

2
α2T− 1

2T
(2b−w)2dw,

=
1√
2πT

∫ b

k
e−rT+αw− 1

2
α2T− 2

T
b2+ 2

T
bw− 1

2T
w2

dw.

Each of these integrals is of the form

1√
2πT

∫ b

k
eβ+γw− 1

2T
w2

dw =
1√
2πT

∫ b

k
e−

1
2T

(w−γT )2+ 1
2
γ2T+βdw

= e
1
2
γ2T+β 1√

2π

∫ 1√
T

(b−γT )

1√
T

(k−γT )
e−

1
2
y2

dy,

(7.3.16)

where we have made the change of variable y = w−γT√
T

. Using the standard cumulative
normal distribution property N(z) = 1−N(−z) and (7.3.3), we continue, writing
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1√
2πT

∫ b

k
eβ+γw−w2

2T dw

= e
1
2
γ2T+β

[
N

(
b− γT√

T

)
−N

(
k − γT√

T

)]

= e
1
2
γ2T+β

[
N

(−k + bγT√
T

)
−N

(−b + γT√
T

)]

= e
1
2
γ2T+β

[
N

(
1

σ
√

T

[
log

S(0)

K
+ γσT

])
−N

(
1

σ
√

T

[
log

S(0)

B
+ γσT

])]
.

(7.3.17)

Set
δ±(τ, s) =

1

σ
√

τ

[
log s +

(
r ± 1

2
σ2

)
τ

]
. (7.3.18)

The integral I1 is of the form (7.3.17) with β = −rT − 1
2α2T and γ = α + σ, so

1
2γ2T + β = 0 and γσ = r + 1

2σ2. Therefore,

I1 = N

(
δ+

(
T,

S(0)

K

))
−N

(
δ+

(
T,

S(0)

B

))
.

The integral I2 is of the form (7.3.17) with β = −rT− 1
2α2T and γ = α, so 1

2γ2T +β =

−rT and γσ = r − 1
2σ2. Therefore,

I2 = e−rT

[
N

(
δ−

(
T,

S(0)

K

))
−N

(
δ−

(
T,

S(0)

B

))]
.

For I3, we have β = −rT − 1
2α2T − 2b2

T and γ = α + σ + 2b
T , so

1

2
γ2T + β = log

(
S(0)

B

)− 2r

σ2−1

,

γσT =

(
r +

1

2
σ2

)
T + log

(
B

S(0)

)2

.

Therefore,

I3 =

(
S(0)

B

)− 2r

σ2−1 [
N

(
δ+

(
T,

B2

KS(0)

))
−N

(
δ+

(
T,

B

S(0)

))]
.

Finally, for I4, we have β = −rT − 1
2α2T − 2b2

T and γ = α + 2b
T , so

1

2
γ2T + β = −rT + log

(
S(0)

B

)− 2r

σ2 +1

,

γσT =

(
r − 1

2
σ2

)
T + log

(
B

S(0)

)2

.

Therefore,

I4 = e−rT

(
S(0)

B

)− 2r

σ2 +1 [
N

(
δ−

(
T,

B2

KS(0)

))
−N

(
δ−

(
T,

B

S(0)

))]
.
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Putting all this together, under the assumption 0 < S(0) ≤ B, we have the up-and-out
call price formula

V (0) = S(0)

[
N

(
δ+

(
T,

S(0)

K

))
−N

(
δ+

(
T,

S(0)

B

))]

− e−rT K

[
N

(
δ−

(
T,

S(0)

K

))
−N

(
δ−

(
T,

S(0)

B

))]

−B

(
S(0)

B

)− 2r

σ2
[
N

(
δ+

(
T,

B2

KS(0)

))
−N

(
δ+

(
T,

B

S(0)

))]

+ e−rT K

(
S(0)

B

)− 2r

σ2 +1 [
N

(
δ−

(
T,

B2

KS(0)

))
−N

(
δ−

(
T,

B

S(0)

))]
.

(7.3.19)

Now let t ∈ [0, T ) be given, and assume the underlying asset price at time t is
S(t) = x. As above, we assume 0 < x ≤ B. If the call has not knocked out prior to
time t, its price at time t is obtained by replacing T by the time to expiration τ = T −t

and replacing S(0) by x in (7.3.19). This gives us the call price as a function v(t, x)

of the two variables t and x:

v(t, x) = x
[
N

(
δ+

(
τ,

x

K

))
−N

(
δ+

(
τ,

x

B

))]

− e−rτK
[
N

(
δ−

(
τ,

x

K

))
−N

(
δ−

(
τ,

x

B

))]

−B
( x

B

)− 2r

σ2

[
N

(
δ+

(
τ,

B2

Kx

))
−N

(
δ+

(
τ,

B

x

))]

+ e−rτK
( x

B

)− 2r

σ2 +1
[
N

(
δ−

(
τ,

B2

Kx

))
−N

(
δ−

(
τ,

B

x

))]
,

0 ≤ t < T, 0 < x ≤ B.

(7.3.20)

Formula (7.3.20) was derived under the assumption that τ > 0 (i.e., t < T ) and
0 < x ≤ B. For 0 ≤ t ≤ T and x > B, we have v(t, x) = 0 because the option knocks
out when the asset price exceeds the barrier B. Indeed, if the asset price reaches the
barrier before expiration, then it will immediately exceed the barrier almost surely,
and so v(t, B) = 0 for 0 ≤ t < T . However, v(T, B) = B − K. We also have
v(t, 0) = 0 because geometric Brownian motion starting at 0 stays at zero, and hence
the call expires out of the money. Finally, if the option does not knock out prior to
expiration, then its payoff is that of a European call (i.e., v(T, x) = (x − K)+). In
summary, v(t, x) satisfies the boundary conditions (7.3.5)-(7.3.7). Formula (7.3.6)
can be obtained by substitution of x = B in (7.3.20), but for x > B, the right-hand
side of (7.3.20) is not v(t, x) = 0. Formula (7.3.20) was derived under the assumption
0 < x ≤ B, and it is incorrect if x > B. Formulas (7.3.5) and (7.3.7) cannot be
obtained by substitution of x = 0 and t = T (τ = 0) into (7.3.20) because this leads
to zeroes in denominators, but it can be shown that (7.3.20) gives these formulas as
limits as x ↓ 0 and τ ↓ 0; see Exercise 7.2.
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7.4 Lookback Options

An option whose payoff is based on the maximum that the underlying asset price
attains over some interval of time prior to expiration is called a lookback option. In
this section we price a floating strike lookback option. The payoff of this option is
the difference between the maximum asset price over the time between initiation and
expiration and the asset price at expiration. The discussion of this option introduces
a new type of differential, a differential that is neither dt nor dW̃ (t).

7.4.1 Floating Strike Lookback Option

We begin with a geometric Brownian motion asset price, which may be written as in
(7.3.1) as

S(t) = S(0)eσcW (t), (7.4.1)

where, as in Subsection 7.3.1, Ŵ (t) = αt + W̃ (t) and

α =
1

σ

(
r − 1

2
σ2

)
.

With
M̂(t) = max

0≤u≤t
Ŵ (u), 0 ≤ t ≤ T, (7.4.2)

we may write the maximum of the asset price up to time t as

Y (t) = max
0≤u≤t

S(u) = S(0)eσcM(t). (7.4.3)

The lookback option considered in this section pays off

V (T ) = Y (T )− S(T ) (7.4.4)

at expiration time T . This payoff is nonnegative because Y (T ) ≥ S(T ).
Let t ∈ [0, T ] be given. At time t, the risk-neutral price of the lookback option is

V (t) = Ẽ
[
e−r(T−t)

(
Y (T )− S(T )

)∣∣∣F(t)
]
. (7.4.5)

Because the pair of processes (S(t), Y (t)) has the Markov property (see Exercise 7.3),
there must exist a function v(t, x, y) such that

V (t) = v
(
t, S(t), Y (t)

)
.

In Subsection 7.4.2, we characterize this function by the Black-Scholes-Merton equa-
tion. In Subsection 7.4.3, we compute it explicitly.

7.4.2 Black-Scholes-Merton Equation

Theorem 7.4.1. Let v(t, x, y) denote the price at time t of the floating strike lookback
option under the assumption that S(t) = x and Y (t) = y. Then v(t, x, y) satisfies the
Black-Scholes-Merton partial differential equation

vt(t, x, y) + rxvx(t, x, y) +
1

2
σ2x2vxx(t, x, y) = rv(t, x, y) (7.4.6)
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in the region {(t, x, y); 0 ≤ t < T, 0 ≤ x ≤ y} and satisfies the boundary conditions

v(t, 0, y) = e−r(T−t)y, 0 ≤ t ≤ T, y ≥ 0, (7.4.7)

vy(t, y, y) = 0, 0 ≤ t ≤ T, y > 0, (7.4.8)

v(T, x, y) = y − x, 0 ≤ x ≤ y. (7.4.9)

Iterated conditioning implies that e−rtV (t) = e−rtv
(
t, S(t), Y (t)

)
, where V (t) is

given by (7.4.5), is a martingale under P̃. We compute its differential and set the
dt term equal to zero to obtain (7.4.6). However, when we do this, the term dY (t)

appears. This is different from the term dS(t), because S(t) has nonzero quadratic
variation, whereas Y (t) has zero quadratic variation. This is because Y (t) is continu-
ous and nondecreasing in t. Let 0 = t0 < t1 < · · · < tm = T be a partition of [0, T ].
Then

m∑

j=1

(
Y (tj)− Y (tj−1)

)2 ≤ max
j=1,...,m

(
Y (tj)− Y (tj−1)

) m∑

j=1

(
Y (tj)− Y (tj−1)

)

= max
j=1,...,m

(
Y (tj)− Y (tj−1)

) · (Y (T )− Y (0)
)
,

(7.4.10)

and maxj=1,...,m

(
Y (tj) − Y (tj−1)

)
has limit zero as maxj=1,...,m(tj − tj−1) goes to

zero because Y (t) is continuous. We conclude that Y (t) accumulates zero quadratic
variation on [0, T ], a fact we record by writing

dY (t)dY (t) = 0. (7.4.11)

This argument works because Y (tj) − Y (tj−1) is nonnegative, and hence we do not
need to take the absolute value of these terms in (7.4.10). This argument shows
that on any interval in which a function is continuous and nondecreasing, it will
accumulate zero quadratic variation.

On the other hand, dY (t) is not a dt term: there is no process Θ(t) such that
dY (t) = Θ(t)dt. In other words, we cannot write Y (t) as

Y (t) = Y (0) +

∫ t

0
Θ(u)du. (7.4.12)

If we could, then Θ(u) would be zero whenever u is in a “flat spot” of Y (t), which oc-
curs whenever S(t) drops below its maximum to date (see Figure 7.4.1). Figure 7.4.1
suggests that there are time intervals in which Y (t) is strictly increasing, but in fact
no such interval exists. Such an interval can occur only if S(t) is strictly increasing
on the interval, and if there were such an interval, then S(t) would accumulate zero
quadratic variation on the interval (see the argument in the previous paragraph). This
is not the case because dS(t)dS(t) = σS2(t)dt is positive for all t. Thus, despite the
suggestion of Figure 7.4.1, the lengths of the “flat spots” of Y (t) on any time interval
[0, T ] sum to T . Therefore, if (7.4.12) were to hold, we would need to have Θ(u) = 0

for Lebesgue almost every u in [0, T ]. This would result in Y (t) = Y (0) for 0 ≤ t ≤ T .
But in fact Y (t) > Y (0) for all t > 0. We conclude that Y (t) cannot be represented in
the form (7.4.12); dY (t) is not a dt term.
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The paths of Y (t) increase over time, but they do so on a set of times having
zero Lebesgue measure. Each time interval [0, T ] contains a sequence of subintervals
whose lengths sum to T , and on each of these subintervals, Y (t) is constant. The
particular subintervals depend on the path, but regardless of the path, the lengths
of these subintervals sum to T . A similar situation is described in Appendix A,
Section A.3. In the case discussed there, T = 1 and the subintervals are explicitly
exhibited. Their union is the Cantor set. It is verified that although the lengths of
these subintervals sum to 1, there are uncountably many points not contained in these
intervals. The function F (x) described in Section A.3 increases, but only on the
complement of the Cantor set. Furthermore, F (x) is continuous. Functions of this
kind are said to be singularly continuous.

Fortunately, we can work with the differential of Y (t). We have already argued
that dY (t)dY (t) = 0. Similarly, we have

dY (t)dS(t) = 0 (7.4.13)

(see Exercise 7.4). We now provide the proof of Theorem 7.4.1.

PROOF OF THEOREM 7.4.1: We use the Itô-Doeblin formula and (7.4.11) and (7.4.13)
to differentiate the martingale e−rtv

(
t, S(t), Y (t)

)
to obtain
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d
(
e−rtv

(
t, S(t), Y (t)

))

= e−rt
[
− rv

(
t, S(t), Y (t)

)
dt + vt

(
t, S(t), Y (t)

)
dt + vx

(
t, S(t), Y (t)

)
dS(t)

+
1

2
vxx

(
t, S(t), Y (t)

)
dS(t)dS(t) + vy

(
t, S(t), Y (t)

)
dY (t)

]

= e−rt
[
− rv

(
t, S(t), Y (t)

)
+ vt

(
t, S(t), Y (t)

)
+ rS(t)vx

(
t, S(t), Y (t)

)

+
1

2
σ2S2(t)vxx

(
t, S(t), Y (t)

)]
dt

+ e−rtσS(t)vx

(
t, S(t), Y (t)

)
dW̃ (t) + e−rtvy

(
t, S(t), Y (t)

)
dY (t).

(7.4.14)

In order to have a martingale, the dt term must be zero, and this gives us the Black-
Scholes-Merton equation (7.4.6). The new feature is that the term e−rtvy

(
t, S(t), Y (t)

)
dY (t)

must also be zero. It cannot be canceled by the dt term nor by the dW̃ (t) term because
it is fundamentally different from both of these terms. The dY (t) term is naturally
zero on the “flat spots” of Y (t) (i.e., when S(t) < Y (t)). However, at the times when
Y (t) increases, which are the times when S(t) = Y (t), the term e−rtvy

(
t, S(t), Y (t)

)

must be zero because dY (t) is “positive.” This gives us the boundary condition
(7.4.8).

The boundary condition (7.4.9) is the payoff of the option. If at any time t we have
S(t) = 0, then we will have S(T ) = 0. Furthermore, Y will be constant on [t, T ]; if
Y (t) = y, then Y (T ) = y and the price of the option at time t is this value discounted
from T back to t. This gives us the boundary condition (7.4.7).

Remark 7.4.2. The proof of Theorem 7.4.1 shows that

d
(
e−rtv

(
t, S(t), Y (t)

))
= e−rtσS(t)vx

(
t, S(t), Y (t)

)
dW̃ (t).

Just as in Remark 7.3.3, this equation implies that the delta-hedging formula (7.3.15)
works. In contrast to the situation in Remark 7.3.3, here the function v(t, x, y) is
continuous and we have no problems with large delta and gamma values.

¤

7.4.3 Reduction of Dimension

The price of the floating strike lookback option has a linear scaling property:

v(t, λx, λy) = λv(t, x, y) for all λ > 0. (7.4.15)

This is because scaling both S(t) and Y (t) by the same positive constant at a time
t prior to expiration results in the payoff Y (T ) − S(T ) being scaled by the same
constant. In particular, if we know the function of two variables

u(t, z) = v(t, z, 1), 0 ≤ t ≤ T, 0 ≤ z ≤ 1, (7.4.16)

then we can easily determine the function of three variables v(t, x, y) by the formula

v(t, x, y) = yv

(
t,

x

y
, 1

)
= yu

(
t,

x

y

)
, 0 ≤ t ≤ T, 0 ≤ x ≤ y, y > 0. (7.4.17)
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From (7.4.17), we can compute the partial derivatives:

vt(t, x, y) = yut

(
t,

x

y

)
,

vx(t, x, y) = yuz

(
t,

x

y

)
· ∂

∂x

(
x

y

)
= uz

(
t,

x

y

)
,

vxx(t, x, y) = uzz

(
t,

x

y

)
· ∂

∂y

(
x

y

)
=

1

y
uzz

(
t,

x

y

)
,

vy(t, x, y) = u

(
t,

x

y

)
+ yuz

(
t,

x

y

)
∂

∂y

(
x

y

)

= u

(
t,

x

y

)
− x

y
uz

(
t,

x

y

)
.

Substitution into the Black-Scholes-Merton equation (7.4.6) yields

0 = −rv(t, x, y) + vt(t, x, y) + rxvx(t, x, y) +
1

2
σ2x2vxx(t, x, y)

= y

[
−ru

(
t,

x

y

)
+ ut

(
t,

x

y

)
+ r

(
x

y

)
uz

(
t,

x

y

)
+

1

2
σ2

(
x

y

)2

uzz

(
t,

x

y

)]
.

Canceling y and making the change of variable z = x
y , we see that u(t, z) satisfies the

Black-Scholes-Merton equation

ut(t, z) + rzuz(t, z) +
1

2
σ2z2uzz(t, z) = ru(t, z), 0 ≤ t < T, 0 < z < 1. (7.4.18)

Boundary conditions for u(t, z) can be obtained from the boundary conditions (7.4.7)-
(7.4.9) for v(t, x, y). In particular,

e−r(T−t)y = v(t, 0, y) = yu(t, 0)

implies
u(t, 0) = e−r(T−t), 0 ≤ t ≤ T. (7.4.19)

Furthermore,
0 = vy(t, y, y) = u(t, 1)− uz(t, 1)

implies
u(t, 1) = uz(t, 1), 0 ≤ t < T. (7.4.20)

Finally,

y − x = v(T, x, y) = yu

(
T,

x

y

)

implies
u(T, z) = 1− z, 0 ≤ z ≤ 1. (7.4.21)

Equation (7.4.18) and the boundary conditions (7.4.19)-(7.4.21) uniquely determine
the function u(t, z). As a consequence, we see that the Black-Scholes-Merton equa-
tion and boundary conditions in Theorem 7.4.1 uniquely determine the function
v(t, x, y).
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7.4.4 Computation of the Price of the Lookback Option

In this subsection, we compute the function v(t, x, y) of Theorem 7.4.1. We do this for
0 ≤ t < T and 0 < x ≤ y. Because Y (t) ≥ S(t) for all t, we do not need to compute
values of v(t, x, y) for x > y. The reader is invited in Exercise 7.5 to compute the
partial derivatives of v(t, x, y) and verify that the Black-Scholes-Merton equation and
boundary conditions in Theorem 7.4.1 are satisfied.

For 0 ≤ t < T and τ = T − t, we observe that

Y (T ) = S(0)eσcM(t)eσ(cM(T )−cM(t)) = Y (t)eσ(cM(T )−cM(t)).

If maxt≤u≤T Ŵ (u) > M̂(t) (i.e., if Ŵ attains a new maximum in [t, T ]), then

M̂(T )− M̂(t) = max
t≤u≤T

Ŵ (u)− M̂(t).

On the other hand, if maxt≤u≤T Ŵ (u) ≤ M̂(t), then M̂(T ) = M̂(t) and

M̂(T )− M̂(t) = 0.

In either case, we have

M̂(T )− M̂(t) =

[
max

t≤u≤T
Ŵ (u)− M̂(t)

]+

=

[
max

t≤u≤T

(
Ŵ (u)− Ŵ (t)

)− (
M̂(t)− Ŵ (t)

)]+

.

Multiplying this equation by σ and using (7.4.1) and (7.4.3), we obtain

σ
(
M̂(T )− M̂(t)

)
=

[
max

t≤u≤T
σ
(
Ŵ (u)− Ŵ (t)

)− log
Y (t)

S(t)

]+

. (7.4.22)

Therefore, V (t) in (7.4.5) is

V (t) = e−rτ Ẽ

[
Y (t) exp

{[
max

t≤u≤T
σ
(
Ŵ (u)− Ŵ (t)

)− log
Y (t)

S(t)

]+
}∣∣∣∣∣F(t)

]

− ertẼ
[
e−rT S(T )

∣∣∣F(t)
]
.

(7.4.23)

Because the discounted asset price is a martingale under P̃, the second term in (7.4.23)
is −erte−rtS(t) = −S(t). For the first term, we can “take out what is known” (see
Theorem 2.3.2(ii)) to obtain

e−rτY (t)Ẽ

[
exp

{[
max

t≤u≤T
σ
(
Ŵ (u)− Ŵ (t)

)− log
Y (t)

S(t)

]+
}∣∣∣∣∣F(t)

]
. (7.4.24)

Because Y (t) and S(t) are F(t)-measurable and maxt≤u≤T σ
(
Ŵ (u) − Ŵ (t)

)
is inde-

pendent of F(t), we can use the Independence Lemma, Lemma 2.3.4, to write the
conditional expectation in (7.4.24) as g

(
S(t), Y (t)

)
, where

g(x, y) = Ẽ exp

{[
max

t≤u≤T
σ
(
Ŵ (u)− Ŵ (t)

)− log
y

x

]+
}

. (7.4.25)
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Note that the expectation in (7.4.25) is no longer conditioned on F(t). Putting this
all together, we have

V (t) = e−rτY (t)g
(
S(t), Y (t)

)− S(t)

or, equivalently,
v(t, x, y) = e−rτyg(x, y)− x. (7.4.26)

It remains to compute the function g(x, y). Because

max
t≤u≤T

σ
(
Ŵ (u)− Ŵ (t)

)
= σ max

t≤u≤T

(
Ŵ (u)− Ŵ (t)

)
,

and maxt≤u≤T

(
Ŵ (u) − Ŵ (t)

)
has the same unconditional distribution under P̃ as

maxt≤u≤τ

(
Ŵ (u)−Ŵ (0)

)
= M̂(τ), the function g(x, y) of (7.4.25) can also be written

as

g(x, y) = Ẽ exp

{[
σM̂(τ)− log

y

x

]+
}

= P̃
{

M̂(τ) ≤ 1

σ
log

y

x

}
+

x

y
Ẽ

[
eσcM(τ)I{cM(τ)≥ 1

σ
log y

x
}
]
.

(7.4.27)

We compute both terms on the right-hand side of (7.4.27).
In order to compute the first term on the right-hand side of (7.4.27), we use (7.2.6)

with T replaced by τ and m replaced by 1
σ log y

x . With these replacements, the argu-
ments of N appearing on the right-hand side of (7.2.6) are

1√
τ

[
1

σ
log

y

x
− ατ

]
=

1

σ
√

τ

[
log

y

x
−

(
r − 1

2
σ2

)
τ

]

= − 1

σ
√

τ

[
log

x

y
+

(
r − 1

2
σ2

)
τ

]

= −δ−
(

τ,
x

y

)
,

1√
τ

[
− 1

σ
log

y

x
− ατ

]
=

1

σ
√

τ

[
− log

y

x
−

(
r − 1

2
σ2

)
τ

]

= −δ−
(
τ,

y

x

)
,

where δ±(t, s) is defined by (7.3.18). The term e2αm appearing on the righthand side
of (7.2.6) becomes

exp

{
2α

σ
log

y

x

}
= exp

{(
2r

σ2
− 1

)
log

y

x

}
=

(y

x

) 2r

σ2−1

It follows from (7.2.6) that

P̃
{

M̂(τ) ≤ 1

σ
log

y

x

}
= N

(
−δ−

(
τ,

x

y

))
−

(y

x

) 2r

σ2−1
N

(
−δ−

(
τ,

y

x

))
. (7.4.28)

The second term on the right-hand side of (7.4.27) is computed using the density
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for M̂(τ) under P̃ given by (7.2.7) with τ replacing T . Indeed,

x

y
Ẽ

[
eσcM(τ)I{cM(τ)≥ 1

σ
log y

x
}
]

=
x

y

∫ ∞

1
σ

log y
x

eσmf̃cM(τ)
(m)dm

=
x

y

∫ ∞

1
σ

log y
x

2√
2πτ

eσm− 1
2τ

(m−ατ)2dm− x

y

∫ ∞

1
σ

log y
x

2αe(σ+2α)mN

(−m− ατ√
τ

)
dm.

(7.4.29)

We compute the first integral on the right-hand side of (7.4.29). Because

rτ − 1

2τ
(m− ατ − στ)2

= rτ − 1

2τ
(m− ατ)2 + σ(m− ατ)− 1

2
σ2τ

= rτ − 1

2τ
(m− ατ)2 + σm−

(
r − 1

2
σ2

)
τ − 1

2
σ2τ

= σm− 1

2τ
(m− ατ)2,

we may write the first term on the right-hand side of (7.4.29) as

x

y

∫ ∞

1
σ

log y
x

2√
2πτ

eσm− 1
2τ

(m−ατ)2dm =
2xerτ

y
√

2πτ

∫ ∞

1
σ

log y
x

e
1
2τ

(m−ατ−στ)2dm. (7.4.30)

We make the change of variable ξ = ατ+στ−m√
τ

, so the lower limit of integration 1
σ log y

x

becomes

1√
τ

(
ατ + στ − 1

σ
log

y

x

)
=

1

σ
√

τ

(
log

x

y
+ rτ +

1

2
σ2τ

)
= δ+

(
τ,

x

y

)
.

With this change of variable in the integral on the right-hand side of (7.4.30), we
obtain the following formula for the first term on the right-hand side of (7.4.29):

x

y

∫ ∞

1
σ

log y
x

2√
2πτ

eσm− 1
2τ

(m−ατ)2dm =
2xerτ

y
√

2π

∫ δ+(τ,x
y
)

−∞
e−

1
2
ξ2

dξ

=
2xerτ

y
N

(
δ+

(
τ,

x

y

))
.

(7.4.31)

The second term on the right-hand side of (7.4.29) requires a reversal of the order
of integration over the region shown in Figure 7.4.2. Because σ + 2α = 2r

σ , this term
is

−x

y

∫ ∞

1
σ

log x
y

2αe(σ+2α)mN

(−m− ατ√
τ

)
dm

= − 2αx

y
√

2π

∫ ∞

1
σ

log y
x

∫ 1√
τ(−m−ατ)

−∞
e

2
σ
rm− 1

2
ξ2

dξdm

= − 2αx

y
√

2π

∫ −δ−(τ, y
x
)

−∞

∫ −ξ
√

τ−ατ

1
σ

log y
x

e
2
σ
rm− 1

2
ξ2

dmdξ.

(7.4.32)
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The inner integral in (7.4.32) can be evaluated. Indeed,

∫ −ξ
√

τ−ατ

1
σ

log y
x

e
2rm

σ
− ξ2

2 dm =
σ

2r
e

2rm
σ
− ξ2

2

∣∣∣∣
m=−ξ

√
τ−ατ

m= 1
σ

log y
x

=
σ

2r
e

2r
σ

(−ξ
√

τ−ατ)− 1
2
ξ2 − σ

2r
e

2r

σ2 log y
x
− 1

2
ξ2

.

But

2r

σ
(−ξ

√
τ − ατ)− ξ2

2
= −ξ2

2
− 2rξ

√
τ

σ
− 2rατ

σ

= −1

2

(
ξ +

2r
√

τ

σ

)2

+
2r2τ

σ2
− 2rατ

σ

= −1

2

(
ξ +

2r
√

τ

σ

)2

+
2rτ

σ2
(r − σα)

= −1

2

(
ξ +

2r
√

τ

σ

)2

+ rτ

and

e
2r

σ2 log y
x
− ξ2

2 =
(y

x

) 2r

σ2

e−
ξ2

2 .

Therefore, the inner integral in (7.4.32) is

∫ −ξ
√

τ−ατ

1
σ

log y
x

e
2rm

σ
− ξ2

2 dm =
σ

2r
erτ− 1

2
(ξ+ 2r

√
τ

σ
)2 − σ

2r

(y

x

) 2r

σ2

e−
ξ2

2 .
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We continue (7.4.32), making this substitution for the inner integral:

−x

y

∫ ∞

1
σ

log y
x

2αe(σ+2α)mN

(−m− ατ√
τ

)
dm

= − ασx

ry
√

2π

∫ −δ−(τ, y
x
)

−∞
erτ− 1

2
(ξ+ 2r

√
τ

σ
)2dξ +

ασ

r
√

2π

(y

x

) 2r

σ2−1
∫ −δ−(τ, y

x
)

−∞
e−

ξ2

2 dξ

= −ασxerτ

ry
√

2π

∫ −δ−(τ, y
x
)

−∞
e−

1
2
(ξ+ 2r

√
τ

σ
)2dξ +

ασ

r

(y

x

) 2r

σ2−1
N

(
−δ−

(
τ,

y

x

))
.

(7.4.33)

In the first integral on the right-hand side of (7.4.33), we make the change of variable
η = ξ + 2r

√
τ

σ , and the upper limit of integration becomes

−δ−
(
τ,

y

x

)
+

2r
√

τ

σ
=

1

σ
√

τ

[
− log

y

x
−

(
r − 1

2
σ2

)
τ + 2rτ

]

=
1

σ
√

τ

[
log

x

y
+

(
r +

1

2
σ2

)
τ

]

= δ+

(
τ,

x

y

)
.

We conclude that

−x

y

∫ ∞

1
σ

log y
x

2αe(σ+2α)mN

(−m− ατ√
τ

)
dm

= −ασx

ry
erτN

(
δ+

(
τ,

x

y

))
+

ασ

r

(y

x

) 2r

σ2−1
N

(
−δ−

(
τ,

y

x

))
.

(7.4.34)

We put all the pieces together. The function v(t, x, y) for 0 ≤ t < T and 0 < x ≤ y

is given by (7.4.26), where g(x, y) is given by (7.4.27). We have computed both terms
on the right-hand side of (7.4.27). The first term is given by (7.4.28), and the second
term is itself the sum of the two terms in (7.4.29). These two terms are given by
(7.4.31) and (7.4.34). Furthermore, the term ασ

r appearing in these formulas is equal
to 1− σ2

2r . We conclude that

v(t, x, y) = e−rτy

[
N

(
−δ−

(
τ,

x

y

))
−

(y

x

) 2r

σ2−1
N

(
−δ−

(
τ,

y

x

))

+ 2

(
x

y

)
erτN

(
δ+

(
τ,

x

y

))

−
(

1− σ2

2r

)(
x

y

)
erτN

(
δ+

(
τ,

x

y

))

+

(
1− σ2

2r

) (y

x

) 2r

σ2−1
N

(
−δ−

(
τ,

y

x

))]
− x.

Simplification results in the formula

v(t, x, y) =

(
1 +

σ2

2r

)
xN

(
δ+

(
τ,

x

y

))
+ e−rτyN

(
−δ−

(
τ,

x

y

))

− σ2

2r
e−rτ

(y

x

) 2r

σ2

xN
(
−δ−

(
τ,

y

x

))
− x, 0 ≤ t < T, 0 < x ≤ y.

(7.4.35)
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The function u related to v by (7.4.16) satisfies

u

(
t,

x

y

)
=

(
1 +

σ2

2r

)(
x

y

)
N

(
δ+

(
τ,

x

y

))
+ e−rτN

(
−δ−

(
τ,

x

y

))

− σ2

2r
e−rτ

(
x

y

)1− 2r

σ2

N
(
−δ−

(
τ,

y

x

))
− x

y
.

Making the change of variable z = x
y , we obtain

u (t, z) =

(
1 +

σ2

2r

)
zN

(
δ+(τ, z)

)
+ e−rτN

(− δ−(τ, z)
)

− σ2

2r
e−rτz1− 2r

σ2 N
(− δ−(τ, z−1)

)− z, 0 ≤ t < T, 0 < z ≤ 1.

(7.4.36)

7.5 Asian Options

An Asian option is one whose payoff includes a time average of the underlying asset
price. The average may be over the entire time period between initiation and expi-
ration or may be over some period of time that begins later than the initiation of the
option and ends with the option’s expiration. The average may be from continuous
sampling,

1

T

∫ T

0
S(t)dt,

or may be from discrete sampling,

1

m

m∑

j=1

S(tj),

where 0 < t1 < t2 < · · · < tm = T . The primary reason to base an option payoff on
an average asset price is to make it more difficult for anyone to significantly affect
the payoff by manipulation of the underlying asset price.

The price of Asian options is not known in closed form. Therefore, in this section
we discuss two ways to derive partial differential equations for Asian option prices.
The first of these was briefly presented in Example 6.6.1. The other method for
computing Asian option prices is Monte Carlo simulation.

7.5.1 Fixed-Strike Asian Call

Once again, we begin with a geometric Brownian motion S(t) given by

dS(t) = rS(t)dt + σS(t)dW̃ (t), (7.5.1)

where W̃ (t), 0 ≤ t ≤ T , is a Brownian motion under the risk-neutral measure P̃.
Consider a fixed-strike Asian call whose payoff at time T is

V (T ) =

(
1

T

∫ T

0
S(t)dt−K

)+

, (7.5.2)
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where the strike price K is a nonnegative constant. The price at times t prior to the
expiration time T of this call is given by the risk-neutral pricing formula

V (t) = Ẽ
[
e−r(T−t)V (T )

∣∣F(t)
]
, 0 ≤ t ≤ T. (7.5.3)

The usual iterated conditioning argument shows that

e−rtV (t) = Ẽ
[
e−rT V (T )

∣∣F(t)
]
, 0 ≤ t ≤ T.

is a martingale under P̃. This is the quantity we wish to compute. In the next two
subsections, we describe two different ways to undertake this.

7.5.2 Augmentation of the State

The Asian option payoff V (T ) in (7.5.2) is path-dependent. The price of the option
at time t depends not only on t and S(t), but also on the path that the asset price has
followed up to time t. In particular, we cannot invoke the Markov property to claim
that V (t) is a function of t and S(t) because V (T ) is not a function of T and S(T );
V (T ) depends on the whole path of S.

To overcome this difficulty, we augment the state S(t) by defining a second process

Y (t) =

∫ t

0
S(u)du. (7.5.4)

The stochastic differential equation for Y (t) is thus

dY (t) = S(t)dt. (7.5.5)

Because the pair of processes (S(t), Y (t)) is governed by the pair of stochastic differ-
ential equations (7.5.1) and (7.5.5), they constitute a two-dimensional Markov pro-
cess (Corollary 6.3.2). Furthermore, the call payoff V (T ) is a function of T and the
final value (S(T ), Y (T )) of this process. Indeed, V (T ) depends only on T and Y (T ),
by the formula

V (T ) =

(
1

T
Y (T )−K

)+

. (7.5.6)

This implies that there must exist some function v(t, x, y) such that the Asian call
price (7.5.3) is given as

v
(
t, S(t), Y (t)

)
= Ẽ

[
e−r(T−t)

(
1

T
Y (T )−K

)+
∣∣∣∣∣F(t)

]

= Ẽ
[
e−r(T−t)V (T )

∣∣∣F(t)
]
.

(7.5.7)

The function v(t, x, y) satisfies a partial differential equation. This equation and three
boundary conditions are provided in the next theorem. However, in order to numeri-
cally solve this equation, it would normally be necessary to also specify the behavior
of v(t, x, y) as x approaches∞ and y approaches either∞ or−∞. This can be avoided
by the method discussed in Subsection 7.5.3; see Remark 7.5.4 below.
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Theorem 7.5.1. The Asian call price function v(t, x, y) of (7.5.7) satisfies the partial
differential equation

vt(t, x, y) + rxvx(t, x, y) + xvy(t, x, y) +
1

2
σ2x2vxx(t, x, y) = rv(t, x, y),

0 ≤ t < T, x ≥ 0,y ∈ R,
(7.5.8)

and the boundary conditions

v(t, 0, y) = e−r(T−t)
( y

T
−K

)+
, 0 ≤ t < T, y ∈ R, (7.5.9)

lim
y↓−∞

v(t, x, y) = 0, 0 ≤ t < T, x ≥ 0, (7.5.10)

v(T, x, y) =
( y

T
−K

)+
, x ≥ 0, y ∈ R. (7.5.11)

Proof. Using the stochastic differential equations (7.5.1) and (7.5.5) and noting that
dS(t)dY (t) = dY (t)dY (t) = 0, we take the differential of the P̃-martingale e−rtV (t) =

e−rtv
(
t, S(t), Y (t)

)
. This differential is

d
(
e−rtv

(
t, S(t), Y (t)

))

= e−rt

[
−rvdt + vtdt + vxdS + vydY +

1

2
vxxdSdS

]

= e−rt

[
−rv + vt + rSvx + Svy +

1

2
σ2S2vxx

]
dt + e−rtσSvxdW̃ (t).

(7.5.12)

In order for this to be a martingale, the dt term must be zero, which implies

vt

(
t, S(t), Y (t)

)
+ rS(t)vx

(
t, S(t), Y (t)

)
+ S(t)vy

(
t, S(t), Y (t)

)

+
1

2
σ2S2(t)vxx

(
t, S(t), Y (t)

)
= rv

(
t, S(t), Y (t)

)
.

Replacing S(t) by the dummy variable x and Y (t) by the dummy variable y, we obtain
(7.5.8).

We note that S(t) must always be nonnegative, and so (7.5.8) holds for x ≥ 0. If
S(t) = 0 and Y (t) = y for some value of t, then S(u) = 0 for all u ∈ [t, T ], and so Y (u)

is constant on [t, T ]. Therefore, Y (T ) = y, and the value of the Asian call at time t is
( y
T −K)+ , discounted from T back to t. This gives us the boundary condition (7.5.9).

In contrast, it is not the case that if Y (t) = 0 for some time t, then Y (u) = 0 for all
u ≥ 0. Therefore, we cannot easily determine the value of v(t, x, 0), and we do not
provide a condition on the boundary y = 0. Indeed, at least mathematically there is
no problem with allowing y to be negative. If at time t we set Y (t) = y, then Y (T ) is
defined by (7.5.5). In integrated form, this formula is

Y (T ) = y +

∫ T

t
S(u)du. (7.5.13)

Even if y is negative, this makes sense, and in this case we could still have Y (T ) > 0

or even 1
T Y (T ) − K > 0, so that the call expires in the money. When using the

differential equations (7.5.1) and (7.5.5) to describe the “state” processes S(t) and
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Y (t), there is no reason to require that Y (t) be nonnegative. (We still require that
S(t) be nonnegative because x = 0 is a natural boundary for S(t).) For this reason,
we do not restrict the values of y in the partial differential equation (7.5.8). The
natural boundary for y is y = −∞. If Y (t) = y, S(t) = x, and holding x fixed we
let y → −∞, then Y (T ) approaches −∞ (see (7.5.13)), the probability that the call
expires in the money approaches zero, and the option price approaches zero. The
natural boundary for y is y = −∞, and the boundary condition there is (7.5.10). The
boundary condition (7.5.11) is just the payoff of the call.

Remark 7.5.2. After we set the dt term in (7.5.12) equal to zero, we see that

d
(
e−rtv

(
t, S(t), Y (t)

))
= e−rtσS(t)vx

(
t, S(t), Y (t)

)
dW̃ (t). (7.5.14)

The discounted value of a portfolio that at each time t holds ∆(t) shares of the under-
lying asset is given by (see (5.2.27))

d
(
e−rtX(t)

)
= e−rtσS(t)∆(t)dW̃ (t). (7.5.15)

To hedge a short position in the Asian call, an agent should equate these two differ-
entials, which leads to the delta-hedging formula

∆(t) = vx

(
t, S(t), Y (t)

)
.

7.5.3 Change of Numeraire

In this subsection we present a partial differential equation whose solution leads to
Asian option prices. We work this out for both continuous and discrete averaging.
The derivation of this equation involves a change of numéraire, a concept discussed
systematically in Chapter 9. In this section, we derive formulas under the assumption
that the interest rate r is not zero. The case r = 0 is treated in Exercise 7.8.

We first consider the case of an Asian call with payoff

V (T ) =

(
1

c

∫ T

T−c
S(t)dt−K

)+

, (7.5.16)

where c is a constant satisfying 0 < c ≤ T and K is a nonnegative constant. If c = T ,
this is the Asian call (7.5.2) considered in Subsection 7.5.2. Here we also admit the
possibility that the averaging is over less than the full time between initiation and
expiration of the call.

To price this call, we create a portfolio process whose value at time T is

X(T ) =
1

c

∫ T

T−c
S(u)du−K.

We begin with a nonrandom function of time γ(t), 0 ≤ t ≤ T , which will be the
number of shares of the risky asset held by our portfolio. There will be no Brownian
motion term in γ(t), and because of this it will satisfy dγ(t)dγ(t) = dγ(t)dS(t) = 0.
This implies that

d
(
γ(t)S(t)

)
= γ(t)dS(t) + S(t)dγ(t), (7.5.17)
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which further implies

d
(
er(T−t)γ(t)S(t)

)
= er(T−t)d

(
γ(t)S(t)

)− rer(T−t)γ(t)S(t)dt

= er(T−t)γ(t)dS(t) + er(T−t)S(t)dγ(t)− rer(T−t)γ(t)S(t)dt.

(7.5.18)

Rearranging terms in (7.5.18), we obtain

er(T−t)γ(t)
(
dS(t)− rS(t)dt

)
= d

(
er(T−t)γ(t)S(t)

)
− er(T−t)S(t)dγ(t). (7.5.19)

An agent who holds γ(t) shares of the risky asset at each time t and finances this by
investing or borrowing at the interest rate r will have a portfolio whose value evolves
according to the equation

dX(t) = γ(t)dS(t) + r
(
X(t)− γ(t)S(t)

)
dt

= rX(t)dt + γ(t)
(
dS(t)− rS(t)dt

)
.

(7.5.20)

Using this equation and (7.5.19), we obtain

d
(
er(T−t)X(t)

)
= −rer(T−t)X(t)dt + er(T−t)dX(t)

= er(T−t)γ(t)
(
S(t)− rS(t)dt

)

= d
(
er(T−t)γ(t)S(t)

)
+ er(T−t)S(t)dγ(t).

(7.5.21)

To study the Asian call with payoff (7.5.16), we take γ(t) to be

γ(t) =





1
rc(1− e−rc), 0 ≤ t ≤ T − c,

1
rc

(
1− e−r(T−t)

)
, T − c ≤ t ≤ T,

(7.5.22)

and we take the initial capital to be

X(0) =
1

rc
(1− e−rc)S(0)− e−rT K. (7.5.23)

In the time interval [0, T − c], the process γ(t) mandates a buy-and-hold strategy. At
time zero, we buy 1

rc(1− e−rc) shares of the risky asset, which costs 1
rc(1− e−rc)S(0).

Our initial capital is insufficient to do this, and we must borrow e−rT K from the
money market account. For 0 ≤ t ≤ T − c, the value of our holdings in the risky asset
is 1

rc(1− e−rc)S(t) and we owe e−r(T−t)K to the money market account. Therefore,

X(t) =
1

rc
(1− e−rc)S(t)− e−r(T−t)K, 0 ≤ t ≤ T − c (7.5.24)

In particular,

X(T − c) =
1

rc
(1− e−rc)S(T − c)− e−rcK. (7.5.25)

For T − c ≤ t ≤ T , we have dγ(t) = −1
ce
−r(T−t) and we compute X(t) by first
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integrating (7.5.21) from T − c to t and using (7.5.25) and (7.5.22) to obtain

er(T−t)X(t)

= ercX(T − c) +

∫ t

T−c
d
(
er(T−u)γ(u)S(u)

)−
∫ t

T−c
er(T−u)S(u)dγ(u)

=
1

rc
(1− e−rc)S(T − c)−K + er(T−t)γ(t)S(t)

− 1

rc
(1− e−rc)S(T − c) +

1

c

∫ t

T−c
S(u)du

= −K + er(T−t)γ(t)S(t) +
1

c

∫ t

T−c
S(u)du.

Therefore,

X(t) =
1

rc

(
1− e−r(T−t)

)
S(t)+e−r(T−t)1

c

∫ t

T−c
S(u)du−e−r(T−t)K, T −c ≤ t ≤ T.

(7.5.26)
In particular,

X(T ) =
1

c

∫ T

T−c
S(u)du−K, (7.5.27)

as desired, and
V (T ) = X+(T ) = max{X(T ), 0}. (7.5.28)

The price of the Asian call at time t prior to expiration is

V (t) = Ẽ
[
e−r(T−t)V (T )

∣∣∣F(t)
]

= Ẽ
[
e−r(T−t)X+(T )

∣∣∣F(t)
]
. (7.5.29)

The calculation of the right-hand side of G.5.29) uses a change-of-numéraire ar-
gument, which we now explain. Let us define

Y (t) =
X(t)

S(t)
=

e−rtX(t)

e−rtS(t)
.

This is the value of the portfolio denominated in units of the risky asset rather than
in dollars. We have changed the numéraire, the unit of account, from dollars to the
risky asset.

We work out the differential of Y (t). Note first that

d
(
e−rtS(t)

)
= −re−rtS(t)dt + e−rtdS(t) = σe−rtS(t)dW̃ (t). (7.5.30)

Therefore,

d
[(

e−rtS(t)
)−1

]

= −(
e−rtS(t)

)−2
d
(
e−rtS(t)

)
+

(
e−rtS(t)

)−3
d
(
e−rtS(t)

)
d
(
e−rtS(t)

)

= −(
e−rtS(t)

)−2
σ
(
e−rtS(t)

)
dW̃ (t) +

(
e−rtS(t)

)−3(
e−rtS(t)

)2
σ2dt

= −σ
(
e−rtS(t)

)−1
dW̃ (t) + σ2

(
e−rtS(t)

)−1
dt.
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On the other hand, (7.5.20) and (7.5.30) imply

d
(
e−rtX(t)

)
= −re−rtX(t)dt + e−rtdX(t)

= γ(t)e−rt
(
dS(t)− rS(t)

)
dt

= γ(t)σe−rtS(t)dW̃ (t).

Itô’s product rule implies

dY (t) = d
[(

e−rtX(t)
)(

e−rtS(t)
)−1

]

= e−rtX(t)d
[(

e−rtS(t)
)−1

]
+

(
e−rtS(t)

)−1
d
(
e−rtX(t)

)

+ d
(
e−rtX(t)

)
d

[(
e−rtS(t)

)−1
]

= −σY (t)dW̃ (t) + σ2Y (t)dt + σγ(t)dW̃ (t)− σ2γ(t)dt

= σ[γ(t)− Y (t)]
[
dW̃ (t)− σdt

]
.

(7.5.31)

The process Y (t) is not a martingale under P̃ because its differential (7.5.31) has a
dt term. However, we can change measure so that Y (t) is a martingale, and this will
simplify (7.5.31). We set

W̃S(t) = W̃ (t)− σt (7.5.32)

and then have
dY (t) = σ[γ(t)− Y (t)]dW̃S(t). (7.5.33)

According to Girsanov’s Theorem, Theorem 5.2.3, we can change the measure so
that W̃S(t), 0 ≤ t ≤ T , is a Brownian motion. In this situation, −σ plays the role of
Θ in Theorem 5.2.3, and W̃ and P̃ play the roles of W and P. The Radon-Nikodym
derivative process of (5.2.11) is

Z(t) = exp

{
σW̃ (t)− 1

2
σ2t

}
.

In other words,

Z(t) =
e−rtS(t)

S(0)
. (7.5.34)

Under the probability measure P̃S defined by

P̃S(A) =

∫

A
Z(T )dP̃ for all A ∈ F ,

W̃S(t) is a Brownian motion and Y (t) is a martingale.
Under the probability measure P̃S , the process Y (t) is Markov. It is given by the

stochastic differential equation (7.5.33), and because γ(t) is nonrandom, the term
multiplying dW̃S(t) in (7.5.33) is a function of t and Y (t) and has no source of ran-
domness other than Y (t). Equation (7.5.33) is a stochastic differential equation of the
type (6.2.1), and solutions to such equations are Markov (see Corollary 6.3.2).
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We return to the option price V (t) of (7.5.29) and use Lemma 5.2.2 to write
(7.5.29) as

V (t) = ertẼ
[
e−rT X+(T )

∣∣∣F(t)
]

=
S(t)

e−rtS(t)
Ẽ

[
e−rT S(T )

(
e−rT X(T )

e−rT S(T )

)+
∣∣∣∣∣F(t)

]

=
S(t)

Z(t)
Ẽ

[
Z(T )Y +(T )|F(t)

]

= S(t)ẼS
[
Y +(T )|F(t)

]
,

(7.5.35)

where ẼS [· · · |F(t)] denotes conditional expectation under the probability measure
P̃S . Because Y is Markov under P̃S , there must be some function g(t, y) such that

g
(
t, Y (t)

)
= ẼS

[
Y +(T )|F(t)

]
. (7.5.36)

From (7.5.36), we see that

g
(
T, Y (T )

)
= ẼS

[
Y +(T )|F(T )

]
= Y +(T ). (7.5.37)

We note that Y (T ) = X(T )
S(T ) can take any value since the numerator X(T ), given by

(7.5.27), can be either positive or negative, and the denominator S(T ) can be any
positive number. Therefore, (7.5.37) leads to the boundary condition

g(T, y) = y+, y ∈ R. (7.5.38)

The usual iterated conditioning argument shows that the right-hand side of (7.5.36)
is a martingale under P̃S , and so the differential of g

(
t, Y (t)

)
should have only a

dW̃S(t) term. This differential is

dg
(
t, Y (t)

)
= gt

(
t, Y (t)

)
dt + gy

(
t, Y (t)

)
dY (t) +

1

2
gyy

(
t, Y (t)

)
dY (t)dY (t)

=

[
gt

(
t, Y (t)

)
+

1

2
σ2

(
γ(t)− Y (t)

)2
gyy

(
t, Y (t)

)]
dt

+ σ
(
γ(t)− Y (t)

)
gy

(
t, Y (t)

)
dW̃S(t).

We conclude that g(t, y) satisfies the partial differential equation

gt(t, y) +
1

2
σ2

(
γ(t)− y

)2
gyy(t, y) = 0, 0 ≤ t < T, y ∈ R. (7.5.39)

We summarize this discussion with the following theorem.

Theorem 7.5.3 (Večeř). For 0 ≤ t ≤ T , the price V (t) at time t of the continuously
averaged Asian call with payoff (7.5.16) at time T is

V (t) = S(t)g

(
t,

X(t)

S(t)

)
, (7.5.40)

where g(t, y) satisfies (7.5.39) and X(t) is given by (7.5.24) and (7.5.26). The bound-
ary conditions for g(t, y) are (7.5.38) and

lim
y→−∞ g(t, y) = 0, lim

y→∞[g(t, y)− y] = 0, 0 ≤ t ≤ T. (7.5.41)
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Remark 7.5.4. (Boundary conditions). Let 0 ≤ t ≤ T be given. The first boundary
condition in (7.5.41) can be derived from the fact that when Y (t) is very negative, the
probability that Y (T ) also is negative is near one and therefore the probability that
Y +(T ) = 0 is near one. This causes g(t, Y (t)) in (7.5.36) to be near zero. The second
boundary condition in (7.5.41) is a consequence of that fact that when Y (t) is large,
then the probability that Y (T ) > 0 is near one. Therefore, g(t, Y (t)) given by (7.5.36)
is approximately equal to ẼS [Y (T )|F(t)], and because Y (T ) is a martingale under P̃S ,
this conditional expectation is Y (t).

It is easier to derive these boundary conditions at y = ±∞ for g(t, y) than it is to
derive the boundary conditions for v(t, x, y) in Theorem 7.5.1 because v(t, x, y) has
two variables, x and y, that can become large. For example, it is not at all clear how
v(t, x, y) behaves as x → ∞ and y → −∞. The reduction of the Asian option pric-
ing problem provided by Theorem 7.5.3 reduces the dimensionality of the problem
and simplifies the boundary conditions. It also removes a so-called “degeneracy”
in equation (7.5.8) created by the absence of the vyy(t, x, y) term. This degeneracy
complicates the numerical solution of (7.5.8).

¤

In the remainder of this subsection, we adapt the arguments just given to treat a
discretely sampled Asian call. Assume we are given times 0 = t0 < t1 < t2 < · · · <

tm = T and the Asian call payoff is

V (T ) =


 1

m

m∑

j=1

S(tj)−K




+

. (7.5.42)

We wish to create a portfolio process so that

X(T ) =
1

m

m∑

j=1

S(tj)−K.

In place of (7.5.22), we define

γ(tj) =
1

m

m∑

i=j

e−r(T−ti), j = 0, 1, . . . , m. (7.5.43)

Then

γ(tj) = γ(tj−1)− 1

m
e−r(T−tj−1), j = 1, . . . , m, (7.5.44)

and γ(T ) = γ(tm) = 1
m . We complete the definition of γ(t) by setting

γ(t) = γ(tj), tj−1 < t ≤ tj . (7.5.45)

This defines γ(t) for all t ∈ [0, T ]. In this situation, (7.5.21) still holds, but now
dγ(t) = 0 in each subinterval (tj−1, tj). Integrating (7.5.21) from tj−1 to tj and using
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(7.5.44) and the fact that γ(t) = γ(tj) for t ∈ (tj−1, tj ], we obtain

er(T−tj)X(tj)− er(T−tj−1)X(tj−1)

= γ(tj)
[
er(T−tj)S(tj)− er(T−tj−1)S(tj−1)

]

= γ(tj)e
r(T−tj)S(tj)−

(
γ(tj−1)− 1

m
e−r(T−tj−1)

)
er(T−tj−1)S(tj−1)

= γ(tj)e
r(T−tj)S(tj)− γ(tj−1)e

r(T−tj−1)S(tj−1) +
1

m
S(tj−1).

Summing this equation from j = 1 to j = k, we see that

er(T−tk)X(tk)− erT X(0)

= γ(tk)e
r(T−tk)S(tk)− γ(0)erT S(0) +

1

m

k∑

j=1

S(tj−1)

= γ(tk)e
r(T−tk)S(tk) +

1

m

k−1∑

i=1

S(ti) +

(
−γ(0)erT +

1

m

)
S(0).

We set

X(0) = e−rT

[
γ(0)erT − 1

m

]
S(0)− e−rT K,

so this equation becomes

er(T−tk)X(tk) = γ(tk)e
r(T−tk)S(tk) +

1

m

k−1∑

i=1

S(ti)−K

or, equivalently,

X(tk) = γ(tk)S(tk) + e−r(T−tk) 1

m

k−1∑

i=1

S(ti)− e−r(T−tk)K. (7.5.46)

In particular,

X(T ) = X(tm) =
1

m

m∑

i=1

S(ti)−K (7.5.47)

as desired.
To determine X(t) for tk ≤ t ≤ tk+1, we integrate (7.5.21) from tk to t to obtain

er(T−t)X(t) = er(T−tk)X(tk) + γ(tk+1)
[
er(T−t)S(t)− er(T−tk)S(tk)

]

= γ(tk)e
r(T−tk)S(tk) +

1

m

k−1∑

i=1

S(ti)−K + γ(tk+1)e
r(T−t)S(t)

−
(

γ(tk)−
1

m
e−r(T−tk)

)
er(T−tk)S(tk)

= γ(tk+1)e
r(T−t)S(t) +

1

m

k∑

i=1

S(ti)−K.
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Therefore,

X(t) = γ(tk+1)S(t) + e−r(T−t) 1

m

k∑

i=1

S(ti)− e−r(T−t)K, tk ≤ t ≤ tk+1. (7.5.48)

We now proceed with the change of numéraire as before. This leads again to
Theorem 7.5.3 for the discretely sampled Asian call with payoff (7.5.42). The price
at time t is given by (7.5.40), where g(t, x) satisfies (7.5.39) with boundary conditions
(7.5.38) and (7.5.41). The only difference is that now the nonrandom function γ(t)

appearing in (7.5.39) is given by (7.5.43) and (7.5.45) and the process X(t) in (7.5.40)
is given by (7.5.48).

7.6 Summary

Three specific exotic options on a geometric Brownian motion have been considered:
an up-and-out barrier call, a lookback call, and an Asian call. In each case, the
discounted option price is a martingale under the risk-neutral measure, and this leads
to a partial differential equation of the Black-Scholes-Merton type. However, the
lookback call and the Asian call equations have an additional state variable in this
equation.

For the barrier call and the lookback call, the option price was computed explicitly.
The Asian option pricing problem was transformed by a change of numéraire to an
equation with a single state variable. This transformation was done both for the
continuously sampled and the discretely sampled Asian options.

7.7 Notes

There are scores of different exotic options, and the search for explicit pricing formu-
las can lead to complex computations. Analysis of many exotic options is provided
by Zhang [167] and Haug [80]. Papers by a variety of authors who treat exotic op-
tions, including some of those cited below, have been collected by Lipton [110].
Exotic options are prevalent in foreign exchange markets. Analysis of several in-
struments appearing in these markets is provided by Hakala and Wystup [76]. Many
exotic pricing formulas can be derived from the formulas for distributions related to
Brownian motion collected by Borodin and Salminen [18].

The analysis of barrier options presented here follows Rubinstein and Reiner
[142]. Monte Carlo simulation of barrier options normally obtains the price for the
case when barrier crossing is checked only at discrete times. Broadie, Glasserman
and Kou [22] provide a correction term to adjust this result to obtain the price for an
option in which the barrier is monitored continuously. The problem of large delta and
gamma values for barrier options near expiration near the barrier can be ameliorated
by placing an a priori constraint on the hedging strategy and pricing this constraint
into the option; see Schmock, Shreve, and Wystup [148].
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The change-of-numéraire approach to Asian options, explained in Subsection 7.5.3,
is due to Večeř [155], [156]. This methodology was extended to jump processes by
Večeř and Xu [157]. Other partial differential equations for pricing Asian options are
provided by Andreasen [4], Lipton [109], and Rogers and Shi [139].

Geman and Yor [71] obtain a closed-form formula for a Laplace transform of the
Asian option price. Pu, Madan, and Wang [67] compare Monte Carlo and Laplace
transform methods for Asian option pricing.

7.8 Exercises

Exercise 7.1 (Black-Scholes-Merton equation for the up-and-out call).

This exercise shows by direct calculation that the function v(t, x) of (7.3.20) satis-
fies the Black-Scholes-Merton equation (7.3.4).

(i) Recall that τ = T − t, so dτ
dt = −1. Show that δ±(τ, s) given by (7.3.18) satisfies

∂

∂t
δ±(τ, s) = − 1

2τ
δ±

(
τ,

1

s

)
. (7.8.1)

(ii) Show that for any positive constant c,

∂

∂x
δ±

(
τ,

x

c

)
=

1

xσ
√

τ
,

∂

∂x
δ±

(
τ,

c

x

)
= − 1

xσ
√

τ
. (7.8.2)

(iii) Show that
N ′(δ+(τ, s)

)

N ′(δ−(τ, s)
) =

e−rτ

s

and hence
e−rτN ′(δ−(τ, s)

)
= sN ′(δ+(τ, s)

)
. (7.8.3)

(iv) Show that
N ′(δ±(τ, s)

)

N ′(δ±(τ, s−1)
) = s−( 2r

σ2±1)

and hence
N ′(δ±(τ, s−1)

)
= s

2r

σ2±1N ′(δ±(τ, s)
)
. (7.8.4)

(v) Show that
δ+(τ, s)− δ−(τ, s) = σ

√
τ . (7.8.5)

(vi) Show that

δ±(τ, s)− δ±(τ, s−1) =
2

σ
√

τ
log s. (7.8.6)

(vii) Show that
N ′′(y) = −yN ′(y). (7.8.7)
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(viii) Use (i) to compute vt(t, x) and (7.8.3)-(7.8.5) to simplify it, obtaining

vt(t, x) = − xσ

2
√

τ
N ′

(
δ+

(
τ,

x

K

))
− x(B −K)

Bστ
√

τ
log

x

B
N ′

(
δ+

(
τ,

x

B

))

+
Bσ

2
√

τ

( x

B

)− 2r

σ2

N ′
(

δ+

(
τ,

B2

Kx

))

− re−rτK
[
N

(
δ−

(
τ,

x

K

))
−N

(
δ−

(
τ,

x

B

))]

+ re−rτK
( x

B

)− 2r

σ2 +1
[
N

(
δ−

(
τ,

B2

Kx

))
−N

(
δ−

(
τ,

B2

x

))]
.

(7.8.8)

(ix) Use (ii) to compute vx(t, x) and (7.8.3) and (7.8.4) to simplify it, obtaining

vx(t, x) =
[
N

(
δ+

(
τ,

x

K

))
−N

(
δ+

(
τ,

x

B

))]
− 2(B −K)

Bσ
√

τ
N ′

(
δ+

(
τ,

x

B

))

+
2r

σ2

( x

B

)− 2r

σ2−1
[
N

(
δ+

(
τ,

B2

Kx

))
−N

(
δ+

(
τ,

B

x

))]

+
e−rτK

B

(
−2r

σ2
+ 1

) ( x

B

)− 2r

σ2

×
[
N

(
δ−

(
τ,

B2

Kx

))
−N

(
δ−

(
τ,

B

x

))]
.

(7.8.9)

(x) Use (ii) and (7.8.9) to compute vxx(t, x) and (7.8.3) and (7.8.4) to simplify it,
obtaining

vxx(t, x) =
1

xσ
√

τ
N ′

(
δ+

(
τ,

x

K

))
− 1

Bσ
√

τ

( x

B

)− 2r

σ2−2
N ′

(
δ+

(
τ,

B2

Kx

))

+
2(B −K)

xBσ
√

τ

(
2r

σ2
+

1

σ2τ
log

x

B

)
N ′

(
δ+

(
τ,

x

B

))

− 2r

Bσ2

(
2r

σ2
+ 1

) ( x

B

)− 2r

σ2−2

×
[
N

(
δ+

(
τ,

B2

Kx

))
−N

(
δ+

(
τ,

B

x

))]

− e−rτK

B2

(
2r

σ2

)(
−2r

σ2
+ 1

) ( x

B

)− 2r

σ2−1

×
[
N

(
δ−

(
τ,

B2

Kx

))
−N

(
δ−

(
τ,

B

x

))]
.

(7.8.10)

(xi) Now verify that v(t, x) satisfies the Black-Scholes-Merton equation (7.3.4).

Exercise 7.2 (Boundary conditions for the up-and-out call).

In this exercise, it is verified that the up-and-out call price v(t, x) given by (7.3.20)
satisfies the boundary condition (7.3.6). Furthermore, the limit as x ↓ 0 satisfies
(7.3.5) and the limit as t ↑ T satisfies (7.3.7).
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(i) Verify by direct substitution into (7.3.20) that (7.3.6) is satisfied,

(ii) Show that, for any positive constant c,

lim
x↓0

δ±
(
τ,

x

c

)
= −∞, lim

x↓0
δ±

(
τ,

c

x

)
= ∞. (7.8.11)

Use this to show that for any p ∈ R and positive constants c1 and c2, we have

lim
x↓0

xp

[
N

(
δ±

(
τ,

x

c1

))
−N

(
δ±

(
τ,

x

c2

))]
= 0, (7.8.12)

lim
x↓0

xp
[
N

(
δ±

(
τ,

c1

x

))
−N

(
δ±

(
τ,

c2

x

))]
= 0. (7.8.13)

If p ≥ 0, (7.8.12) and (7.8.13) are immediate consequences of (7.8.11). How-
ever, if p < 0, one should first use L’Hopital’s rule and then show that

lim
x↓0

xp exp

{
−1

2
δ2
±

(
τ,

x

ci

)}
= 0, lim

x↓0
xp exp

{
−1

2
δ2
±

(
τ,

ci

x

)}
= 0.

(7.8.14)
To establish (7.8.14), you may wish to prove and use the inequality

1

2
a2 − b2 ≤ (a + b)2 for all a, b ∈ R. (7.8.15)

Conclude that limx↓0 v(t, x) = 0 for 0 ≤ t < T .

(iii) Show that, for any positive c,

lim
τ↓0

δ±(τ, c) =





−∞ if 0 < c < 1,

0 if c = 1,

∞ if c > 1.

(7.8.16)

Use this to show that limτ↓0 v(t, x) = (x−K)+ for 0 < x < B.

Exercise 7.3 (Markov property for geometric Brownian motion and its maximum to
date).

Recall the geometric Brownian motion S(t) of (7.4.1) and its maximum-to-date
process Y (t) of (7.4.3). According to Definition 2.3.6, in order to show that the pair
of processes

(
S(t), Y (t)

)
is Markov, we must show that whenever 0 ≤ t ≤ T and

f(x, y) is a function, there exists another function g(x, y) such that

E
[
f
(
S(T ), Y (T )

)∣∣F(t)
]

= g
(
S(t), Y (t)

)
. (7.8.17)

Use the Independence Lemma, Lemma 2.3.4, to show that such a function g(x, y)

exists.

Exercise 7.4 (Cross variation of geometric Brownian motion and its maximum to
date).
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Let S(t) be the geometric Brownian motion (7.4.1) and let Y (t) be the maximum-
to-date process (7.4.3). Let T be fixed and let 0 = t0 < t1 < · · · < tm = T be a
partition of [0, T ]. Show that as the number of partition points m approaches infinity
and the length of the longest subinterval maxj=1,...,m tj − tj−1 approaches zero, the
sum

m∑

j=1

(
Y (tj)− Y (tj−1)

)(
S(tj)− S(tj−1)

)

has limit zero.

Exercise 7.5 (Black-Scholes-Merton equation for lookback option).

We wish to verify by direct computation that the function v(t, x, y) of (7.4.35) sat-
isfies the Black-Scholes-Merton equation (7.4.6). As we saw in Subsection 7.4.3, this
is equivalent to showing that the function u defined by (7.4.36) satisfies the Black-
Scholes-Merton equation (7.4.18). We verify that u(t, z) satisfies (7.4.18) in the fol-
lowing steps. Let 0 ≤ t < T be given, and define τ = T − t.

(i) Use (7.8.1) to compute ut(t, z), and use (7.8.3) and (7.8.4) to simplify the result,
thereby showing that

ut(t, z) = re−rτN
(−δ−(τ, z)

)−1

2
σ2e−rτz1− 2r

σ2 N
(−δ−(τ, z−1)

)− σz√
τ
N ′(δ+(τ, z)

)
.

(7.8.18)

(ii) Use (7.8.2) to compute uz(t, z), and use (7.8.3) and (7.8.4) to simplify the result,
thereby showing that

uz(t, z) =

(
1 +

σ2

2r

)
N

(
δ+(τ, z)

)
+

(
1− σ2

2r

)
e−rτz−

2r

σ2 N
(− δ−(τ, z−1)

)− 1.

(7.8.19)

(iii) Use (7.8.19) and (7.8.2) to compute uz(t, z), and use (7.8.3) and (7.8.4) to sim-
plify the result, thereby showing that

uzz(t, z) =

(
1− 2r

σ2

)
e−rτz−

2r

σ2−1N
(− δ−(τ, z−1)

)
+

2

zσ
√

τ
N ′(δ+(τ, z)

)
.

(7.8.20)

(iv) Verify that u(t, z) satisfies the Black-Scholes-Merton equation (7.4.18).

(v) Verify that u(t, z) satisfies the boundary condition (7.4.20).

Exercise 7.6 (Boundary conditions for lookback option).

The lookback option price v(t, x, y) of (7.4.35) must satisfy the boundary condi-
tions (7.4.7)-(7.4.9). As we saw in Subsection 7.4.3, this is equivalent to the function
u(t, z) of (7.4.16) given by (7.4.36),

u(t, z) =

(
1 +

σ2

2r

)
zN

(
δ+(τ, z)

)
+ e−rτN

(
δ−(τ, z)

)

− σ2

2r
e−rτz1− 2r

σ2 N
(
δ−(τ, z−1)

)− z, 0 ≤ t < T, 0 < z ≤ 1,
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satisfying the boundary conditions (7.4.19)-(7.4.21). This function was shown to sat-
isfy boundary condition (7.4.20) in Exercise 7.5(v). Here we verify by direct compu-
tation that the limit of u(t, z) as z ↓ 0 satisfies (7.4.19) and the limit of u(t, z) as t ↑ T

(τ ↓ 0) satisfies (7.4.21).

(i) If you have not worked Exercise 7.2, then verify (7.8.11), the second equality
in (7.8.14) and (7.8.16).

(ii) Use (7.8.11) and the second part of (7.8.14) to show that limz↓0 u(t, z) = e−rτ

for 0 ≤ t < T .

(iii) Use (7.8.16) to show that limτ↓0 u(t, z) = 1− z for 0 < z ≤ 1.

Exercise 7.7 (Zero-strike Asian call).

Consider a zero-strike Asian call whose payoff at time T is

V (T ) =
1

T

∫ T

0
S(u)du.

(i) Suppose at time t we have S(t) = x ≥ 0 and
∫ t
0 S(u)du = y ≥ 0. Use the fact

that e−ruS(u) is a martingale under P̃ to compute

e−r(T−t)Ẽ

[
1

T

∫ T

0
S(u)du

∣∣∣∣∣F(t)

]
.

Call your answer v(t, x, y).

(ii) Verify that the function v(t, x, y) you obtained in (i) satisfies the Black-Scholes-
Merton equation (7.5.8) and the boundary conditions (7.5.9) and (7.5.11) of
Theorem 7.5.1. (We do not try to verify (7.5.10) because the computation of
v(t, x, y) outlined here works only for y ≥ 0.)

(iii) Determine explicitly the process ∆(t) = vx

(
t, S(t), Y (t)

)
, and observe that it is

not random.

(iv) Use the Itô-Doeblin formula to show that if you begin with initial capital X(0) =

v(0, S(0), 0) and at each time you hold ∆(t) shares of the underlying asset, in-
vesting or borrowing at the interest rate r in order to do this, then at time T the
value of your portfolio will be

X(T ) =
1

T

∫ T

0
S(u)du.

Exercise 7.8.

Consider the continuously sampled Asian option of Subsection 7.5.3, but assume
now that the interest rate is r = 0. Find an initial capital X(0) and a nonrandom
function γ(t) to replace (7.5.22) so that

X(T ) =
1

c

∫ T

T−c
S(u)du−K (7.5.27)
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still holds. Give the formula for the resulting process X(t), 0 ≤ t ≤ T , to replace
(7.5.24) and (7.5.26). With this function γ(t) and process X(t), Theorem 7.5.3 still
holds.

Exercise 7.9.

Let g(t, y) be the function in Theorem 7.5.3. Then the value of the Asian option
at time t is V (t) = v

(
t, S(t), X(t)

)
, where v(t, s, x) = sg(t, y) and y = x

s . The process
S(t) is given by (7.5.1). For the sake of specificity, we consider the case of continuous
sampling with r 6= 0, so γ(t) is given by (7.5.22) and X(t) is given by (7.5.24) and
(7.5.26).

(i) Verify the derivative formulas

vt(t, s, x) = sgt(t, y),

vs(t, s, x) = g(t, y)− ygy(t, y),

vx(t, s, x) = gy(t, y),

vss(t, s, x) =
y2

s
gyy(t, y),

vsx(t, s, x) = −y

s
gyy(t, y),

vxx(t, s, x) =
1

s
gyy(t, y).

(ii) Show that e−rtv
(
t, S(t), X(t)

)
is a martingale under P̃ by computing its differ-

ential, writing the differential in terms of dt and dW̃ , and verifying that the dt

term is zero. (Hint: Use the fact that g(t, y) satisfies (7.5.39).)

(iii) Suppose we begin with initial capital v(0, S(0), X(0)) and at each time t take a
position ∆(t) in the risky asset, investing or borrowing at the interest rate r in
order to finance this. We want to do this so that the portfolio value at the final

time is
(

1
c

∫ T
T−c S(u)du−K

)+
. Give a formula for ∆(t) in terms of the function

v and the processes S(t) and X(t). (Warning: The process X(t) appearing in
Theorem 7.5.3 and in this problem is not the value of the hedging portfolio. For
example, X(0) is given by (7.5.23), and this is different from v(0, S(0), X(0)),
the initial value of the hedging portfolio.)



Chapter 8

American Derivative Securities

8.1 Introduction

European option contracts specify an expiration date, and if the option is to be exer-
cised at all, the exercise must occur on the expiration date. An option whose owner
can choose to exercise at any time up to and including the expiration date is called
American. Because of this early exercise feature, such an option is at least as valuable
as its European counterpart. Sometimes the difference in value is negligible or even
zero, and then American and European options are close or exact substitutes. We
shall see in this chapter that the early exercise feature for a call on a stock paying no
dividends is worthless; American and European calls on such a stock have the same
price. In other cases, most notably put options, the value of this early exercise fea-
ture, the so-called early exercise premium, can be substantial. An intermediate option
between American and European is Bermudan, an option that permits early exercise
but only on a contractually specified finite set of dates. Because an American option
can be exercised at any time prior to its expiration, it can never be worth less than the
payoff associated with immediate exercise. This is called the intrinsic value of the
option.

In contrast to the case for a European option, whose discounted price process
is a martingale under the risk-neutral measure, the discounted price process of an
American option is a supermartingale under this measure. The holder of this option
may fail to exercise at the optimal exercise date, and in this case the discounted option
price has a tendency to fall; hence, the supermartingale property. During any period
of time in which it is not optimal to exercise, however, the discounted price process
behaves as a martingale.

To price an American option, just as with a European option, we could imagine
selling the option in exchange for some initial capital and then consider how to use
this capital to hedge the short position in the option. In this case, we would need to
be ready to pay off the option at all times prior to the expiration date because we do
not know when it will be exercised. We could determine when, from our point of
view, is the worst time for the owner to exercise the option. From the owner’s point
of view, this would be the optimal exercise time, and we shall call it that. We could
then compute the initial capital we need in order to be hedged against exercise at the
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optimal exercise time. Finally, we could show how to invest this capital so that we are
hedged even if the owner exercises at a non-optimal time. In the subsequent sections,
we do all these things but begin the analysis at a different point than for European
options. We define the price of American options using a risk-neutral pricing formula
and then show that this price is the smallest initial capital that permits construction
of the hedge just described.

For the binomial model, the program described above was carried out in Chapter 4
of Volume I. Here we revisit these matters in a continuous-time setting. We treat first
the perpetual American put (Section 8.3), which is not actually traded. The analysis
of this option provides lessons that we apply in the subsequent sections. In Section
8.4, we discuss the finite-expiration American put, an option that is traded. Section
8.5 treats the American call. In the case of a non-dividend-paying stock, we show
that the American and European calls have the same price. However, if the stock
pays dividends, these prices can differ. We show how to compute the American call
price in this latter case.

8.2 Stopping Times

Throughout this chapter, we need the concept of stopping times. These were defined
and discussed in the binomial model in Section 4.3 of Volume I. A stopping time is a
random variable τ that takes values in [0,∞]. The stopping times we shall encounter
are the times at which an American option is exercised. The decision of an agent to
exercise this option may depend on all the information available at that time but may
not depend on future information. We provide a mathematical formulation of this
property in Definition 8.2.1 below. Before stating this definition, we seek to motivate
it.

In the N-period model of Volume I, where the filtration is generated by coin
tossing and there are only finitely many dates, we defined a stopping time to be
a random variable τ taking values 0, 1, . . . , N or ∞ and having the property that if
τ(ω1 . . . ωnωn+1 . . . ωN ) = n, then τ(ω1 . . . ωnω′n+1 . . . ω′N ) = n for all ω′n+1 . . . ω′N . This
condition guarantees that the decision to stop at time n does not depend on the coin
tosses that come after time n.

One way to try to capture this same idea in continuous time is to require that for
each nonrandom t ≥ 0, the set {τ = t} = {ω ∈ Ω; τ(ω) = t} should be in F(t) (i.e.,
the agent stops (exercises the option) at time t based on the information available
at time t). However, we shall be interested in sets of ωs of the form {ω ∈ Ω; T1 ≤
τ(ω) ≤ T2}, and these cannot be gotten by taking countable unions of sets of the form
{ω ∈ Ω; τ(ω) = t}. Therefore, we impose the slightly stronger condition of Definition
8.2.1 below.

Definition 8.2.1. A stopping time τ is a random variable taking values in [0,∞] and
satisfying

{τ ∈ t} ∈ F(t) for all t ≥ 0. (8.2.1)
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Remark 8.2.2. Let t ≥ 0 be given. Note that (8.2.1) and the properties of σ-algebras
imply that {τ > t − 1

n} = {τ ≤ t − 1
n}c ∈ F(t − 1

n) for all positive integers n. Since
every set in F(t− 1

n) is also in F(t), we conclude that {τ > t− 1
n} is in F(t) for every

n, and hence

{τ = t} = {τ ≤ t} ∩
( ∞⋂

n=1

{
τ > t− 1

n

})

is also in F(t). In other words, by Definition 8.2.1, a stopping time τ has the property
that the decision to stop at time t must be based on information available at time t.

Example 8.2.3. (First passage time for a continuous process).

Let X(t) be an adapted process with continuous paths, let m be a number, and set

τm = min{t ≥ 0; X(t) = m}. (8.2.2)

This is the first time the process X(t) reaches the level m. If X(t) never reaches
the level m, then we interpret τm to be ∞. Intuitively, τm must be a stopping time
because the value of τm is determined by the path of X(t) up to time τm. An agent
can exercise an option the first time the underlying asset price reaches a level; this
exercise strategy does not require information about the underlying price movements
after the exercise time.

We use Definition 8.2.1 and the properties of σ-algebras to show mathematically
that τm is a stopping time. Let t ≥ 0 be given. We need to show that {τ ≤ t} is in
F(t).

If t = 0, then {τ ≤ t} = {τ = 0} is either Ω or ∅, depending on whether X(0) = m

or X(0) 6= m. In either case, {τ ≤ 0} ∈ F(0).
We consider the case t > 0. Suppose ω ∈ Ω satisfies τ(ω) ≤ t. Then there is some

number s ≤ t such that X(s, ω) = m, where we indicate explicitly the dependence of
X on ω. For each positive integer n, there is an open interval of time containing s for
which the process X is in (m− 1

n ,m + 1
n). In this interval, there is a rational number

q ≤ s ≤ t. Therefore, ω is in the set

A =
∞⋂

n=1

⋃

0≤q≤t,q rational

{
m− 1

n
< X(q) < m +

1

n

}
.

We have shown that {τ ≤ t} ⊂ A.
On the other hand, if ω ∈ A, then for every positive integer n there is a rational

number qn ≤ t such that

m− 1

n
< X(qn, ω) < m +

1

n
.

The infinite sequence {qn}∞n=1 must have an accumulation point s in the closed,
bounded interval [0, t]. In other words, there must exist a number s ∈ [0, t] and a
subsequence {qnk}n

k=1 such that limk→∞ qnk = s. But

m− 1

nk
< X(qnk , ω) < m +

1

nk
for all k = 1, 2, . . . .



8.2 Stopping Times 317

Letting k → ∞ in these inequalities and using the fact that X has continuous paths,
we see that X(s, ω) = m. It follows that τ(ω) ≤ t. We have shown that A ⊂ {τ ≤ t}.
Therefore A = {τ ≤ t}.

Because X is adapted to the filtration, for each positive integer n and rational
q ∈ [0, t], the set {

m− 1

n
< X(q) < m +

1

n

}

is in F(q) and hence in the larger σ-algebra F(t). Because there are only countably
many rational numbers q in [0, t], they can be arranged in a sequence, and the union

Bn =
⋃

0≤q≤t,q rational

{
m− 1

n
< X(q) < m +

1

n

}

is really a union of a sequence of sets in F(t). The set Bn must therefore also be in
F(t). Because Bn is in F(t) for every positive integer n, the intersection ∩∞n=1Bn = A

is also in F(t). We have already shown that A = {τ ≤ t}. We conclude that {τ ≤
t} ∈ F(t).

¤

Suppose now that we have an adapted process X(t) and a stopping time τ . We
define the stopped process X(t∧ τ), where ∧ denotes the minimum of two quantities
(i.e., t ∧ τ = min{t, τ}). The stopped process X(t ∧ τ) agrees with X(t) up to time τ ,
and thereafter it is frozen at the value of X(τ). See Figure 8.2.1.

Theorem 8.2.4 (Optional sampling). A martingale stopped at a stopping time is a
martingale. A supermartingale (or submartingale) stopped at a stopping time is a
supermartingale (or submartingale, respectively).
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While the proof of Theorem 8.2.4 is technical and will not be given here, the in-
tuition is clear. If M(t) is a martingale, then the stopped process M(t ∧ τ) agrees
with M(t) before time τ and thus is also a martingale. After time τ , the stopped pro-
cess is frozen (i.e., it no longer changes with time), and this is a trivial martingale.
A martingale goes neither up nor down “on average.” After being frozen, a process
goes neither up nor down, path-by-path. The only way the martingale property could
be violated is if the stopping decision looked ahead. Suppose that a martingale is
stopped (frozen) if it will go up in the near future but is allowed to continue if it
will go down. Then stopping introduces a downward bias by removing the upward
possibility. Figure 8.2.2 shows a martingale in a discrete-time model under the as-
sumption that the probability of H (an up move) is p̃ = 1

2 and the probability of T (a
down move) is q̃ = 1

2 . Figures 8.2.2-8.2.4 are taken from Section 4.3 of Volume I,
where the martingale in Figure 8.2.2 is a discounted stock price under a risk-neutral
measure. Figure 8.2.3 shows a random time ρ that is not a stopping time; this random
time ρ causes stopping at time 0 if there is an H on the first toss (an up move) but
lets the process continue if there is a T on the first toss. Similarly, if there is a T on
the first toss and an H on the second toss, ρ stops the martingale at time 1 but lets it
continue to time 2 if there is a T on the first toss and an H on the second toss. The
stopped martingale is shown in Figure 8.2.4, and it is not a martingale. For example,

ẼM2∧ρ =
1

4
(4 + 4 + 1.60 + 0.64) = 2.56 < M0 = 4,

whereas the expectation of a martingale does not change over time. Our definition of
stopping time rules out this kind of stopping.

Similar intuition applies to supermartingales. A stopped supermartingale is a su-
permartingale before being frozen, and after being frozen it is a martingale, which is
a special case of a supermartingale. The situation with submartingales is analogous.
Again, the stopping must be done at a stopping time. Looking ahead to make the
stopping decision can ruin the supermartingale (respectively, submartingale) prop-
erty.
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8.3 Perpetual American Put

The simplest interesting American option is the perpetual American put. It is inter-
esting because the optimal exercise policy is not obvious, and it is simple because
this policy can be determined explicitly. Although this is not a traded option, we
begin our discussion with it in order to present in a simple context the ideas behind
the subsequent analysis of more realistic options.

The underlying asset in most of this chapter (except in Subsection 8.5.2, where
the asset pays dividends) has the price process S(t) given by

dS(t) = rS(t)dt + σS(t)dW̃ (t), (8.3.1)

where the interest rate r and the volatility σ are strictly positive constants and W̃ (t)

is a Brownian motion under the risk-neutral probability measure P̃. The perpetual
American put pays K − S(t) if it is exercised at time t. This is its intrinsic value.

Definition 8.3.1. Let T be the set of all stopping times. The price of the perpetual
American put is defined to be

v∗(x) = max
τ∈T

Ẽ
[
e−rτ

(
K − S(τ)

)]
, (8.3.2)

where x = S(0) in (8.3.2) is the initial stock price. In the event that τ = ∞, we
interpret e−rτ

(
K − S(τ)

)
to be zero.
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The idea behind Definition 8.3.1 is that the owner of the perpetual American put
can choose an exercise time τ , subject only to the condition that she may not look
ahead to determine when to exercise. The mathematical formulation of this “not
look ahead” restriction is that τ must be a stopping time. The price of the option
at time zero is the risk-neutral expected payoff of the option, discounted from the
exercise time back to time zero. If the option is never exercised, its payoff is zero.
This explains the term under the expectation on the right-hand side of (8.3.2). The
owner of the option should choose the exercise strategy that maximizes this expected
payoff, discounted back to time zero, and thus we define the price of the option to be
the maximum over τ ∈ T of the discounted expected payoffs.

This risk-neutral pricing definition of the perpetual American put price appears to
differ from the construction of the price of a European call in Section 4.5. There we
took the price to be the initial capital required by an agent holding a short position in
the option in order for this agent to hedge the short position (i.e., invest in the stock
and money market account in such a way that at expiration of the option the resulting
portfolio value is the payoff of the option). It turns out that v∗(x) defined above is
the initial capital required for an agent to hedge a short position in the American put
regardless of the exercise strategy τ used by the owner of the put; see Corollaries
8.3.6 and 8.3.7.

The owner of the perpetual American put can exercise at any time. In particular,
there is no expiration date after which the put can no longer be exercised. This makes
every date like every other date; the time remaining to expiration is always the same
(i.e., infinity). Because every date is like every other date, it is reasonable to expect
that the optimal exercise policy depends only on the value of S(t) and not on the time
variable t. The owner of the put should exercise as soon as S(t) falls “far enough”
below K. In other words, it is reasonable to expect that the optimal exercise policy is
of the form

“Exercise the put as soon as S(t) falls to the level L∗.”

We have two questions to answer:

(i) What is the value of L∗ and how do we know it corresponds to optimal exercise?

(ii) What is the value of the put?

For the perpetual American put, we can base the answers to these questions on ex-
plicit computations.

Theorem 8.3.2 (Laplace transform for first passage time of drifted Brownian mo-
tion). Let W̃ (t) be a Brownian motion under a probability measure P̃, let µ be a real
number, and let m be a positive number. Define X(t) = µt + W̃ (t), and set

τm = min{t ≥ 0; X(t) = m},
so that τm is the stopping time of Example 8.2.3. If X(t) never reaches the level m,
then we interpret τm to be ∞. Then

Ẽe−λτm = e
−m

“
−µ+

√
µ2+2λ

”
for all λ > 0, (8.3.3)
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where we interpret e−λτm to be zero if τm = ∞.

Proof. Define σ = −µ +
√

µ2 + 2λ so that σ > 0 and

σµ +
1

2
σ2 = −µ2 + µ

√
µ2 + 2λ +

1

2

(
−µ +

√
µ2 + 2λ

)2

= −µ2 + µ
√

µ2 + 2λ +
1

2
µ2 − µ

√
µ2 + 2λ +

1

2
µ2 + λ

= λ.

Then
eσX(t)−λt = eσµt+σfW (t)−σµt− 1

2
σ2t = eσeW (t)− 1

2
σ2t,

which is a martingale under P̃ (its differential has a dW̃ (t) term and no dt term).
According to Theorem 8.2.4 (optional sampling), the stopped martingale

M(t) = eσfW (t∧τm)− 1
2
σ2(t∧τm)

is also a martingale. Therefore, for each positive integer n,

1 = M(0) = ẼM(n)

= Ẽ
[
eσX(n∧τm)−λ(n∧τm)

]

= Ẽ
[
eσm−λτmI{τm≤n}

]
+ Ẽ

[
eσX(n)−λnI{τm>n}

]
.

(8.3.4)

The nonnegative random variables eσm−λτmI{τm≤n} increase with n, and their limit is
eσm−λτmI{τm<∞}. In other words,

0 ≤ eσm−λτmI{τm≤1} ≤ eσm−λτmI{τm≤2} ≤ · · · almost surely,

and
lim

n→∞ eσm−λτmI{τm≤n} = eσm−λτmI{τm<∞} almost surely.

The Monotone Convergence Theorem, Theorem 1.4.5, implies

lim
n→∞ Ẽ

[
eσm−λτmI{τm≤n}

]
= Ẽ

[
eσm−λτmI{τm<∞}

]
. (8.3.5)

On the other hand, the random variable eσX(n)−λnI{τm>n} satisfies

0 ≤ eσX(n)−λnI{τm>n} ≤ eσm−λn ≤ eσm almost surely

because X(n) ≤ m for n < τm and σ is positive. Because λ is positive, we have

lim
n→∞ eσX(n)−λnI{τm>n} ≤ lim

n→∞ eσm−λn = 0.

According to the Dominated Convergence Theorem, Theorem 1.4.9,

lim
n→∞E

[
eσX(n)−λnI{τm>n}

]
= 0. (8.3.6)

Taking the limit in (8.3.4) and using (8.3.5) and (8.3.6), we obtain

1 = Ẽ
[
eσm−λτmI{τm<∞}

]
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or, equivalently,

Ẽ
[
e−λτmI{τm<∞}

]
= e−σm = e

−m
“
−µ+

√
µ2+2λ

”
for all λ > 0. (8.3.7)

This is (8.3.3) when we interpret e−λτm to be zero if τm = ∞.

Remark 8.3.3. We used the strict positivity of λ to derive (8.3.7), but now that we
have it, we can take the limit as λ ↓ 0. The random variables e−λτmI{τm<∞} are non-
negative and increase to I{τm<∞} as λ ↓ 0, and the Monotone Convergence Theorem
allows us to conclude that

P̃{τm < ∞} = ẼI{τm<∞} = lim
λ↓0

e−m(−µ+
√

µ2+2λ) = emµ−m|µ|.

If µ ≥ 0, the drift in X(t) is zero or upward, toward level m, and P̃{τm < ∞} = 1;
the level X(t) is reached with probability one. On the other hand, if µ < 0, the drift
in X(t) is downward, away from level m, and P̃{τm < ∞} = e−2m|µ| < 1; there is a
positive probability of never reaching m.

¤

The solution to (8.3.1) is

S(t) = S(0) exp

{
σW̃ (t) +

(
r − 1

2
σ2

)
t

}
. (8.3.8)

Suppose the owner of the perpetual American put sets a positive level L < K and
resolves to exercise the put the first time the stock price falls to L. If the initial stock
price is at or below L, she exercises immediately (at time zero). The value of the put
in this case is vL

(
S(0)

)
= K−S(0). If the initial stock price is above L, she exercises

at the stopping time
τL = min{t ≥ 0; S(t) = L}, (8.3.9)

where τL is set equal to ∞ if the stock price never reaches the level L. At the time of
exercise, the put pays K − S(τL) = K − L. Discounting this back to time zero and
taking the risk-neutral expected value, we compute the value of the put under this
exercise strategy to be

vL

(
S(0)

)
= (K − L)Ẽe−rτL for all S(0) ≥ L. (8.3.10)

On those paths where τL = ∞, we interpret e−rτL to be zero. (Recall our assumption
at the beginning of this section that r is strictly positive.) Although not explicitly
indicated by the notation, the distribution of τL depends on the initial stock price
S(0), so the right-hand side (8.3.10) is a function of S(0).

Lemma 8.3.4. The function vL(x) is given by the formula

vL(x) =





K − x, 0 ≤ x ≤ L,

(K − L)
(

x
L

)− 2r

σ2 , x ≥ L.

(8.3.11)
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Proof. We only need to establish the second line of (8.3.11). If x = L, then τL = 0

and (8.3.10) implies vL(x) = K − L.
We consider the case S(0) = x > L. The stopping time τL is the first time

S(t) = x exp

{
σW̃ (t) +

(
r − 1

2
σ2

)
t

}

reaches the level L. But S(t) = L if and only if

−W̃ (t)− 1

σ

(
r − 1

2
σ2

)
t =

1

σ
log

x

L
.

We now apply Theorem 8.3.2 with X(t) in that theorem replaced by−W̃ (t)− 1
σ

(
r − 1

2σ2
)
t

(the Processes W̃ (t) and −W̃ (t) are both Brownian motions under P̃), with λ replaced
by r, with µ replaced by − 1

σ

(
r − 1

2σ2
)
, and with m replaced by 1

σ log x
L , which is pos-

itive. With these replacements, τm in Theorem 8.3.2 is τL and

µ2 + 2λ =
1

σ2

(
r2 − rσ2 +

1

4
σ4

)
+ 2r

=
1

σ2

(
r2 + rσ2 +

1

4
σ4

)

=
1

σ2

(
r +

1

2
σ2

)2

.

Therefore,

−µ +
√

µ2 + 2λ =
1

σ

(
r − 1

2
σ2

)
+

1

σ

(
r +

1

2
σ2

)
=

2r

σ
.

Equation (8.3.3) implies

Ẽ−rτL = exp

{
− 1

σ
log

x

L
· 2r

σ

}
=

(x

L

)− 2r

σ2

.

The second line in (8.3.11) follows.

8.3.1 Price Under Optimal Exercise

Figure 8.3.1 shows the function vL(x) for three different values of L. The function
vL1

(x) in that figure actually lies below the intrinsic value K − x for x between L1

and L2. If the initial stock price is between L1 and L2, then the strategy of exercising
the first time the stock price falls to L1 is obviously a poor one; it would be better
to exercise at time zero and receive the intrinsic value. The function vL2

(x) agrees
with the intrinsic value for 0 ≤ x ≤ L2 and follows the indicated curve for x ≥ L2.
The function vL∗(x) agrees with the intrinsic value for 0 ≤ x ≤ L∗ and follows the
indicated curve for x ≥ L∗. For x ≥ L∗, the function vL∗(x) is strictly larger than
the function vL2

(x), and hence the strategy of exercising the first time the stock price
falls to L∗ is better than exercising the first time the stock price falls to L2.

As Figure 8.3.1 suggests, for any value of L smaller than L∗, the function vL(x)

agrees with the intrinsic value for 0 ≤ x ≤ L, lies below the intrinsic value imme-
diately to the right of L, and lies below vL∗(x) everywhere to the right of L. For
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any value of L larger than L∗, the function vL(x) agrees with the intrinsic value for
0 ≤ x ≤ L and lies below vL∗(x) for all x ≥ L∗. Thus, among those exercise policies
of the form

“Exercise the put as soon as S(t) falls to the level L,”

the best one is obtained by choosing L = L∗. We expect therefore that vL∗(x) is the
price of the put v∗(x) of Definition 8.3.1. We prove this below.

We must first determine the value of L∗. We note that

vL(x) = (K − L)L
2r

σ2 x−
2r

σ2 for all x ≥ L.

From Figure 8.3.1, we know that L∗ is the value of L that maximizes this quantity
when we hold x fixed. We thus define

g(L) = (K − L)L
2r

σ2

and seek the value of L that maximizes this function over L ≥ 0. Because 2r
σ2 is

strictly positive, we have g(0) = 0 and limL→∞ g(L) = −∞. Moreover,

g′(L) = −L
2r

σ2 +
2r

σ2
(K − L)L

2r

σ2−1 = −2r + σ2

σ2
L

2r

σ2 +
2r

σ2
KL

2r

σ2−1.

Setting this equal to zero, we solve for

L∗ =
2r

2r + σ2
K. (8.3.12)

This is a number between 0 and K. Furthermore,

g(L∗) =
σ2

2r + σ2

(
2r

2r + σ2

) 2r

σ2

K
2r+σ2

σ2



8.3 Perpetual American Put 325

is strictly positive. Therefore, the graph of y = g(L) must be as shown in Figure
8.3.2, and L∗ given by (8.3.12) is the point where g(L) attains its maximum.

8.3.2 Analytical Characterization of the Put Price

We have

vL∗(x) =





K − x, 0 ≤ x ≤ L∗,

(K − L∗)
(

x
L∗

)− 2r

σ2

, x ≥ L∗,
(8.3.13)

so that

v′L∗(x) =





−1, 0 ≤ x ≤ L∗,

−(K − L∗) 2r
σ2x

(
x
L∗

)− 2r

σ2

, x ≥ L∗,
(8.3.14)

If we evaluate the second line in (8.3.14) at x = L∗, we get the right-hand derivative

v′L∗(L∗+) = − 2r

σ2L∗
(K − L∗) = − 2rK

σ2L∗
+

2r

σ2
= −2r

σ2
· 2r + σ2

2r
+

2r

σ2
= −1,

which agrees with the left-hand derivative v′L∗(L∗−) = −1 provided by the first line
in (8.3.14). The derivative of vL∗(x) is continuous at x = L∗. This is known as
smooth pasting. The two parts of the definition of vL∗(x) fit together at x = L∗ so
that both vL∗(x) and v′L∗(x) are continuous. This is because the graph of the function

y = (K−L∗)
(

x
L∗

)− 2r

σ2

is tangent to the line y = K−x at x = L∗, as one can see from
Figure 8.3.1. In fact, we could have used the smooth pasting condition to solve for
L∗ (see Exercise 8.1).

The second derivative of v(x) has a jump at x = L∗, and hence is undefined at this
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point. Indeed,

v′′L∗(x) =





0, 0 ≤ x < L∗,

(K − L∗)
2r(2r+σ2)

σ4x2

(
x
L∗

)− 2r

σ2

, x > L∗,
(8.3.15)

The left-hand and right-hand second derivatives at x = L∗ are v(L∗−) = 0 and
v′′(L∗+) = (K − L∗)

2r(2r+σ2)
σ4L2∗

> 0.
For x > L∗, we can verify by direct computation that

rvL∗(x)− rxv′L∗(x)− 1

2
σ2x2v′′L∗(x)

= (K − L∗)
(

r +
2r2

σ2
− r(2r + σ2)

σ2

)(
x

L∗

)− 2r

σ2

= 0.

(8.3.16)

On the other hand, for 0 ≤ x < L∗,

rvL∗(x)− rxv′L∗(x)− 1

2
σ2x2v′′L∗(x) = r(K − x) + rx = rK. (8.3.17)

In particular, we see that vL∗(x) satisfies the so-called linear complementarity condi-
tions

v(x) ≥ (K − x)+ for all x ≥ 0, (8.3.18)

rv(x)− rxv′(x)− 1

2
σ2x2v′′(x) ≥ 0 for all x ≥ 0, and (8.3.19)

for each x ≥ 0, equality holds in either (8.3.18) or (8.3.19). (8.3.20)

The point L∗ is slightly problematical in (8.3.19) since v′′L∗(L∗) is undefined. How-
ever, if we replace v′′L∗(L∗) in (8.3.19) by either v′′L∗(L∗−) or v′′L∗(L∗+), the inequality
holds.

The linear complementarity conditions (8.3.18)-(8.3.20) determine the function
vL∗(x). More precisely, the function vL∗(x) given by (8.3.13) is the only bounded
continuous function having a continuous derivative that satisfies these conditions;
see Exercise 8.3.

8.3.3 Probabilistic Characterization of the Put Price

Theorem 8.3.5. Let S(t) be the stock price given by (8.3.1) and let τL∗ be given
by (8.3.9) with L = L∗. Then e−rtvL∗

(
S(t)

)
is a supermartingale under P̃, and the

stopped process e−r(t∧τL∗)vL∗
(
S(t ∧ τL∗)

)
is a martingale.

Proof. Fortunately, the Itô-Doeblin formula applies to functions whose second deriva-
tives have jumps, provided the first derivative is continuous (see Exercise 4.20 for a
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discussion related to this). We may thus compute

d
[
e−rtvL∗

(
S(t)

)]

= e−rt

[
−rvL∗

(
S(t)

)
dt + v′L∗

(
S(t)

)
dS(t) +

1

2
v′′L∗

(
S(t)

)
dS(t)dS(t)

]

= e−rt

[
−rvL∗

(
S(t)

)
+ rS(t)v′L∗

(
S(t)

)
+

1

2
σ2S2(t)v′′L∗

(
S(t)

)]
dt

+ e−rtσS(t)v′L∗
(
S(t)

)
dW̃ (t).

Because of (8.3.16) and (8.3.17), the dt term in this expression is either 0 or −rK,
depending on whether S(t) > L∗ or S(t) < L∗. If S(t) = L∗, v′′L∗

(
S(t)

)
is undefined,

but the probability S(t) = L∗ is zero so this does not matter. We thus have

d
[
e−rtvL∗

(
S(t)

)]
= −e−rtrKI{S(t)<L∗}dt + e−rtσS(t)v′L∗

(
S(t)

)
dW̃ (t). (8.3.21)

Because the dt term in (8.3.21) is less than or equal to zero, e−rtvL∗
(
S(t)

)
is a su-

permartingale; when S(t) < L∗ it has a downward tendency. If the initial stock price
is above L∗, then prior to the time τL∗ when the stock price first reaches L∗, the dt

term in (8.3.21) is zero and hence e−r(t∧τL∗)v
(
S(t ∧ τL∗)

)
is a martingale. Indeed,

integration of (8.3.21) yields

e−r(t∧τL∗)vL∗
(
S(t ∧ τL∗)

)
= vL∗(0) +

∫ t∧τL∗

0
e−ruσS(u)v′L∗

(
S(u)

)
dW̃ (u).

Itô integrals are martingales, and hence the Itô integral above stopped at the stopping
time τL∗ , is a martingale.

Corollary 8.3.6. Recall that T is the set of all stopping times, not just those of the
form (8.3.9). We have

vL∗(x) = max
τ∈T

Ẽ
[
e−rτ

(
K − S(τ)

)]
,

where x = S(0) is the initial stock price. In other words, vL∗(x) is the perpetual
American put price of Definition 8.3.1.

Proof. Because e−rtvL∗(S(t)) is a supermartingale under P̃, we have from Theorem
8.2.4 (optional sampling) that, for every stopping time τ ∈ T ,

vL∗(x) = vL∗
(
S(0)

) ≥ Ẽ
[
e−r(t∧τ)vL∗

(
S(t ∧ τ)

)]
. (8.3.22)

Because vL∗
(
S(t∧τ)

)
is bounded, we may let t →∞ in (8.3.22), using the Dominated

Convergence Theorem, Theorem 1.4.9, to conclude that

vL∗(x) ≥ Ẽ [
e−rτvL∗

(
S(τ)

)] ≥ Ẽ [
e−rτ

(
K − S(τ)

)]
,

where we have gotten the last inequality from (8.3.18). Because this inequality holds
for every τ ∈ T , we have

vL∗(x) ≥ max
τ∈T

Ẽ
[
e−rτ

(
K − S(τ)

)]
.
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On the other hand, if we replace τ by τL∗ , we obtain equality in (8.3.22) because
e−r(t∧τL∗)v

(
S(t ∧ τL∗)

)
is a martingale under P̃. Letting t → ∞ and using the Domi-

nated Convergence Theorem, we obtain

vL∗(x) = Ẽ
[
e−rτL∗vL∗

(
S(τL∗)

)]
.

Since

e−rτL∗vL∗
(
S(τL∗)

)
= e−rτL∗vL∗(L∗) = e−rτL∗ (K − L∗) = e−rτL∗

(
K − S(τL∗)

)

if τL∗ < ∞ (and is interpreted to be zero if τL∗ = ∞), we see that

vL∗(x) = Ẽ
[
e−rτL∗ (K − L∗) = e−rτL∗

(
K − S(τL∗)

)]
(8.3.23)

It follows that
vL∗(x) ≤ max

τ∈T
Ẽ

[
e−rτ big(KS(τ)

)]
.

Discounted European option prices are martingales under the risk-neutral proba-
bility measure. Discounted American option prices are martingales up to the time
they should be exercised. If they are not exercised when they should be, they tend
downward. Since a martingale is a special case of a supermartingale, and processes
that tend downward are supermartingales, discounted American option prices are
supermartingales. An agent who is short an American option can hedge that short
position in the usual way during the time the discounted option price is a martingale.
If the option is not exercised when it should be, then the agent can continue the hedge
and take money off the table. The following corollary illustrates this for the perpetual
American put of this section.

Corollary 8.3.7. Consider an agent with initial capital X(0) = vL∗(S(0)), the initial
perpetual American put price. Suppose this agent uses the portfolio process ∆(t) =

v′L∗(S(t)) and consumes cash at rate C(t) = rKI{S(t)<L∗} (i.e., consumes cash at rate
rK whenever S(t) < L∗). Then the value X(t) of the agent’s portfolio agrees with
the option price vL∗(S(t)) for all times t until the option is exercised. In particular,
X(t) ≥ (K − S(t))+ for all t until the option is exercised, so the agent can pay off a
short option position regardless of when the option is exercised.

Proof. The differential of the agent’s portfolio value process is

dX(t) = ∆(t)dS(t) + r
(
X(t)−∆(t)S(t)

)
dt− C(t)dt,

so the differential of the discounted portfolio value process is

d
(
e−rtX(t)

)
= e−rt

(− rX(t)dt + dX(t)
)

= e−rt
(
∆(t)dS(t)− r∆(t)S(t)dt− C(t)dt

)

= e−rt
(
∆(t)σS(t)dW̃ (t)− C(t)dt

)
.

(8.3.24)

Substituting ∆(t) = v′L∗(S(t)) and C(t) = rKI{S(t)<L∗} into (8.3.24) and comparing it
to (8.3.21), we see that d

(
e−rtX(t)

)
= d

[
e−rtvL∗(S(t))

]
. Integrating both sides of this
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equation and using the initial equality X(0) = vL∗(S(0)), we obtain X(t) = vL∗(S(t))

for all t prior to exercise.

Remark 8.3.8. During any period in which S(t) < L∗, the agent in Corollary 8.3.7
has stock position ∆(t) = v′L∗(S(t)) = −1 (i.e., is short one share of stock) and has a
total portfolio value X(t) = vL∗(S(t)) = K−S(t). Therefore, the agent has K invested
in the money market. If the owner of the put exercises, the agent in Corollary 8.3.7
receives a share of stock, which covers his short position, and pays out K from his
money market account. If the owner of the put does not exercise, the agent holds his
position and consumes the interest from the money market investment (i.e., consumes
cash at rate rK per unit time).

¤

The argument in Corollary 8.3.7 applies generally. In a complete market, when-
ever some discounted price process is a supermartingale, it is possible to construct
a hedging portfolio whose value tracks the price process. This portfolio may some-
times consume. In the case of the perpetual American put, the supermartingale prop-
erty for the discounted put price follows from (8.3.19). If, in addition, the price pro-
cess dominates some intrinsic value (see (8.3.18) for the perpetual American put),
then a short position in the American option with that intrinsic value can be hedged.
There are always two conditions on the price of any American option, corresponding
to (8.3.18) and (8.3.19). These conditions guarantee that the price is sufficient to
satisfy the seller of the put.

However, conditions (8.3.18) and (8.3.19) alone are not enough to determine the
price of the perpetual American put. There can be functions that satisfy these con-
ditions but are strictly greater than the price vL∗(x) we constructed in (8.3.13) (see
Exercise 8.2). There must be some additional condition that guarantees that the price
is satisfactory for the purchaser of the put. One version of this condition for the per-
petual American put is (8.3.20). Condition (8.3.20) guarantees that there exists an
exercise strategy that permits the owner of the put to capture the full value of the put.
It says that if we divide the half-line [0,∞) into two sets, the stopping set

S = {x ≥ 0; vL∗(x) = (K − x)+} (8.3.25)

and the continuation set

C = {x ≥ 0; vL∗(x) > (K − x)+}, (8.3.26)

then equality holds in (8.3.19) for x ∈ C. If the initial stock price is in S, then the
owner of the put can get full value by exercising it immediately. On the other hand,
if the initial stock price is in C, then the put is more valuable than its intrinsic value,
and the owner of the put can capture this extra value by waiting until the stock price
enters S to exercise, if it ever does enter S. The time of entry into the set S is in fact
τL∗ in Theorem 8.3.5. We saw in (8.3.23) that

v
(
S(0)

)
= Ẽ

[
e−rτ∗v

(
S(τ∗)

)]
= Ẽ

[
e−rτ∗(K − S(τ∗)

)]
.
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In conclusion, the three linear complementarity conditions have counterparts that
can be stated probabilistically rather than analytically (i.e., without writing conditions
on the derivatives of v(x)). Let V (t) = e−rtv(S(t)) be the value of the perpetual
American put. The stochastic process V (t) satisfies the following three conditions:

(i) V (t) ≥ (
K − S(t)

)+ for all t ≥ 0,

(ii) e−rtV (t) is a supermartingale under P̃, and

(iii) there exists a stopping time τ∗ such that

V (0) = Ẽ
[
e−rτ∗

(
K − S(τ∗)

)]
.

These three conditions determine the value of V (0).

8.4 Finite-Expiration American Put

In this section, we consider an American put on a stock whose price is the geometric
Brownian motion (8.3.1), but now the put has a finite expiration time T .

Definition 8.4.1. Let 0 ≤ t ≤ T and x ≥ 0 be given. Assume S(t) = x. Let F (t)
u ,

t ≤ u ≤ T , denote the σ-algebra generated by the process S(v) as v ranges over
[t, u], and let Tt,T denote the set of stopping times for the filtration F (t)

u , t ≤ u ≤ T ,
taking values in [t, T ] or taking the value ∞. In other words, {τ ≤ u} ∈ F (t)

u for every
u ∈ [t, T ]; a stopping time in Tt,T makes the decision to stop at a time u ∈ [t, T ] based
only on the path of the stock price between times t and u. The price at time t of the
American put expiring at time T is defined to be1

v(t, x) = max
τ∈Tt,T

Ẽ
[
e−r(τ−t)

(
K − S(τ)

)∣∣∣ S(t) = x
]
. (8.4.1)

In the event that τ = ∞, we interpret e−rτ
(
K − S(τ)

)
to be zero. This is the case

when the put expires unexercised.

In Subsection 8.4.1 we present without proof the primary analytical properties of
the finite-expiration American put price v(t, x). These are time-dependent versions of
the properties developed in Section 8.3 for the perpetual American put. In Subsection
8.4.2, we show that the only function possessing the analytical properties presented
in Subsection 8.4.1 is v(t, x) defined by (8.4.1).

1Here we use v(t, x) rather than v∗(x) as in Section 8.3 to denote the put price because in this section we
do not consider functions of t and x other than the put price itself.



8.4 Finite-Expiration American Put 331

8.4.1 Analytical Characterization of the Put Price

The finite-expiration American put price function v(t, x) satisfies the linear comple-
mentarity conditions (cf. (8.3.18)-(8.3.20))

v(t, x) ≥ (K − x)+ for all t ∈ [0, T ], x ≥ 0, (8.4.2)

rv(t, x)− vt(t, x)− rxvx(t, x)− 1

2
σ2x2vxx(t, x) ≥ 0 (8.4.3)

for all t ∈ [0, T ], x ≥ 0, and

for each t ∈ [0, T ) and x ≥ 0, equality holds in either (8.4.2) or (8.4.3). (8.4.4)

As with the perpetual American put, the owner of the finite-expiration American
put should wait until the stock price falls to a certain level at or below K before
exercising, but now this level L(T − t) depends on the time to expiration T − t. The
level L∗ of (8.3.12) for the perpetual American put is limT→∞ L(T ). At the other
extreme, L(0) = K; at expiration, one should exercise the put if the stock price is
below K, one should not exercise if the stock price is above K, and one is indifferent
between exercising and not exercising if the stock price is equal to K. No formula
is known for the function L(T − t), but this function can be determined numerically
from the analytic characterization of the put price provided in the next subsection. It
is known that L(T ) decreases with increasing T , as shown in Figure 8.4.1. The set
{(t, x); 0 ≤ t ≤ T, x ≥ 0} can be divided into two regions, the stopping set

S = {(t, x); v(t, x) = (K − x)+} (8.4.5)

and the continuation set

C = {(t, x); v(t, x) > (K − x)+}. (8.4.6)

The graph of the function x = L(T − t) forms the boundary between C and S and
belongs to S. Because of (8.4.4), equality holds in (8.4.3) for (t, x) in C, t 6= T . For
(t, x) in S, strict inequality holds in (8.4.3) except on the curve x = L(T − t), where
equality holds in (8.4.3). Because v(t, x) = (K − x)+ = K − x for 0 ≤ x ≤ L(T − t),
we have (see Figure 8.4.1)

rv(t, x)− vt(t, x)− rxvx(t, x)− 1

2
σ2x2vxx(t, x) = rK for x ∈ C.
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Because v(t, x) = K − x for 0 ≤ x ≤ L(Tt), we also have the left-hand derivative
vx(t, x−) = −1 on the curve x = L(T − t). The put price v(t, x) satisfies the smooth-
pasting condition that vx(t, x) is continuous, even at x = L(T − t). In other words,

vx(t, x+) = vx(t, x−) = −1 for x = L(T − t), 0 ≤ t < T. (8.4.7)

The smooth-pasting condition does not hold at t = T . Indeed,

L(0) = K and v(T, x) = (K − x)+, (8.4.8)

so vx(T, x−) = −1, whereas vx(T, x+) = 0 for x = L(0). Also, vt(t, x) and vxx(t, x)

are not continuous along the curve x = L(T − t).
The equations

rv(t, x)− vt(t, x)− rxvx(t, x)− 1

2
σ2x2vxx(t, x) = 0, x ≥ L(T − t),

v(t, x) = K − x, 0 ≤ x ≤ L(T − t),

together with the smooth-pasting condition (8.4.7), the terminal condition (8.4.8),
and the asymptotic condition

lim
x→∞ v(t, x) = 0, (8.4.9)

determine the function v(t, x). Using these equations, one can set up a finite-difference
scheme to simultaneously compute v(t, x) and L(T − t).

8.4.2 Probabilistic Characterization of the Put Price

Theorem 8.4.2. Let S(u), t ≤ u ≤ T , be the stock price of (8.3.1) starting at S(t) = x

and with the stopping set S defined by (8.4.5). Let

τ∗ = min{u ∈ [t, T ];
(
u, S(u)

) ∈ S}, (8.4.10)

where we interpret τ∗ to be ∞ if (u, S(u)) doesn’t enter S for any u ∈ [t, T ]. Then
e−ruv(u, S(u)), t ≤ u ≤ T , is a supermartingale under P̃, and the stopped process
e−r(u∧τ∗)v(u, S(u ∧ τ∗)), t ≤ u ≤ T , is a martingale.
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Proof. The Itô-Doeblin formula applies to e−ruv(u, S(u)), even though vu(u, x) and
vxx(u, x) are not continuous along the curve x = L(T − u) because the process S(u)

spends zero time on this curve. All that is needed for the Itô-Doeblin formula to apply
is that vx(u, x) be continuous (see Exercise 4.20 for a discussion related to this), and
this follows from the smooth-pasting condition (8.4.7). We may thus compute

d
[
e−ruv

(
u, S(u)

)]

= e−ru
[
− rv

(
u, S(u)

)
du + vu

(
u, S(u)

)
du + vx

(
u, S(u)

)
dS(u)

+
1

2
vxx

(
u, S(u)

)
dS(u)dS(u)

]

= e−ru
[
− rv

(
u, S(u)

)
+ vu

(
u, S(u)

)
+ rS(u)vx

(
u, S(u)

)

+
1

2
σ2S2(u)vxx

(
u, S(u)

)]
du + e−ruσS(u)vx

(
u, S(u)

)
dW̃ (u).

(8.4.11)

According to Figure 8.4.1, the du term in (8.4.11) is −e−rurKI{S(u)<L(T−u)}. This is
nonpositive, and so e−ruv(u, S(u)) is a supermartingale under P̃. In fact, starting from
u = t and up until time τ∗, we have S(u) > L(T−u), so the du term is zero. Therefore,
the stopped process e−r(u∧τ∗)v

(
u ∧ τ∗, S(u ∧ τ∗)

)
, t ≤ u ≤ T , is a martingale.

Corollary 8.4.3. Consider an agent with initial capital X(0) = v(0, S(0)), the initial
finite-expiration put price. Suppose this agent uses the portfolio process ∆(u) =

vx(u, S(u)) and consumes cash at rate C(u) = rKI{S(u)<L(T−u)} per unit time. Then
X(u) = v(u, S(u)) for all times u between u = 0 and the time the option is exercised or
expires. In particular, S(u) ≥ (K−S(u))+ for all times u until the option is exercised
or expires, so the agent can pay off a short option position regardless of when the
option is exercised.

Proof. The differential of the agent’s discounted portfolio value is given by (8.3.24).
Substituting for ∆(u) and C(u) in this equation and comparing it to (8.4.11), we see
that d(e−ruX(u)) = d[e−ruv(u, S(u))]. Integrating this equation and using X(0) =

v(0, S(0)), we obtain X(t) = v(t, S(t)) for all times t prior to exercise or expiration.

Remark 8.4.4. The proofs of Theorem 8.4.2 and Corollary 8.4.3 use the analytic
characterization of the American put price captured in Figure 8.4.1 plus the smooth-
pasting condition that guarantees that vx(t, x) is continuous even on the curve x =

L(T − t) so that the Itô-Doeblin formula can be applied. Here we show that the
only function v(t, x) satisfying these conditions is the function v(t, x) defined by
(8.4.1). To do this, we first fix t with 0 ≤ t ≤ T . The supermartingale property
for e−rtv(t, S(t)) of Theorem 8.4.2 and Theorem 8.2.4 (optional sampling) implies
that

e−r(t∧τ)v
(
t ∧ τ, S(t ∧ τ)

) ≥ Ẽ
[
e−r(T∧τ)v

(
T ∧ τ, S(T ∧ τ)

)∣∣∣F(t)
]
.

For τ ∈ Tt,T , we have t ∧ τ = t, whereas T ∧ τ = τ if τ < ∞ and T ∧ τ = T if τ = ∞.
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Therefore, for τ ∈ Tt,T ,

e−rtv
(
t, S(t)

) ≥ Ẽ
[
e−rτv

(
τ, S(τ)

)
I{τ<∞} + e−rT v

(
T, S(T )

)
I{τ=∞}

∣∣∣F(t)
]

≥ Ẽ [
e−rτv

(
τ, S(τ)

)∣∣F(t)
]
,

(8.4.12)

where, as usual, we interpret e−rτv
(
τ, S(τ)

)
= 0 if τ = ∞. Inequality (8.4.2) and the

fact that (K − S(t))+ ≥ K − S(t) imply that

Ẽ
[
e−rτv

(
τ, S(τ)

)∣∣F(t)
] ≥ Ẽ [

e−rτ
(
K − S(τ)

)∣∣F(t)
]
. (8.4.13)

Putting (8.4.12) and (8.4.13) together, we conclude that

e−rtv
(
t, S(t)

) ≥ Ẽ [
e−rτ

(
K − S(τ)

)∣∣F(t)
]
. (8.4.14)

Because S(t) is a Markov process, the right-hand side of (8.4.14) is a function of t

and S(t). In particular, if we denote the value of S(t) by x, we may rewrite (8.4.14)
as

e−rtv(t, x) = Ẽ
[
e−rτ

(
K − S(τ)

)∣∣ S(t) = x
]
. (8.4.15)

Since (8.4.15) holds for any τ ∈ Tt,T , we conclude that

v(t, x) ≥ max
τ∈Tt,T

Ẽ
[
e−r(τ−t)

(
K − S(τ)

)∣∣∣ S(t) = x
]
. (8.4.16)

For the reverse inequality, we recall from Theorem 8.4.2 that the stopped process
e−r(t∧τ∗)v(t ∧ τ∗, S(t ∧ τ∗)) is a martingale, where τ∗ defined by (8.4.10) is such that
v(τ∗, S(τ∗)) = K − S(τ∗) if τ∗ < ∞. Replacing τ by τ∗ in (8.4.12), we make the first
inequality into an equality. If τ∗ = ∞, we have (T, S(T )) ∈ C (i.e., S(T ) > K), so
v(T, S(T ))I{τ∗=∞} = 0. This makes the second inequality in (8.4.12) into an equality.
Finally, because v(τ, S(τ)) = K − S(τ) on I{τ<∞}, the inequality in (8.4.13) is an
equality, and hence (8.4.15) becomes

v(t, x) = Ẽ
[
e−r(τ∗−t)

(
K − S(τ∗)

)∣∣∣ S(t) = x
]
. (8.4.17)

Equation (8.4.17) shows that equality must hold in (8.4.16), and this is (8.4.1).

¤

8.5 American Call

In this section, we treat the American call, first on the usual geometric Brownian
motion asset of (8.3.1) and then on a variation of this asset that pays dividends at dis-
crete dates. In the first case, presented in Subsection 8.5.1, we see that the American
call price is the same as the European call price. In the second case, presented in
Subsection 8.5.2, we provide a recursion formula for computing the American call
price.
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8.5.1 Underlying Asset Pays No Dividends

We begin with a case slightly more general than a call option. Consider a stock whose
price process S(t) is given by

dS(t) = rS(t)dt + σS(t)dW̃ (t), (8.5.1)

where the interest rate r and the volatility σ are strictly positive and W̃ (t) is a Brow-
nian motion under the risk-neutral probability measure P̃.

Lemma 8.5.1. Let h(x) be a nonnegative, convex function of x ≥ 0 satisfying h(0) =

0. Then the discounted intrinsic value e−rth(S(t)) of the American derivative security
that pays h(S(t)) upon exercise is a submartingale.

Proof. Because h(x) is convex, for 0 ≤ λ ≤ 1 and 0 ≤ x1 ≤ x2, we have

h
(
(1− λ)x1 + λx2

) ≤ (1− λ)h(x1) + λh(x2). (8.5.2)

See Figure 8.5.1 for the case of a call payoff, h(x) = (x−K)+.

Taking x1 = 0, x2 = x, and using the fact that h(0) = 0, we obtain from (8.5.2) that

h(λx) ≤ λh(x) for all x ≥ 0, 0 ≤ λ ≤ 1. (8.5.3)

For 0 ≤ u ≤ t ≤ T , we have 0 ≤ e−r(t−u) ≤ 1, and (8.5.3) implies

Ẽ
[
e−r(t−u)h

(
S(t)

)∣∣∣F(u)
]
≥ Ẽ

[
h

(
e−r(t−u)S(t)

)∣∣∣F(u)
]
. (8.5.4)

The conditional Jensen’s inequality (Theorem 2.3.2(v)) implies

Ẽ
[
h

(
e−r(t−u)S(t)

)∣∣∣F(u)
]
≥ h

(
Ẽ

[
e−r(t−u)S(t)

∣∣∣F(u)
])

= h
(
eruẼ

[
e−rtS(t)

∣∣F(u)
])

.
(8.5.5)

Because e−rtS(t) is a martingale under P̃, we have

h
(
eruẼ

[
e−rtS(t)

∣∣F(u)
])

= h
(
erue−ruS(u)

)
= h

(
S(u)

)
. (8.5.6)
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Putting (8.5.4)-(8.5.6) together, we conclude that

Ẽ
[
e−r(t−u)h

(
S(t)

)∣∣∣F(u)
]
≥ h

(
S(u)

)
(8.5.7)

or, equivalently,

Ẽ
[
e−rth

(
S(t)

)∣∣F(u)
] ≥ e−ruh

(
S(u)

)
. (8.5.8)

This is the submartingale property for e−rth
(
S(t)

)
.

Theorem 8.5.2. Let h(x) be a nonnegative, convex function of x ≥ 0 satisfying h(0) =

0. Then the price of the American derivative security expiring at time T and having
intrinsic value h(S(t)), 0 ≤ t ≤ T , is the same as the price of the European derivative
security paying h(S(T )) at expiration T .

Proof. Replacing t by T in (8.5.7), we obtain

Ẽ
[
e−r(T−u)h

(
S(T )

)∣∣∣F(u)
]
≥ h

(
S(u)

)
, 0 ≤ u ≤ T.

In other words, the European derivative security price always dominates the intrinsic
value of the American derivative security. This shows that the option to exercise early
is worthless, and the price of the American derivative security agrees with the price
of the European security.

Corollary 8.5.3. The price of an American call on an asset not paying a dividend is
the same as the price of the European call on the same asset with the same expiration.

Proof. Take h(x) = (x−K)+ in Theorem 8.5.2.

The idea behind Corollary 8.5.3 is that the discounted process e−rt(S(t)−K)+ is
a submartingale under P̃ and hence tends to rise. Therefore, it is optimal to wait until
expiration before deciding whether to exercise. There are two factors that contribute
to the submartingale property for e−rt(S(t) − K)+. One is the discounting of the
strike. In fact, e−rt(S(t) −K) (without the +) is a submartingale because e−rtS(t) is
a martingale under the risk-neutral measure P̃ and −e−rtK increases as t increases
(throughout this chapter, we assume a strictly positive interest rate r). When we
reinstate the + , we are taking a convex function of a submartingale and, because of
Jensen’s inequality, this reinforces the upward trend.

The previous argument does not apply to the American put, whose discounted
intrinsic value e−rt(K − S(t)) (without the +) is a supermartingale (e−rtK falls and
−e−rtS(t) is a martingale). Jensen’s inequality creates an upward trend that competes
with this supermartingale property, and the analysis becomes complicated.

If the underlying asset pays a dividend, the case considered in the next subsection,
the argument above no longer applies to the American call. In this case, e−rtS(t) is a
supermartingale and tends to fall because of the dividend outflow.
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8.5.2 Underlying Asset Pays Dividends

In this subsection, we consider an American call on an asset whose price process is
a geometric Brownian motion governed by (8.5.1) between dividend payment dates.
We assume there are times 0 < t1 < t2 < · · · < tn < T , and at each time tj the divi-
dend paid is ajS(tj−), where S(tj−) denotes the asset price just prior to the dividend
payment. The asset price S(tj) after the dividend payment is the asset price before
the dividend payment less the dividend payment:

S(tj) = S(tj−)− ajS(tj−) = (1− aj)S(tj−). (8.5.9)

We assume that each aj , j = 1, . . . , n, is a number between 0 and 1. We set t0 = 0, but
this is not a dividend payment date. We also assume that T is not a dividend payment
date, although it is not difficult to modify the analysis given below to handle the case
when T is a dividend payment date.

We shall see that it is not optimal to exercise an American call on this asset except
possibly immediately before a dividend payment. The price of the call will be seen
to satisfy the Black-Scholes-Merton partial differential equation between dividend
payment dates. At dividend payment dates, the price of the call is the maximum of
the call’s intrinsic value and the price of the call after the dividend is paid and the
stock price is reduced by the amount of the payment. These observations lead to a
recursive algorithm for determining the price, and that is developed in this subsection.

The asset price process in this section was considered in Subsection 5.5.4. For
tj ≤ t < tj+1, we have

S(t) = S(tj) exp

{
σ

(
W̃ (t)− W̃ (tj)

)
+

(
r − 1

2
σ2

)
(t− tj)

}
,

which implies

S(tj+1−) = S(tj) exp

{
σ

(
W̃ (tj+1)− W̃ (tj)

)
+

(
r − 1

2
σ2

)
(tj+1 − tj)

}
(8.5.10)

and

S(tj+1) = (1− aj+1)S(tj) exp

{
σ

(
W̃ (tj+1)− W̃ (tj)

)
+

(
r − 1

2
σ2

)
(tj+1 − tj)

}
.

(8.5.11)
We also have

S(T ) = S(tn) exp

{
σ

(
W̃ (T )− W̃ (tn)

)
+

(
r − 1

2
σ2

)
(T − tn)

}
. (8.5.12)

We consider an American call expiring at time T with strike price K. For tn ≤ t ≤
T , the discounted asset price e−rtS(t) is a martingale under P̃, and Lemma 8.5.1 can
be invoked to show that e−rt

(
S(t)−K

)+ is a submartingale. Therefore,

Ẽ
[
e−rT

(
S(T )−K

)+
∣∣∣F(t)

]
≥ e−rt

(
S(t)−K

)+
, tn ≤ t ≤ T. (8.5.13)

This shows that, for all t ∈ [tn, T ], the price of the European call at time t,

cn

(
t, S(t)

)
= Ẽ

[
e−r(T−t)

(
S(T )−K

)+
∣∣∣F(t)

]
,
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is greater than the intrinsic value of the American call, (S(t) − K)+. Consequently,
the early exercise feature of the American call is worthless, and the prices at time t
of the European and American calls agree for tn ≤ t ≤ T . This price is given by the
Black-Scholes-Merton formula

cn(t, x) = xN
(
d+(T − t, x)

)−Ke−r(T−t)N
(
d−(T − t, x)

)
, (8.5.14)

where
d±(τ, x) =

1

σ
√

τ

[
log

x

K
+

(
r ± 1

2
σ2

)
τ

]
.

Although one cannot simply substitute x = 0 into (8.5.14), we have c(t, 0) = 0; see
equation (4.5.17) and Exercise 4.9. Formula (8.5.14) can be determined by comput-
ing the conditional expectation in (8.5.13) under the condition S(t) = x. In the case
t = tn, using (8.5.12), this leads to

cn(tn, x) = Ẽ

[
e−r(T−tn)

(
x exp

{
σ

(
W̃ (T )− W̃ (tn)

)
+

(
r − 1

2
σ2

)
(T − tn)

}
−K

)+
]

.

(8.5.15)
The function cn(t, x) also satisfies the Black-Scholes-Merton differential equation

∂

∂t
cn(t, x) + rx

∂

∂x
cn(t, x) +

1

2
σ2x2 ∂2

∂x2
cn(t, x) = rcn(t, x), tn ≤ t < T, x ≥ 0,

(8.5.16)
and the terminal condition

cn(t, x) = (x−K)+, x ≥ 0. (8.5.17)

The function cn(tn, x) is convex in x. This is well-known, but we establish it here
anyway to demonstrate a method we need later. To show convexity in x, we show
that, whenever 0 ≤ x1 ≤ x2 and 0 ≤ λ ≤ 1, we have

cn

(
tn, (1− λ)x1 + λx2

) ≤ (1− λ)cn(tn, x1) + λcn(tn, x2). (8.5.18)

We begin with the observation that, for any number α, the function (αx − K)+ is
convex in x, and therefore

(
x exp

{
σ

(
W̃ (T )− W̃ (tn)

)
+

(
r − 1

2
σ2

)
(T − tn)

}
−K

)+

is convex in x. It follows that
cn

(
tn, (1− λ)x1 + λx2

)

= Ẽ

[
e−r(T−tn)

((
(1− λ)x1 + λx2

)
exp

{
σ

(
W̃ (T )− W̃ (tn)

)
+

(
r − 1

2
σ2

)}
−K

)+
]

≤ (1− λ)Ẽ

[
e−r(T−tn)

(
x1 exp

{
σ

(
W̃ (T )− W̃ (tn)

)
+

(
r − 1

2
σ2

)}
−K

)+
]

+ λẼ

[
e−r(T−tn)

(
x2 exp

{
σ

(
W̃ (T )− W̃ (tn)

)
+

(
r − 1

2
σ2

)}
−K

)+
]

= (1− λ)cn(tn, x1) + λcn(tn, x2).

(8.5.19)
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This proves (8.5.18).
At time tn, immediately before the dividend payment, the owner of the American

call has two choices. She can exercise the option and receive S(tn−) − K, or she
can decline to exercise, permit the dividend to be paid (not to her) and the asset
price to fall to S(tn) = (1 − an)S(tn−), and have an option valued at cn(tn, (1 −
an)S(tn−)). The optimal decision is to exercise if S(tn−)−K > cn(tn, (1−an)S(tn−))

and to decline to exercise if S(tn−) − K < cn(tn, (1 − an)S(tn−)). If S(tn−) −
K = cn(tn, (1 − an)S(tn−)), it does not matter whether she exercises or declines to
exercise. Therefore, the call value at time tn immediately before the dividend is paid
is hn(S(tn)−), where

hn(x) = max{x−K, cn(tn, (1− an)x)}, x ≥ 0. (8.5.20)

We show that hn(x) satisfies the assumptions of Lemma 8.5.1. It is clear that
hn(x) ≥ 0 for all x ≥ 0 because cn(tn, (1 − an)x) ≥ 0 for all x ≥ 0. It is also clear
that hn(0) = 0 because cn(tn, (1− an)0) = 0. To establish the convexity of hn(x), we
recall from (8.5.18) that cn(tn, x) is convex in x. For 0 ≤ x1 ≤ x2 and 0 ≤ λ ≤ 1, we
replace x1 in (8.5.18) by (1− an)x1 and replace x2 by (1− an)x2 to obtain

cn

(
tn, (1− an)

(
(1− λ)x1 + λx2

)) ≤ (1− λ)cn

(
tn, (1− an)x1

)
+ λcn

(
tn, (1− an)x2

)
.

This shows that cn

(
t, (1 − an)x

)
is a convex function of x. The maximum of two

convex functions is convex (see Exercise 8.7), and therefore hn(x) defined by (8.5.20)
is convex.

Starting from time t, where tn−1 ≤ t < tn, the owner of the American call can
exercise at any time u ∈ [t, tn), and if she does, she receives S(u)−K. If she does not
exercise prior to tn, then at time tn, immediately before the dividend payment, she
owns a call whose value we have just determined to be hn(S(tn−)). Therefore, for
tn−1 ≤ t < tn, the American call expiring at time T has the same price as the Amer-
ican call expiring immediately before the dividend payment at date tn and paying
hn(S(tn−)) upon expiration.

Because the underlying asset evolves as a geometric Brownian motion after the
dividend is paid at time tn−1 until the dividend is paid at time tn, Lemma 8.5.1 implies
that e−rthn(S(t)) is a submartingale for tn−1 ≤ t < tn. In particular,

Ẽ
[
e−r(u−t)hn(S(u))

∣∣∣F(t)
]
≥ hn(S(t)), tn−1 ≤ t ≤ u < tn,

and letting u ↑ tn, we obtain

Ẽ
[
e−r(tn−t)hn(S(tn−))

∣∣∣F(t)
]
≥ hn(S(t)). (8.5.21)

By the definition of hn(x),
hn(S(t)) ≥ S(t)−K. (8.5.22)

This shows that the value of the European call expiring at time tn immediately before
the dividend is paid and paying hn(S(tn−)) upon expiration, which is the left-hand
side of (8.5.21), is greater than or equal to the intrinsic value of the American call,
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which is the right-hand side of (8.5.22). Therefore, the option to exercise the Amer-
ican call before time tn is worthless, and the American call value is the same as the
value of the European call just described.

Because S(t) is a Markov process, there is some function cn−1(t, x) such that the
left-hand side of (8.5.21), the European call value, is

cn−1(t, S(t)) = Ẽ
[
e−r(tn−t)hn(S(tn−))

∣∣∣F(t)
]
. (8.5.23)

The function cn−1(t, x) can be determined by computing the conditional expectation
in (8.5.23) under the condition S(t) = x. In the case t = tn−1, using (8.5.10), this
leads to

cn−1(tn−1, x)

= Ẽ
[
e−r(tn−tn−1)hn

(
x exp

{
σ

(
W̃ (tn)− W̃ (tn−1)

)
+

(
r − 1

2
σ2

)
(tn − tn−1)

})]
.

(8.5.24)

The function cn−1(t, x) also satisfies the Black-Scholes-Merton differential equation

∂

∂t
cn−1(t, x) + rx

∂

∂x
cn−1(t, x) +

1

2
σ2x2 ∂2

∂x2
cn−1(t, x) = rcn−1(t, x),

tn−1 ≤ t < tn, x ≥ 0,

(8.5.25)

and the terminal condition

cn−1(tn, x) = hn(tn, x), x ≥ 0. (8.5.26)

We repeat this process, defining

hn−1(x) = max
{
x−K, cn−1

(
tn−1, (1− an−1)x

)}
, x ≥ 0.

We can show as above that hn−1(x) satisfies the hypotheses of Lemma 8.5.1, and we
continue.

In conclusion, we obtain an algorithm for the American call price on an asset
paying dividends at the dates t1, t2, . . . , tn. Solve recursively for j = n, n − 1, . . . , 0,
the partial differential equation

∂

∂t
cj−1(t, x) + rx

∂

∂x
cj−1(t, x) +

1

2
σ2x2 ∂2

∂x2
cj−1(t, x) = rcj−1(t, x),

tj−1 ≤ t < tj , x ≥ 0,

(8.5.27)

with the terminal condition

cj−1(tj , x) = hj(x), x ≥ 0. (8.5.28)

The functions cn(t, x) and hn(x) needed to get started are given by (8.5.14) and
(8.5.20), and the function hj−1(x) needed for the next step is given by

hj−1(x) = max
{
x−K, cj−1

(
tj−1, (1− aj−1)x

)}
, x ≥ 0. (8.5.29)

For tj−1 ≤ t < tj , if S(t) = x, then cj−1(t, x) is the American call price. Within
each interval [tj−1, tj), the American call price is actually the price of a European call
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expiring at tj . The optimal exercise time is immediately prior to the dividend payment
at the smallest time tj for which S(tj−) −K exceeds cj

(
tj , (1 − aj)S(tj−)

)
. If there

is no tj for which this condition is satisfied, then optimal exercise takes place at time
T if S(T ) > K, and otherwise the option should be allowed to expire unexercised.

8.6 Summary

This chapter discusses American puts and calls. To do this, we introduce the notions
of stopping times and optional sampling in Section 8.2. The value of an American
option can then be defined as the maximum over all stopping times of the discounted,
risk-neutral payoff of the option evaluated at the stopping time. We do this for the
perpetual American put in Section 8.3 and for the finite-horizon American put in
Section 8.4. This definition of option value gives the no-arbitrage price. Starting
with initial capital given by this definition, a person holding a short position in the
option can hedge in such a way that, regardless of when the option is exercised, he
will be able to pay off the short position. Furthermore, this definition of American
option price is the smallest initial capital that permits such hedging. In particular,
there is an optimal stopping time, and if the option owner exercises at this time, she
captures the full value of the option.

The American put has an analytical characterization, which we present as linear
complementarity conditions in Subsections 8.3.3 and 8.4.1. According to this char-
acterization, there are two regions in the space of time and stock prices (t, x), one in
which it is optimal to exercise the put (the stopping set) and another in which it is
optimal not to exercise (the continuation set). The put price v(t, x) and its first deriva-
tive vx(t, x) are continuous across the boundary between these two regions (smooth
pasting), and this fact tells us that vx(t, x) = −1 on this boundary. Using this smooth-
pasting condition, one can solve numerically for the American put price.

The American call on a stock that pays no dividends has the same price as the
corresponding European call; see Section 8.5.1. If the stock pays dividends, the
American call can be more valuable than the European call. In Section 8.5.2, we
work out an algorithm for the American call price when dividends are paid at discrete
dates.

8.7 Notes

The use of stopping times with martingales was pioneered by Doob [53], who pro-
vided Theorem 8.2.4. A modern treatment can be found in many texts, including
Chung [35] and Williams [161] in discrete time and Karatzas and Shreve [101] in
continuous time.

The perpetual American put problem was first solved by McKean [119], who also
wrote down the analytic characterization of the finite-horizon American put price.
The fact that this analytic characterization determines the finite-horizon American put
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price follows from the optimal-stopping theory developed by van Moerbeke [153].
For the particular case of the American put, a simpler derivation of this fact is pro-
vided by Jacka [93], and this is presented in Section 2.7 of Karatzas and Shreve [102].
Although the price of the American put cannot be computed explicitly, it is possible
to give a variety of characterizations of the early exercise premium, the difference
between the American put price and the corresponding European put price; see Carr,
Jarrow, and Myneni [27], Jacka [93], and Kim [103].

The probabilistic characterization of the American put price is due to Bensoussan
[9] and Karatzas [100]. This is also reported in Section 2.5 of Karatzas and Shreve
[102]. A survey of all these things, and a wealth of other references, are provided by
Myneni [127]. Merton [122] observed that an American call on a stock paying no
dividends has the same value as a European call.

There are two principal ways to compute option prices numerically: finite-difference
schemes and Monte Carlo simulation. A finite-difference scheme for the American
put is described in Wilmott, Howison, and Dewynne [165]. Monte Carlo methods
are more difficult to develop because one must simultaneously determine the price
of the put and determine the boundary between the stopping and continuation sets.
A novel method to deal with this was recently provided by Longstaff and Schwartz
[112] and Tsitsiklis and Van Roy [152]. Results on convergence of a modification
of the Longstaff-Schwartz algorithm can be found in Clement, Lamberton, and Prot-
ter [37] and Glasserman and Yu [75]. Papers that use binomial trees and analytic
approximations are listed in Section 2.8 of Karatzas and Shreve [102].

8.8 Exercises

Exercise 8.1 (Determination of L∗ by smooth pasting).

Consider the function vL(x) in (8.3.11). The first line in formula (8.3.11) implies
that the left-hand derivative of vL(x) at x = L is vL(L−) = −1. Use the second
line in formula (8.3.11) to compute the right-hand derivative v′L(L+). Show that the
smooth-pasting condition

v′L∗(L∗−) = v′L∗(L∗+)

is satisfied only by L∗ given by (8.3.12).

Exercise 8.2.

Consider two perpetual American puts on the geometric Brownian motion (8.3.1).
Suppose the puts have different strike prices, K1 and K2, where 0 < K1 < K2. Let
v1(x) and v2(x) denote their respective prices, as determined in Section 8.3.2. Show
that v2(x) satisfies the first two linear complementarity conditions,

v2(x) ≥ (K1 − x)+ for all x ≥ 0, (8.8.1)

rv2(x)− rxv′2(x)− 1

2
σ2x2v′′2(x) ≥ 0 for all x ≥ 0, (8.8.2)
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for the perpetual American put price with strike K1 but that v2(x) does not satisfy the
third linear complementarity condition:

for each x ≥ 0, equality holds in either (8.8.1) or (8.8.2) or both. (8.8.3)

Exercise 8.3 (Solving the linear complementarity conditions).

Suppose v(x) is a bounded continuous function having a continuous derivative
and satisfying the linear complementarity conditions (8.3.18)-(8.3.20). This exer-
cise shows that v(x) must be the function vL∗(x) given by (8.3.13) with L∗ given by
(8.3.12). We assume that K is strictly positive.

(i) First consider an interval of x-values in which v(x) satisfies (8.3.19) with equal-
ity, i.e., where

rv(x)− rxv′(x)− 1

2
σ2x2v′′(x) = 0. (8.8.4)

Equation (8.8.4) is a linear, second-order ordinary differential equation, and it
has two solutions of the form xp, the solutions differing because of different
values of p. Substitute xp into (8.8.4) and show that the only values of p that
cause xp to satisfy (8.8.4) are p = − 2r

σ2 and p = 1.

(ii) The functions x−
2r

σ2 and x are said to be linearly independent solutions of (8.8.4),
and every function that satisfies (8.8.4) on an interval must be of the form

f(x) = Ax−
2r

σ2 + Bx

for some constants A and B. Use this fact and the fact that both v(x) and v′(x)

are continuous to show that there cannot be an interval [x1, x2], where 0 < x1 <

x2 < ∞, such that v(x) satisfies (8.3.19) with equality on [x1, x2] and satisfies
(8.3.18) with equality for x at and immediately to the left of x1 and for x at and
immediately to the right of x2 unless v(x) is identically zero on [x1, x2].

(iii) Use the fact that v(0) must equal K to show that there cannot be a number x2 > 0

such that v(x) satisfies (8.3.19) with equality on [0, x2].

(iv) Explain why v(x) cannot satisfy (8.3.19) with equality for all x ≥ 0.

(v) Explain why v(x) cannot satisfy (8.3.18) with equality for all x ≥ 0.

(vi) From (iv) and (v) and (8.3.20), we see that v(x) sometimes satisfies (8.3.18) with
equality and sometimes does not satisfy (8.3.18) with equality, in which case it
must satisfy (8.3.19) with equality. From (ii) and (iii) we see that the region
in which v(x) does not satisfy (8.3.18) with equality and satisfies (8.3.19) with
equality is not an interval [x1, x2], where 0 ≤ x1 < x2 < ∞, nor can this region
be a union of disjoint intervals of this form. Therefore, it must be a half-line
[x1,∞), where x1 > 0. In the region [0, x1], v(x) satisfies (8.3.18) with equality.
Show that x1 must equal L∗ given by (8.3.12) and v(x) must be vL∗(x) given by
(8.3.13).
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Exercise 8.4.

It was asserted at the end of Subsection 8.3.3 and established in Exercise 8.3 that
vL∗(x) given by (8.3.13) is the only bounded continuous function having a continu-
ous derivative and satisfying the linear complementarity conditions (8.3.18)-(8.3.20).
There are, however, unbounded functions that satisfy these conditions. Let 0 < L <

K be given, and assume that
2r

2r + σ2
K > L. (8.8.5)

(i) Show that, for any constants A and B, the function

f(x) = Ax−
2r

σ2 + Bx (8.8.6)

satisfies the differential equation

rf(x)− rxf ′(x)− 1

2
σ2x2f ′′(x) = 0 for all x ≥ 0. (8.8.7)

(ii) Show that the constants A and B can be chosen so that

f(L) = K − L, f(L) = −1. (8.8.8)

(iii) With the constants A and B you chose in (ii), show that f(x) ≥ (K − x)+ for all
x ≥ L.

(iv) Define

v(x) =





K − x, 0 ≤ x ≤ L,

f(x), x ≥ L.

Show that v(x) satisfies the linear complementarity conditions (8.3.18)-(8.3.20),
but v(x) is not the function vL∗(x) given by (8.3.13).

(v) Every solution of the differential equation (8.8.7) is of the form (8.8.6). In order
to have a bounded solution, we must have B = 0. Show that in order to have
B = 0, we must have L = 2r

2r+σ2 K, and in this case v(x) agrees with the function
vL∗(x) of (8.3.13).

Exercise 8.5 (Perpetual American put paying dividends).

Consider a perpetual American put on a geometric Brownian motion asset price
paying dividends at a constant rate a > 0. The differential of this asset is

dS(t) = (r − a)S(t)dt + σS(t)dW̃ (t), (8.8.9)

where W̃ (t) is a Brownian motion under a risk-neutral measure P̃. (Equation (8.8.9)
can be obtained by computing the differential in (5.5.8).)

(i) Suppose we adopt the strategy of exercising the put the first time the asset price
is at or below L. What is the risk-neutral expected discounted payoff of this
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strategy? Write this as a function vL(x) of the initial asset price x. (Hint: Define
the positive constant

γ =
1

σ2

(
r − a− 1

2
σ2

)
+

1

σ

√
1

σ2

(
r − a− 1

2
σ2

)2

+ 2r

and write vL(x) using γ.)

(ii) Determine L∗, the value of L that maximizes the risk-neutral expected dis-
counted payoff computed in (i).

(iii) Show that, for any initial asset price S(0) = x, the process e−rtvL∗(S(t)) is a su-
permartingale under P̃. Show that if S(0) = x > L∗ and e−rtvL∗(S(t)) is stopped
the first time the asset price reaches L∗, then the stopped supermartingale is a
martingale. (Hint: Show that

r + (r − a)γ − 1

2
σ2γ(γ + 1) = 0.) (8.8.10)

(iv) Show that, for any initial asset price S(0) = x,

vL∗(x) = max
τ∈T

Ẽ
[
e−rτ

(
KS(τ)

)]
. (8.8.11)

Exercise 8.6.

There is a second part to Theorem 8.2.4 (optional sampling), which says the fol-
lowing.

Theorem 8.8.1 (Optional sampling — Part II). Let X(t), t ≥ 0, be a submartingalef
and let τ be a stopping time. Then EX(t ∧ τ) ≤ EX(t). If X(t) is a supermartingale,
then EX(t ∧ τ) ≥ EX(t). If X(t) is a martingale, then EX(t ∧ τ) = EX(t).

The proof is technical and is omitted. The idea behind the statement about sub-
martingales is the following. Submartingales tend to go up. Since t∧τ ≤ t, we would
expect this upward trend to result in the inequality EX(t ∧ τ) ≤ EX(t). When τ is a
stopping time, this intuition is correct. Once we have Theorem 8.8.1 for submartin-
gales, we easily obtain it for supermartingales by using the fact that the negative of a
supermartingale is a submartingale. Since a martingale is both a submartingale and a
supermartingale, we obtain the equality EX(t ∧ τ) = EX(t) for martingales.

Use Theorem 8.8.1 and Lemma 8.5.1 to show in the context of Subsection 8.5.1
that

Ẽ
[
e−rT

(
S(T )−K

)+
]

= max
τ∈T0,T

Ẽ
[
e−rτ

(
S(τ)−K

)+
]
, (8.8.12)

where as usual we interpret e−rτ
(
S(τ) − K

)+ to be zero if τ = ∞. The right-hand
side is the American call price analogous to Definition 8.4.1 for the American put
price. The left-hand side is the European call price.

Exercise 8.7.
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A function f(x) defined for x ≥ 0 is said to be convex if, for every 0 ≤ x1 ≤ x2

and every 0 ≤ λ ≤ 1, the inequality

f
(
(1− λ)x1 + λx2

) ≤ (1− λ)f(x1) + λf(x2)

holds. Suppose f(x) and g(x) are convex functions defined for x ≥ 0. Show that

h(x) = max{f(x), g(x)}

is also convex.



Chapter 9

Change of Numéraire

9.1 Introduction

A numéraire is the unit of account in which other assets are denominated. One usu-
ally takes the numéraire to be the currency of a country. One might change the
numéraire by changing to the currency of another country. As this example suggests,
in some applications one must change the numéraire in which one works because of
finance considerations. We shall see that sometimes it is convenient to change the
numéraire because of modeling considerations as well. A model can be complicated
or simple, depending on the choice of the numéraire for the model.

In this chapter, we will work within the multidimensional market model of Section
5.4. In particular, our model will be driven by a d-dimensional Brownian motion
W (t) =

(
W1(t), . . . , Wd(t)

)
, 0 ≤ t ≤ T , defined on a probability space (Ω,F ,P).

In particular, W1, . . . , Wd are independent Brownian motions. The filtration F(t),
0 ≤ t ≤ T , is the one generated by this vector of Brownian motions. There is an
adapted interest rate process R(t), 0 ≤ t ≤ T . This can be used to create a money
market account whose price per share at time t is

M(t) = e
R t

0
R(u)du.

This is the capital an agent would have if the agent invested one unit of currency in
the money market account at time zero and continuously rolled over the capital at the
short-term interest rate. We also define the discount process

D(t) = e−
R t

0
R(u)du =

1

M(t)
.

There are m primary assets in the model of this chapter, and their prices satisfy
equation (5.4.6), which we repeat here:

dSi(t) = αi(t)Si(t)dt + Si(t)
d∑

i=1

σij(t)dWj(t), i = 1, . . . , m. (9.1.1)

We assume there is a unique risk-neutral measure P̃ (i.e., there is a unique d-dimensional
process Θ(t) =

(
Θ1(t), . . . , Θd(t)

)
satisfying the market price of risk equations (5.4.18)).
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The risk-neutral measure is constructed using the multidimensional Girsanov Theo-
rem 5.4.1. Under P̃, the Brownian motions

W̃j(t) = Wj(t) +

∫ t

0
Θj(u)du, j = 1, . . . , d,

are independent of one another. According to the Second Fundamental Theorem of
Asset Pricing, Theorem 5.4.9, the market is complete; every derivative security can
be hedged by trading in the primary assets and the money market account.

Under P̃, the discounted asset prices D(t)Si(t) are martingales, and so the dis-
counted value of every portfolio process is also a martingale. The risk-neutral mea-
sure P̃ is thus associated with the money market account price M(t) in the following
way. If we were to denominate the ith asset in terms of the money market account,
its price would be Si(t)/M(t) = D(t)Si(t). In other words, at time t, the ith asset is
worth D(t)Si(t) shares of the money market account. This process, the value of the
ith asset denominated in shares of the money market account, is a martingale under
P̃. We say the measure P̃ is risk-neutral for the money market account numéraire.

When we change the numéraire, denominating the ith asset in some other unit of
account, it is no longer a martingale under P̃. When we change the numéraire, we
need to also change the risk-neutral measure in order to maintain risk neutrality. The
details and some applications of this idea are developed in this chapter.

9.2 Numéraire

In principle, we can take any positively priced asset as a numéraire and denominate
all other assets in terms of the chosen numéraire. Associated with each numéraire,
we shall have a risk-neutral measure. When making this association, we shall take
only non-dividend-paying assets as numéraires. In particular, we regard P̃ as the
risk-neutral measure associated with the domestic money market account, not the
domestic currency. Currency pays a dividend because it can be invested in the money
market. In contrast, in our model, a share of the money market account increases in
value without paying a dividend.

The numéraires we consider in this chapter are:

• Domestic money market account. We denote the associated risk-neutral measure
by P̃. It is the one discussed in Section 9.1.

• Foreign money market account. We denote the associated risk-neutral measure
by P̃f . It is constructed in Section 9.3 below.

• A zero-coupon bond maturing at time T . We denote the associated risk-neutral
measure by P̃T . It is called the T -forward measure and is used in Section 9.4.

The asset we take as numéraire could be one of the primary assets given by (9.1.1)
or it could be a derivative asset. Regardless of which asset we take, it has the stochas-
tic representation provided by the following theorem.
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Theorem 9.2.1 (Stochastic representation of assets). Let N be a strictly positive price
process for a non-dividend-paying asset, either primary or derivative, in the multidi-
mensional market model of Section 9.1. Then there exists a vector volatility process

ν(t) =
(
ν1(t), . . . , νd(t)

)

such that

dN(t) = R(t)N(t)dt + N(t)ν(t) · dW̃ (t). (9.2.1)

This equation is equivalent to each of the equations

d
(
D(t)N(t)

)
= D(t)N(t)ν(t) · dW̃ (t), (9.2.2)

D(t)N(t) = N(0) exp

{∫ t

0
ν(u)dW̃ (u)− 1

2

∫ t

0
‖ν(u)‖2du

}
, (9.2.3)

N(t) = N(0) exp

{∫ t

0
ν(u)dW̃ (u) +

∫ t

0

(
R(u)− 1

2
‖ν(u)‖2

)
du

}
. (9.2.4)

In other words, under the risk-neutral measure, every asset has a mean return equal
to the interest rate. The realized risk-neutral return for assets is characterized solely
by their volatility vector processes (because initial conditions have no effect on re-
turn).

Proof. Under the risk-neutral measure P̃, the discounted price process D(t)N(t) must
be a martingale. The risk-neutral measure is constructed to enforce this condition
for primary assets, and it is a consequence of the risk-neutral pricing formula for
derivative assets. According to the Martingale Representation Theorem, Theorem
5.4.2,

d
(
D(t)N(t)

)
=

d∑

j=1

Γ̃j(t)dW̃j(t) = Γ̃(t) · dW̃ (t)

for some adapted d-dimensional process Γ̃(t) =
(
Γ̃1(t), . . . , Γ̃d(t)

)
. Because N(t) is

strictly positive, we can define the vector ν(t) =
(
ν1(t), . . . , νd(t)

)
by

νj(t) =
Γ̃j(t)

D(t)N(t)
.

Then
d
(
D(t)N(t)

)
= D(t)N(t)ν(t) · dW̃ (t),

which is (9.2.2).
The solution to (9.2.2) is (9.2.3), as we now show. Define

X(t) =

∫ t

0
ν(u)dW̃ (u)− 1

2

∫ t

0
‖ν(u)‖2du

=
d∑

j=1

∫ t

0
νj(u)dW̃j(u)− 1

2

d∑

j=1

∫ t

0
ν2
j (u)du,
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so that

dX(t) = ν(t)dW̃ (t)− 1

2
‖ν(t)‖2dt

=
d∑

j=1

νj(t)dW̃j(t)− 1

2

d∑

j=1

ν2
j (t)dt.

Then

dX(t)dX(t) =
d∑

j=1

ν2
j (t)dt = ‖ν(t)‖2dt.

Let f(x) = N(0)ex, and compute

df
(
X(t)

)
= f ′

(
X(t)

)
dX(t) +

1

2
f ′′

(
X(t)

)
dX(t)dX(t)

= f
(
X(t)

)
ν(t)dW̃ (t).

We see that f
(
X(t)

)
solves (9.2.2), f

(
X(t)

)
has the desired initial condition f

(
X(0)

)
=

N(0), and f
(
X(t)

)
is the right-hand side of (9.2.3).

From (9.2.3), we have immediately that (9.2.4) holds. Applying the Itô-Doeblin
formula to (9.2.4), we obtain (9.2.1).

According to the multidimensional Girsanov Theorem, Theorem 5.4.1, we can use
the volatility vector of N(t) to change the measure. Define

W̃
(N)
j (t) = −

∫ t

0
νj(u)du + W̃j(t), j = 1, . . . , d, (9.2.5)

and a new probability measure

P̃(N)(A) =
1

N(0)

∫

A
D(T )N(T )dP̃ for all A ∈ F . (9.2.6)

We see from (9.2.3) that D(T )N(T )
N(0) is the random variable Z(T ) appearing in (5.4.1)

of the multidimensional Girsanov Theorem if we replace Θj(t) by −νj(t) for j =

1, . . . , m. Here we are using the probability measure P̃ in p]ace of P in Theorem 5.41
and using the d-dimensional Brownian motion

(
W̃1(t), . . . , W̃d(t)

)
under P̃ in place of

the d-dimensional Brownian motion
(
W1(t), . . . , Wd(t)

)
under P.

With these replacements, Theorem 5.4.1 implies that, under P̃(N) the process
W̃ (N)(t) =

(
W̃

(N)
1 (t), . . . , W̃

(N)
d (t)

)
is a d-dimensional Brownian motion. In par-

ticular, under P̃(N), the Brownian motions W̃
(N)
1 , . . . , W̃

(N)
d are independent of one

another. The expected value of an arbitrary random variable X under P̃(N) can be
computed by the formula

Ẽ(N)X =
1

N(0)
Ẽ[XD(T )N(T )]. (9.2.7)

More generally,

N(t)D(t)

N(0)
= Ẽ

[
N(T )D(T )

N(0)

∣∣∣∣F(t)

]
, 0 ≤ t ≤ T,



9.2 Numéraire 351

is the Radon-Nikodym derivative process Z(t) in the Theorem 5.4.1, and Lemma
5.2.2 implies that for 0 ≤ s ≤ t ≤ T and Y an F(t)-measurable random variable,

Ẽ(N)[Y |F(s)] =
1

D(s)N(s)
Ẽ[Y D(t)N(t)|F(s)]. (9.2.8)

Theorem 9.2.2 (Change of risk-neutral measure). Let S(t) and N(t) be the prices of
two assets denominated in a common currency, and let σ(t) =

(
σ1(t), . . . , σd(t)

)
and

ν(t) =
(
ν1(t), . . . , νd(t)

)
denote their respective volatility vector processes:

d
(
D(t)S(t)

)
= D(t)S(t)σ(t) · dW̃ (t), d

(
D(t)N(t)

)
= D(t)N(t)ν(t) · dW̃ (t).

Take N(t) as the numéraire, so the price of S(t) becomes S(N)(t) = S(t)
N(t) . Under the

measure P̃(N) the process S(N)(t) is a martingale. Moreover,

dS(N)(t) = S(N)(t)[σ(t)− ν(t)] · dW̃ (N)(t). (9.2.9)

Remark 9.2.3. Equation (9.2.9) says that the volatility vector of S(N)(t) is the dif-
ference of the volatility vectors of S(t) and N(t). In particular, after the change of
numéraire, the price of the numéraire becomes identically 1,

N (N)(t) =
N(t)

N(t)
= 1,

and this has zero volatility vector:

dN (N)(t) = N (N)(t)[ν(t)− ν(t)] · dW̃ (N)(t) = 0.

We are not saying that volatilities subtract when we change the numéraire. We are
saying that volatility vectors subtract. The process N(t) in Theo- rem 9.2.2 has the
stochastic differential representation (9.2.1), which we may rewrite as

dN(t) = R(t)N(t)dt + ‖ν(t)‖N(t)dBN (t), (9.2.10)

where

BN (t) =

∫ t

0

d∑

j=1

νj(u)

‖ν(u)‖dW̃u(t).

According to Levy’s Theorem, Theorem 4.6.4, BN (t) is a one-dimensional Brownian
motion. From (9.2.10), we see that the volatility (not the volatility vector) of N(t)

is ‖ν(t)‖. Similarly, the volatility of S(t) in Theorem 9.2.2 is ‖σ(t)‖. Application of
the same argument to equation (9.2.9) shows that the volatility of S(N)(t) is ‖σ(t)‖ −
‖ν(t)‖. This is not the difference of the volatilities ‖σ(t)‖−‖ν(t)‖ unless the volatility
vector σ(t) is a positive multiple of the volatility vector ν(t).

Remark 9.2.4. If we take the money market account as the numéraire in Theorem
9.2.2 (i.e., N(t) = M(t) = 1

D(t)), then we have d
(
D(t)N(t)

)
= 0. The volatility vector

for the money market account is ν(t) = 0, and the volatility vector for an asset S(N)(t)

denominated in units of money market account is the same as the volatility vector of
the asset denominated in units of currency. Discounting an asset using the money
market account does not affect its volatility vector.
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Remark 9.2.5. Theorem 9.2.2 is a special case of a more general result. Whenever
M1(t) and M2(t) are martingales under a measure P, M2(0) = 1, and M2(t) takes only
positive values, then M1(t)/M2(t) is a martingale under the measure P(M2) defined by

P(M2)(A) =

∫

A
M2(T )dP.

See Exercise 9.1.

PROOF OF THEOREM 9.2.2: We have

D(t)S(t) = S(0) exp

{∫ t

0
σ(u)dW̃ (u)− 1

2

∫ t

0
‖σ(u)‖2du

}
,

D(t)N(t) = N(0) exp

{∫ t

0
ν(u)dW̃ (u)− 1

2

∫ t

0
‖ν(u)‖2du

}
,

and hence

S(N)(t) =
S(0)

N(0)
exp

{∫ t

0

(
σ(u)− ν(u)

)
dW̃ (u)− 1

2

∫ t

0

(‖σ(u)‖2 − ‖ν(u)‖2
)
du

}
.

To apply the Itô-Doeblin formula to this, we first define

X(t) =

∫ t

0

(
σ(u)− ν(u)

)
dW̃ (u)− 1

2

∫ t

0

(‖σ(u)‖2 − ‖ν(u)‖2
)
du,

so that

dX(t) =
(
σ(t)− ν(t)

)
dW̃ (t)− 1

2

(‖σ(t)‖2 − ‖ν(t)‖2
)
dt

=
d∑

j=1

(
σj(t)− νj(t)

)
dW̃j(t)− 1

2

d∑

j=1

(
σ2

j (t)− ν2
j (t)

)
dt,

dX(t)dX(t) =
d∑

j=1

(
σj(t)− νj(t)

)2
dt

=
d∑

j=1

(
σ2

j (t)− 2σj(t)νj(t) + ν2
j (t)

)
dt

= ‖σ(t)‖2dt− 2σ(t)ν(t)dt + ‖ν(t)‖2dt.

With f(x) = S(0)
N(0)e

x, we have S(N)(t) = f
(
X(t)

)
and

dS(N)(t) = df
(
X(t)

)

= f ′(X)dX +
1

2
f ′′(X)dXdX

= S(N)

[
(σ − ν)dW̃ − 1

2
‖σ‖2dt +

1

2
‖ν‖2dt +

1

2
‖σ‖2dt− σνdt +

1

2
‖ν‖2dt

]

= S(N)
[
(α− ν)dW̃ − ν(α− ν)dt

]

= S(N)(α− ν)(−νdt + dW̃ )

= S(N)(α− ν)dW̃ (N).

Since W̃ (N)(t) is a d-dimensional Brownian motion under P̃(N), the process S(N)(t)

is a martingale under this measure.
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9.3 Foreign and Domestic Risk-Neutral Measures

9.3.1 The Basic Processes

We now apply the ideas of the previous section to a market with two currencies,
which we call foreign and domestic. This model is driven by

W (t) =
(
W1(t),W2(t)

)
,

a two-dimensional Brownian motion on some (Ω,F ,P). In particular, we are assum-
ing that W1 and W2 are independent under P. We begin with a stock whose price in
domestic currency, S(t), satisfies

dS(t) = α(t)S(t)dt + σ1(t)S(t)dW1(t). (9.3.1)

There is a domestic interest rate R(t), which leads to a domestic money market ac-
count price and domestic discount process

M(t) = e
R t

0
R(u)du, D(t) = e−

R t

0
R(u)du.

There is also a foreign interest rate Rf (t), which leads to a foreign money market
account price and foreign discount process

Mf (t) = e
R t

0
Rf (u)du, Df (t) = e−

R t

0
Rf (u)du.

Finally, there is an exchange rate Q(t), which gives units of domestic currency per
unit of foreign currency. We assume this satisfies

dQ(t) = γ(t)Q(t)dt + σ2(t)Q(t)

[
ρ(t)dW1(t) +

√
1− ρ2(t)dW2(t)

]
. (9.3.2)

We define

W3(t) =

∫ t

0
ρ(t)dW1(t) +

∫ t

0

√
1− ρ2(t)dW2(t). (9.3.3)

By Levy’s Theorem, Theorem 4.6.4, W3(t) is a Brownian motion under P̃. We may
rewrite (9.3.2) as

dQ(t) = γ(t)Q(t)dt + σ2(t)Q(t)dW3(t), (9.3.4)

from which we see that Q(t) has volatility σ2(t).
We assume R(t), Rf (t), σ1(t), σ2(t), and ρ(t) are processes adapted to the filtration

F(t) generated by the two-dimensional Brownian motion W (t) =
(
W1(t),W2(t)

)
, and

σ1(t) > 0, σ2(t) > 0, −1 < ρ(t) < 1

for all t almost surely. Because

dS(t)

S(t)
· dQ(t)

Q(t)
= ρ(t)σ1(t)σ2(t)dt,

the process ρ(t) is the instantaneous correlation between relative changes in S(t) and
Q(t).
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9.3.2 Domestic Risk-Neutral Measure

There are three assets that can be traded: the domestic money market account, the
stock, and the foreign money market account. We shall price each of these in do-
mestic currency and discount at the domestic interest rate. The result is the price
of each of them in units of the domestic money market account. Under the domestic
risk-neutral measure, all three assets priced in units of the domestic money market ac-
count must be martingales. We use this observation to find the domestic risk-neutral
measure.

We note that the first asset, the domestic money market account, when priced in
units of the domestic money market, has constant price 1. This is always a martingale,
regardless of the measure being used.

The second asset, the stock, in units of the domestic money market account has
price D(t)S(t), and this satisfies the stochastic differential equation

d
(
D(t)S(t)

)
= D(t)S(t)[(α(t)−R(t))dt + σ1(t)dW1(t)]. (9.3.5)

We would like to construct a process

W̃1(t) =

∫ t

0
Θ1(u)du + W1(t)

that permits us to rewrite (9.3.5) as

d
(
D(t)S(t)

)
= σ1(t)D(t)S(t)dW̃1(t). (9.3.6)

Equating the right-hand sides of (9.3.5) and (9.3.6), we see that Θ1(t) must be chosen
to satisfy the first market price of risk equation

σ1(t)Θ1(t) = α(t)−R(t). (9.3.7)

The third asset available in the domestic market is the following. One can invest in
the foreign money market account and convert that investment to domestic currency.
The value of the foreign money market account in domestic currency is Mf (t)Q(t),
and its discounted value is D(t)Mf (t)Q(t). The differential of this price is

d
(
D(t)Mf (t)Q(t)

)
= D(t)Mf (t)Q(t)

[(
Rf (t)−R(t) + γ(t)

)
dt

+ σ2(t)ρ(t)dW1(t) + σ2(t)
√

1− ρ2(t)dW2(t)
]
.

(9.3.8)

One can derive this using the fact that

d
(
Mf (t)

)
= Rf (t)Mf (t)dt,

using Itô’s product rule to compute

d
(
Mf (t)Q(t)

)
= Mf (t)Q(t)

[(
Rf (t) + γ(t)

)
dt

+ σ2(t)ρ(t)dW1(t) + σ2(t)
√

1− ρ2(t)dW2(t)
]
,

and then using Itô’s product rule again on D(t) · Mf (t)Q(t) to obtain (9.3.8). The
mean rate of change of Q(t) is γ(t). When we inflate this at the foreign interest rate



9.3 Foreign and Domestic Risk-Neutral Measures 355

and discount it at the domestic interest rate, (9.3.8) shows that the mean rate of return
changes to Rf (t)−R(t) + γ(t). The volatility terms are unchanged.

In addition to the process W̃1(t), we would like to construct a process

W̃2(t) =

∫ t

0
Θ2(u)du + W2(t)

so that (9.3.8) can be written as

d
(
D(t)Mf (t)Q(t)

)
= D(t)Mf (t)Q(t)

[
σ2(t)ρ(t)dW̃1(t) + σ2(t)

√
1− ρ2(t)dW̃2(t)

]
.

(9.3.9)
Equating the right-hand sides of (9.3.9) and (9.3.8), we obtain the second market
price of risk equation

σ2(t)ρ(t)Θ1(t) + σ2(t)
√

1− ρ2(t)Θ2(t) = Rf (t)−R(t) + γ(t). (9.3.10)

The market price of risk equations (9.3.7) and (9.3.10) determine processes Θ1(t)

and Θ2(t). We can solve explicitly for these processes by first solving (9.3.7) for
Θ1(t), substituting this into (9.3.10), and then solving (9.3.10) for Θ2(t). The condi-
tions σ1(t) > 0, σ2(t) > 0, and −1 < ρ(t) < 1 are needed to do this.

The particular formulas for Θ1(t) and Θ2(t) are irrelevant. What matters is that
the market price of risk equations have one and only one solution, and so there is
a unique risk-neutral measure P̃ given by the multi-dimensional Girsanov Theorem.
Under this measure, W̃ (t) =

(
W̃1(t), W̃2(t)

)
is a two-dimensional Brownian motion

and the processes 1, D(t)S(t), and D(t)Mf (t)Q(t) are martingales. In the spirit of
(9.3.3), we may also define

W̃3(t) =

∫ t

0
ρ(u)dW̃1(u) +

∫ t

0

√
1− ρ2(u)dW̃2(u). (9.3.11)

Then W̃3(t) is a Brownian motion under P̃, and

dW̃1(t)dW̃3(t) = ρ(t)dt, dW̃2(t)dW̃3(t) =
√

1− ρ2(t)dt. (9.3.12)

We can write the price processes 1, D(t)S(t) and D(t)Mf (t)Q(t) in undiscounted
form by multiplying them by M(t) = 1

D(t) and using the formula dM(t) = R(t)M(t)dt

and Itô’s product rule. This leads to the formulas

dM(t) = R(t)M(t)dt, (9.3.13)

dS(t) = S(t)[R(t)dt + σ1(t)dW̃1(t)], (9.3.14)

d
(
Mf (t)Q(t)

)
= Mf (t)Q(t)

[
R(t)dt + σ2(t)ρ(t)dW̃1(t) + σ2(t)

√
1− ρ2(t)dW̃2(t)

]

= Mf (t)Q(t)
[
R(t)dt + σ2(t)dW̃3(t)

]
. (9.3.15)

All these price processes have mean rate of return R(t) under the domestic risk-
neutral measure P̃. We constructed the domestic risk-neutral measure so this is the
case.
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We may multiply Mf (t)Q(t) by Df (t) and use Itô’s product rule again to obtain

dQ(t) = Q(t)

[(
R(t)−Rf (t)

)
dt + σ2(t)ρ(t)dW̃1(t) + σ2(t)

√
1− ρ2(t)dW̃2(t)

]

= Q(t)
[(

R(t)−Rf (t)
)
dt + σ2(t)dW̃3(t)

]
.

(9.3.16)

Under the domestic risk-neutral measure, the mean rate of change of the exchange
rate is the difference between the domestic and foreign interest rates R(t)−Rf (t). In
particular, it is not R(t), as would be the case for an asset. If one regards the exchange
rate as an asset (i.e., hold a unit of foreign currency whose value is always Q(t)), then
it is a dividend-paying asset. The unit of foreign currency can and should be invested
in the foreign money market, and this pays out a continuous dividend at rate Rf (t).
If this dividend is reinvested in the foreign money market, then we get the asset in
(9.3.15), which has mean rate of return R(t); if the dividend is not reinvested, then
the rate of return is reduced by Rf (t) and we have (9.3.16) (cf. (5.5.6)).

It is important to note that (9.3.16) tells us about the mean rate of change of the
exchange rate under the domestic risk-neutral measure. Under the actual probability
measure P, the mean rate of change of the exchange rate can be anything. There are
no restrictions on the process γ(t) in (9.3.2).

9.3.3 Foreign Risk-Neutral Measure

In this model, we have three assets: the domestic money market account, the stock,
and the foreign money market account. We list these assets across the top of Figure
9.3.1, and down the side of the figure we list the four ways of denominating them.

In the previous subsection, we constructed the domestic risk-neutral measure P̃
under which the three entries in the second line of Figure 9.3.1 are martingales. In
this subsection, we construct the foreign risk-neutral measure under which the entries
in the fourth line are martingales. (We cannot make all the entries in the first line
be martingales because every path of the process M(t) is increasing, and thus this
process is not a martingale under any measure. The same applies to the entries in the
third line, which contains the increasing process Mf (t).)

We observe that the fourth line in Figure 9.3.1 is obtained by dividing each en-
try of the second line by D(t)Mf (t)Q(t). In other words, to find the foreign risk-
neutral measure, we take the foreign money market account as the numéraire. Its
value at time t, denominated in units of the domestic money market account, is
D(t)Mf (t)Q(t), and denominated in units of domestic currency, it is Mf (t)Q(t). The
differential of Mf (t)Q(t) is given in (9.3.15), and from that formula we see that its
volatility vector is

(
ν1(t), ν2(t)

)
=

(
σ2(t)ρ(t), σ2(t)

√
1− ρ2(t)

)
,
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the same as the volatility vector of Q(t).

Domestic Foreign

money money

market Stock market

Domestic currency M(t) S(t) Mf (t)Q(t)

Domestic money market 1 D(t)S(t) D(t)Mf (t)Q(t)

Foreign currency M(t)/Q(t) S(t)/Q(t) Mf (t)

Foreign money market M(t)Df (t)/Q(t) Df (t)S(t)/Q(t) 1

Fig. 9.3.1. Prices under different numéraires.

According to Theorem 9.2.2, the risk-neutral measure associated with the numéraire
Mf (t)Q(t) is given by

P̃f (A) =
1

Q(0)

∫

A
D(T )Mf (T )Q(T )dP̃ for all A ∈ F , (9.3.17)

where we have used the fact that D(0) = Mf (0) = 1. Furthermore, the process
W̃ f (t) =

(
W̃ f

1 (t), W̃ f
2 (t)

)
given by

W̃ f
1 (t) = −

∫ t

0
σ2(u)ρ(u)du + W̃1(t), (9.3.18)

W̃ f
2 (t) = −

∫ t

0
σ2(u)

√
1− ρ2(u)du + W̃2(t), (9.3.19)

is a two-dimensional Brownian motion under P̃f . We call P̃f the foreign risk-neutral
measure. Following (9.3.11), we may also define

W̃ f
3 (t) =

∫ t

0
ρ(u)dW̃ f

1 (u) +

∫ t

0

√
1− ρ2(u)dW̃ f

2 (u)

=

∫ t

0
ρ(u)

(
−σ2(u)ρ(u)du + dW̃1(u)

)

+

∫ t

0

√
1− ρ2(u)

(
−σ2(u)

√
1− ρ2(u) + dW̃2(u)

)

= −
∫ t

0
σ2(u)du +

∫ t

0

(
ρ(u)dW̃1(u) +

√
1− ρ2(u)dW̃2(u)

)

= −
∫ t

0
σ2(u)du + W̃3(t).

(9.3.20)

Then W̃ f
3 (t) is a Brownian motion under P̃f , and

dW̃ f
1 (t)dW̃ f

3 (t) = ρ(t)dt, dW̃ f
2 (t)dW̃ f

3 (t) =
√

1− ρ2(t)dt. (9.3.21)



358 Change of Numéraire

Instead of relying on Theorem 9.2.2, one can verify directly by Itô calculus that
the first two entries in the last row of Figure 9.3.1 are martingales under P̃f (the third
entry, 1, is obviously a martingale). One can verify by direct computation that

d

(
M(t)Df (t)

Q(t)

)
=

M(t)Df (t)

Q(t)

[
−σ2(t)ρ(t)dW̃ f

1 (t)− σ2(t)
√

1− ρ2(t)dW̃ f
2 (t)

]

= −M(t)Df (t)

Q(t)
σ2(t)dW̃ f

3 (t),

(9.3.22)

d

(
Df (t)S(t)

Q(t)

)
=

Df (t)S(t)

Q(t)

[(
σ1(t)− σ2(t)ρ(t)

)
dW̃ f

1 (t)− σ2(t)
√

1− ρ2(t)dW̃ f
2 (t)

]

=
Df (t)S(t)

Q(t)

[
σ1(t)dW̃ f

1 (t)− σ2(t)dW̃ f
3 (t)

]
,

(9.3.23)

Because W̃ f
1 (t), W̃ f

2 (t), and W̃ f
3 (t) are Brownian motions under P̃f , the processes

above are martingales under this measure. The Brownian motions W̃ f
1 (t) and W̃ f

2 (t)

are independent under P̃f , whereas W̃ f
3 (t) has instantaneous correlations with W̃ f

1 (t)

and W̃ f
2 (t) given by (9.3.21).

9.3.4 Siegel’s Exchange Rate Paradox

In (9.3.16), we saw that under the domestic risk-neutral measure P̃, the mean rate of
change for the exchange rate Q(t) is R(t)− Rf (t). From the foreign perspective, the
exchange rate is 1

Q(t) , and one should expect the mean rate of change of 1
Q(t) to be

Rf (t) − R(t). In other words, one might expect that if the average rate of change of
the dollar against the euro is 5%, then the average rate of change of the euro against
the dollar should be −5%. This turns out not to be as straight forward as one might
expect because of the convexity of the function f(x) = 1

x .
For example, an exchange rate of 0.90 euros to the dollar would be 1.1111 dollars

to the euro. If the dollar price of euro falls by 5%, then price of the euro would be
only 0.95 × 1.1111 = 1.0556 dollars. This is an exchange rate of 0.9474 euros to the
dollar. The change from 0.90 euros to the dollar to 0.9474 euros to the dollar is a
5.26% increase in the euro price of the dollar, not a 5% increase.

The convexity effect seen in the previous paragraph makes itself felt when we
compute the differential of 1

Q(t) . We take f(x) = 1
x so that f ′(x) = − 1

x2 and f ′′(x) =
2
x3 . Using (9.3.16), we obtain

d

(
1

Q

)
= df(Q)

= f ′(Q)dQ +
1

2
f ′′(Q)dQdQ

=
1

Q

[
(Rf −R)dt− σ2dW̃3

]
+

1

Q
σ2

2dW̃3dW̃3

=
1

Q(t)

[
(Rf −R + σ2

2)dt− σ2dW̃3

]
.

(9.3.24)
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The mean rate of change under the domestic risk-neutral measure is Rf (t)−R(t)+σ2
2,

not Rf (t)−R(t).
However, the asymmetry introduced by the convexity of f(x) = 1

x is resolved if we
switch to the foreign risk-neutral measure, which is the appropriate one for derivative
security pricing in the foreign currency. First recall the relationship (9.3.20)

dW̃ f
3 (t) = −σ2(t) + dW̃3(t).

In terms of W̃ f
3 (t), we may rewrite (9.3.24) as

d

(
1

Q

)
=

(
1

Q

) [
(Rf −R)dt− σ2dW̃ f

3

]
. (9.3.25)

Under the foreign risk-neutral measure, the mean rate of change for 1
Q is Rf − R, as

expected.
Under the actual probability measure P, however, the asymmetry remains. When

we begin with (9.3.4), which shows the mean rate of change of the exchange rate
to be γ(t) under P and is repeated below as (9.3.26), and then use the Itô-Doeblin
formula as we did in (9.3.24), we obtain the formula (9.3.27) below:

dQ(t) = γ(t)Q(t)dt + σ2(t)Q(t)dW3(t), (9.3.26)

d

(
1

Q(t)

)
=

1

Q(t)

(− γ(t) + σ2
2(t)

)
dt− 1

Q(t)
σ2(t)dW3(t). (9.3.27)

Both Q and 1
Q have the same volatility. (A change of sign in the volatility does not

affect volatility because Brownian motion is symmetric.) However, the mean rates of
change of Q and 1

Q are not negatives of one another.

9.3.5 Forward Exchange Rates

We assume in this subsection that the domestic and foreign interest rates are constant
and denote these constants by r and rf , respectively. Recall that Q is units of domestic
currency per unit of foreign currency. The exchange rate from the domestic viewpoint
is governed by the stochastic differential equation (9.3.16)

dQ(t) = Q(t)

[
(r − rf )dt + σ2(t)ρ(t)dW̃1(t) + σ2(t)

√
1− ρ2(t)dW̃2(t)

]
.

Therefore
e−(r−rf )tQ(t)

is a martingale under P̃, the domestic risk-neutral measure.
At time zero, the (domestic currency) forward price F for a unit of foreign cur-

rency, to be delivered at time T , is determined by the equation

Ẽ
[
e−rT

(
Q(T )− F

)]
= 0.

The left-hand side is the risk-neutral pricing formula applied to the derivative security
that pays Q(T ) in exchange for F at time T . Setting this equal to zero determines the
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forward price. We may solve this equation for F by observing that it implies

e−rT F = Ẽ
[
e−rT Q(T )

]
= e−rfT Ẽ

[
e−(r−rf )T Q(T )

]
= e−rfT Q(0),

which gives the T -forward (domestic per unit of foreign) exchange rate

F = e(r−rf )T Q(0).

The exchange rate from the foreign viewpoint is given by the stochastic differential
equation (9.3.25)

d

(
1

Q(t)

)
=

(
1

Q(t)

)[
(rf − r)dt− σ2(t)ρ(t)dW̃ f

1 (t)− σ2(t)
√

1− ρ2(t)dW̃ f
2 (t)

]
.

Therefore,
−e−(r−rf )t 1

Q(t)

is a martingale under P̃f , the foreign risk-neutral measure.
At time zero, the (foreign currency) forward price F f for a unit of domestic cur-

rency to be delivered at time T is determined by the equation

Ẽf

[
e−rfT

(
1

Q(T )
− F f

)]
= 0.

The left-hand side is the risk-neutral pricing formula applied to the derivative security
that pays 1

Q(T ) in exchange for F f (both denominated in foreign currency) at time T .
Setting this equal to zero determines the forward price. We may solve this equation
for F f by observing that it implies

e−rfT F f = Ẽf

[
e−rfT 1

Q(T )

]
= e−rT Ẽf

[
e−(rf−r)T 1

Q(T )

]
= e−rT 1

Q(0)

which gives the T -forward (foreign per unit of domestic) exchange rate

F f = e(rf−r)T 1

Q(0)
=

1

F
.

9.3.6 Garman-Kohlhagen Formula

In this section, we assume the domestic and foreign interest rates r and rf and the
volatility σ2 are constant. Consider a call on a unit of foreign currency whose payoff
in domestic currency is (Q(T )−K)+. At time zero, the value of this is

Ẽe−rT (Q(T )−K)+.

In this case, (9.3.16) becomes

dQ(t) = Q(t)
[
(r − rf )dt + σ2dW̃3(t)

]
,

from which we conclude that

Q(T ) = Q(0) exp

{
σ2W̃3(T ) +

(
r − rf − 1

2
σ2

2

)
T

}
.
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Define

Y = −W̃3(T )√
T

,

so Y is a standard normal random variable under P̃. Then the price of the call is

Ẽe−rT (Q(T )−K)+ = Ẽ

[
e−rT

(
Q(0) exp

{
−σ2

√
TY +

(
r − rf − 1

2
σ2

2

)
T

}
−K

)+
]

.

This expression is just like (5.5.10) with τ = T , with Q(0) in place of x, and with rf

in place of the dividend rate a. According to (5.5.12), the call price is

Ẽe−rT (Q(T )−K)+ = e−rfT Q(0)N(d+)− e−rT KN(d−), (9.3.28)

where
d± =

1

σ2

√
T

[
log

Q(0)

K
+

(
r − rf ± 1

2
σ2

2

)
T

]

and N is the cumulative standard normal distribution function. Equation (9.3.28) is
called the Garman-Kohlhagen formula.

9.3.7 Exchange Rate Put-Call Duality

In this subsection, we develop a relationship between a call on domestic currency,
denominated in foreign currency, and a put on a foreign currency, denominated in the
domestic currency.

Recall the numéraire Mf (t)Q(t), which is the domestic price of the foreign money
market account. The Radon-Nikodym derivative of the foreign risk-neutral measure
with respect to the domestic risk-neutral measure is (see (9.3.17))

dP̃f

dP̃
=

D(T )Mf (T )Q(T )

Q(0)
.

Thus, for any random variable X,

ẼfX = Ẽ
[
D(T )Mf (T )Q(T )

Q(0)
X

]
.

A call struck at K on a unit of domestic currency denominated in the foreign

currency pays off
(

1
Q(T ) −K

)+
units of foreign currency at expiration time T . The

foreign currency value of this at time zero, which is the foreign risk-neutral expected
value of the discounted payoff, is

Ẽf

[
Df (T )

(
1

Q(T )
−K

)+
]

= Ẽ

[
D(T )Mf (T )Q(T )

Q(0)
·Df (T )

(
1

Q(T )
−K

)+
]

=
1

Q(0)
Ẽ

[
D(T )

(
1−KQ(T )

)+
]

=
K

Q(0)
Ẽ

[
D(T )

(
1

K
−Q(T )

)+
]

.
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This is the time-zero value in domestic currency of K
Q(0) puts on the foreign exchange

rate. More specifically, a put struck at 1
K on a unit of foreign currency denominated

in the domestic currency pays off ( 1
K −Q(T )) units of domestic currency at expiration

time T . The domestic currency value of this put at time zero, which is the domestic
risk-neutral expected value of the discounted payoff, is

Ẽ

[
D(T )

(
1

K
−Q(T )

)+
]

.

The call we began with is worth K
Q(0) of these puts.

The foreign currency price of the put struck at 1
K on a unit of foreign currency is

1

Q(0)
Ẽ

[
D(T )

(
1

K
−Q(T )

)+
]

.

The call we began with has a value K times this amount. When we denominate both
the call and the put this way in foreign currency, we can then understand the final
result. Indeed, we have seen that the option to exchange K units of foreign currency
for one unit of domestic currency (the call) is the same as K options to exchange 1

K

units of domestic currency for one unit of foreign currency (the put). Stated in this
way, the result is almost obvious.

9.4 Forward Measures

Although there may be multiple Brownian motions driving the model of this section,
in order to simplify the notation, we assume in this section that there is only one. It
is not difficult to rederive the results presented here under the assumption that there
are d Brownian motions.

9.4.1 Forward Price

We recall the discussion of Section 5.6.1. Consider a zero-coupon bond that pays 1
unit of currency (all currency is domestic in this section) at maturity T . According to
the risk-neutral pricing formula, the value of this bond at time t ∈ [0, T ] is

B(t, T ) =
1

D(t)
Ẽ[D(T )|F(t)]. (9.4.1)

In particular, B(T, T ) = 1.
Consider now an asset whose price denominated in currency is S(t). A forward

contract that delivers one share of this asset at time T in exchange for K has a time-T
payoff of S(T ) −K. According to the risk-neutral pricing formula, the value of this
contract at earlier times t is

V (t) =
1

D(t)
Ẽ

[
D(T )

(
S(T )−K

)∣∣F(t)
]
.
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Because D(t)S(t) is a martingale under P̃, this reduces to

V (t) = S(t)− K

D(t)
Ẽ[D(T )|F(t)] = S(t)−KB(t, T ). (9.4.2)

The T -forward price ForS(t, T ) at time t ∈ [0, T ] of an asset is the value of K that
causes the value of the forward contract in (9.4.2) to be zero:

ForS(t, T ) =
S(t)

B(t, T )
. (9.4.3)

9.4.2 Zero-Coupon Bond as Numéraire

A zero-coupon bond is an asset, and therefore the discounted bond price D(t)B(t, T )

must be a martingale under the risk-neutral measure P̃. According to Theorem 9.2.1,
there is a volatility process σ∗(t, T ) for the bond (a process in t; T is fixed) such that

d
(
D(t)B(t, T )

)
= −σ∗(t, T )D(t)B(t, T )dW̃ (t). (9.4.4)

In (9.4.4), we write −σ∗(t, T ) rather than σ∗(t, T ) in order to be consistent with the
notation used in our discussion of the Heath-Jarrow-Merton model in Chapter 10.
This has no effect on the distribution of the bond price process since we could just as
well write (9.4.4) as

d
(
D(t)B(t, T )

)
= σ∗(t, T )D(t)B(t, T )d

(
−W̃ (t)

)
,

and, just like W̃ (t), the process −W̃ (t) is a Brownian motion under P̃.

Definition 9.4.1. Let T be a fixed maturity date. We define the T -forward measure
P̃T by

P̃T (A) =
1

B(0, T )

∫

A
D(T )dP̃ for all A ∈ F . (9.4.5)

The T -forward measure corresponds to taking N(t) = B(t, T ) in (9.2.7) and (9.2.8).
According to Theorem 9.2.2, the process

W̃ T (t) =

∫ t

0
σ∗(u, T )du + W̃ (t)

is a Brownian motion under P̃T . Furthermore, under the T -forward measure, all assets
denominated in units of the zero-coupon bond maturing at time T are martingale. In
other words,

T -forward prices are martingales under the T -forward measure P̃T .

Furthermore, the volatility vector of the T -forward price of an asset is the difference
between the volatility vector of the asset and the volatility vector of the T -maturity
zero-coupon bond (see Remark 9.2.3).

The reason to introduce the T -forward measure is that it often simplifies the risk-
neutral pricing formula. According to that formula, the value at time t of a contract
that pays V (T ) at a later time T is

V (t) =
1

D(t)
Ẽ[D(T )V (T )|F(t)]. (9.4.6)
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The computation of the right-hand side of this formula requires that we know some-
thing about the dependence between the discount factor D(T ) and the payoff V (T ) of
the derivative security. Especially when the derivative security depends on the inter-
est rate, this can be difficult to model. However, according to (9.2.8) (with t replacing
s and T replacing t in that formula), we have

ẼT [V (T )|F(t)] =
1

D(t)B(t, T )
Ẽ[D(T )V (T )|F(t)] =

1

B(t, T )
V (t).

This gives us the simple formula

V (t) = B(t, T )ẼT [V (T )|F(t)]. (9.4.7)

If we can find a simple model for the evolution of assets under the T -forward mea-
sure, we can use (9.4.7), in which we only need to estimate V (T ), instead of using
(9.4.6), which requires us to estimate D(T )V (T ). We give an example of the power
of this approach in the next subsection.

9.4.3 Option Pricing with a Random Interest Rate

The classical Black-Scholes-Merton option-pricing formula assumes a constant inter-
est rate. For options on bonds and other interest-rate-dependent instruments, move-
ments in the interest rate are critical. For these “fixed income” derivatives, the as-
sumption of a constant interest rate is inappropriate.

In this section, we present a generalized Black-Scholes-Merton option-pricing for-
mula that permits the interest rate to be random. The classical Black-Scholes-Merton
assumption that the volatility of the underlying asset is constant is here replaced by
the assumption that the volatility of the forward price of the underlying asset is con-
stant. Because the forward price is a martingale under the forward measure, and
W̃ T (t) is the Brownian motion used to drive asset prices under the forward mea-
sure, the assumption of constant volatility for the forward price is equivalent to the
assumption

dForS(t, T ) = σForS(t, T )dW̃ T (t), (9.4.8)

where σ is a constant. The bond maturity T is chosen to coincide with the expiration
time T of the option.

Theorem 9.4.2 (Black-Scholes-Merton option pricing with random interest rate). Let
S(t) be the price of an asset denominated in (domestic) currency, and assume the
forward price of this asset satisfies (9.4.8) with a positive constant σ. The value at
time t ∈ [0, T ] of a European call on this asset, expiring at time T with strike price
K, is

V (t) = S(t)N
(
d+(t)

)−KB(t, T )N
(
d−(t)

)
, (9.4.9)

where the adapted processes d±(t) are given by

d±(t) =
1

σ
√

T − t

[
log

ForS(t, T )

K
± 1

2
σ2(T − t)

]
. (9.4.10)
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Furthermore, a short position in the option can be hedged by holding N
(
d+(t)

)

shares of the asset and shorting KN
(
d−(t)

)
T -maturity zero-coupon bonds at each

time t.

Remark 9.4.3. If the interest rate is a constant r, then B(t, T ) = e−r(T−t), ForS(t, T ) =

er(T−t)S(t), and this theorem reduces to the usual Black-Scholes-Merton formula and
hedging strategy.

PROOF OF THEOREM 9.4.2: We prove formula (9.4.9) for t = 0. It is not difficult
to modify the proof to account for general t.

We observe that ForS(0, T ) = S(0)
B(0,T ) , and so the solution to (9.4.8) is

ForS(t, T ) =
S(0)

B(0, T )
exp

{
σW̃ T (t)− 1

2
σ2t

}
. (9.4.11)

For each t, this has a log-normal distribution under P̃T , the measure under which
W̃ T (t) is a Brownian motion.

We need one more change of measure. Suppose we take the asset price S(t) to
be the numéraire. In terms of this numéraire, the asset price is identically 1. The
risk-neutral measure for this numéraire is given by

P̃S(A) =
1

S(0)

∫

A
D(T )S(T )dP̃ for all A ∈ F .

Denominated in units of S(t), the zero-coupon bond is

B(t, T )

S(t)
=

1

ForS(t, T )
, 0 ≤ t ≤ T,

and, by Theorem 9.2.2, this is a martingale under P̃S .
Indeed, we can compute the differential of 1

ForS(t,T ) using the Itô-Doeblin formula,
the function f(x) = 1

x , and (9.4.8). Since f ′(x) = − 1
x2 and f ′′(x) = 2

x3 , we have

d

(
1

ForS(t, T )

)

= df
(
ForS(t, T )

)

= f ′
(
ForS(t, T )

)
dForS(t, T ) +

1

2
f ′′

(
ForS(t, T )

)
dForS(t, T )dForS(t, T )

= − σ

ForS(t, T )
dW̃ T (t) +

σ2

ForS(t, T )
dt

= − σ

ForS(t, T )

(
−σdt + dW̃ T

)
.

(9.4.12)

Because we are guaranteed by Theorem 9.2.2 that 1
ForS(t,T ) is a martingale under P̃S ,

we conclude that
W̃S(t) = −σt + W̃ T (t)

is a Brownian motion under P̃S . We see also that 1
ForS(t,T ) has volatility σ. The

solution to (9.4.12) is
1

ForS(t, T )
=

B(0, T )

S(0)
exp

{
−σW̃S(t)− 1

2
σ2t

}
. (9.4.13)
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For each t, this has a log-normal distribution under P̃S , the measure under which
W̃S(t) is a Brownian motion.

At time zero, the value of a European call expiring at time T , according to the
risk-neutral pricing formula, is

V (0) = Ẽ
[
D(T )

(
S(T )−K

)+
]

= Ẽ
[
D(T )S(T )I{S(T )>K}

]−KẼ
[
D(T )I{S(T )>K}

]

= S(0)Ẽ
[
D(T )S(T )

S(0)
I{S(T )>K}

]
−KB(0, T )Ẽ

[
D(T )

B(0, T )
I{S(T )>K}

]

= S(0)P̃S{S(T ) > K} −KB(0, T )P̃T{S(T ) > K}
= S(0)P̃S{ForS(T, T ) > K} −KB(0, T )P̃T{ForS(T, T ) > K}

= S(0)P̃S

{
1

ForS(T, T )
<

1

K

}
−KB(0, T )P̃T{ForS(T, T ) > K}

where in the next-to-last step we have used the fact that ForS(T, T ) = S(T ). Using
the fact that W̃S(T ) is normal with mean zero and variance T under P̃S , we compute

P̃S

{
1

ForS(T, T )
<

1

K

}

= P̃S

{
−σW̃S(T )− 1

2
σ2T < log

S(0)

KB(0, T )

}

= P̃S

{
−W̃S(T )√

T
<

1

σ
√

T

[
log

S(0)

KB(0, T )
+

1

2
σ2T

]}

= N
(
d+(0)

)
.

Using the fact that W̃ T (T ) is normal with mean zero and variance T under P̃T , we
obtain

P̃T {ForS(T, T ) > K}

= P̃T

{
σW̃ T (T )− 1

2
σ2T > log

KB(0, T )

S(0)

}

= P̃T

{
W̃ T (T )√

T
>

1

σ
√

T

[
log

KB(0, T )

S(0)
+

1

2
σ2T

]}

= P̃T

{
−W̃ T (T )√

T
<

1

σ
√

T

[
log

S(0)

KB(0, T )
− 1

2
σ2T

]}

= N
(
d−(0)

)
.

This completes the proof of (9.4.9), at least for the case t = 0.
We now consider the hedge suggested by formula (9.4.9). It is easier to do this

when we take the zero-coupon bond as the numéraire rather than when we use cur-
rency. Dividing (9.4.9) by B(t, T ), we obtain

V (t)

B(t, T )
= ForS(t, T )N

(
d+(t)

)−KN
(
d−(t)

)
. (9.4.14)
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This gives us the option price denominated in zero-coupon bonds. Suppose we hedge
a short position in the option by holding N

(
d+(t)

)
shares of the asset and shorting

KN
(
d−(t)

)
zero-coupon bonds at each time t. The value of this portfolio, denomi-

nated in units of zero-coupon bond, agrees with (9.4.14). To be sure this short op-
tion hedge works, however, we must verify that the portfolio just described is self-
financing. In other words, we must be sure we do not need to infuse cash in order to
maintain the positions just described. (A discussion related to this, passing from dis-
crete to continuous time, is provided in Exercise 4.10 of Chapter 4.) The capital gains
differential associated with this portfolio, again denominated in units of zero-coupon
bond, is

N
(
d+(t)

)
dForS(t, T ).

(When measuring wealth in units of zero-coupon bond, there is no capital gain from
movements in the bond price.) The differential of the portfolio, according to Itô’s
formula, is

d

(
V (t)

B(t, T )

)
= N

(
d+(t)

)
dForS(t, T ) + ForS(t, T )dN

(
d+(t)

)

+ dForS(t, T )dN
(
d+(t)

)−KdN
(
d−(t)

)
.

(9.4.15)

In order for the portfolio to be self-financing, we must have

ForS(t, T )dN
(
d+(t)

)
+ dForS(t, T )dN

(
d+(t)

)−KdN
(
d−(t)

)
= 0, (9.4.16)

so that the change of value in the portfolio is entirely due to capital gains. The
verification of (9.4.16) is Exercise 9.6.

9.5 Summary

This chapter discusses the fact that when we change the units of account, the so-
called numéraire, we must change the risk-neutral measure. Fortunately, the Radon-
Nikodym derivative process needed to effect this change of measure is simple; it is
the numéraire itself, discounted in order to be a martingale and normalized by its
initial condition in order to have expected value 1. This is the content of Theorem
9.2.2.

In this chapter, we apply the change-of-numéraire idea in two cases: foreign ex-
change models and option pricing in the presence of a random interest rate. It was
also used in the discussion of Asian options in Section 7.5.

In the context of foreign exchange models, we show that the mean rate of change
of the exchange rate is the difference between the interest rates in the two economies
under the risk-neutral measure for the economy in which the exchange rate is being
considered. We show that one can derive other expected symmetries (e.g., the for-
ward exchange rate in one currency is the reciprocal of the foreign exchange rate in
the other currency), provided one is careful to use the appropriate risk-neutral mea-
sures.
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When the interest rate is random, the classical Black-Scholes-Merton option-
pricing formula does not apply. However, if one is willing to assume that the T-
forward price of the underlying asset has constant volatility, then the price of a call
expiring at time T has a simple formula and a simple hedging strategy (Theorem
9.4.2). This fact is exploited to build LIBOR models in Section 10.4.

9.6 Notes

The model of foreign and domestic markets presented in this chapter is a simpli-
fication of one in Musiela and Rutkowski [126]. The model in [126], drawn from
Amin and Jarrow [2], permits foreign and domestic interest rates to be random. The
Garman-Kohlhagen formula of Subsection 9.3.6 is taken from Garman and Kohlha-
gen [68]. The option to exchange one risky asset for another, of which Subsection
9.3.7 is a special case, was studied by Margrabe [117].

Theorem 9.4.2, option pricing with a random interest rate, is taken from Geman,
El Karoui, and Rochet [70]. It traces back at least to Geman [69] and Jamshidian
[94], who observed that the forward price of an asset is its price when denominated
in the numéraire of the zero-coupon bond maturing at the delivery date. Even earlier,
Merton [122] proposed hedging European options by using a bond maturing on the
option expiration date.

9.7 Exercises

Exercise 9.1.

This exercise provides an alternate proof of the main assertion of Theorem 9.2.2.

(i) Use Lemma 5.2.2 to prove Remark 9.2.5.

(ii) Let S(t) and N(t) be prices of two assets, denominated in a common currency,
and assume N(t) is always strictly positive. Let P̃ be the risk-neutral measure
under which the discounted asset prices D(t)S(t) and D(t)N(t) are martingales.
Apply Remark 9.2.5 to show that S(N)(t) = S(t)

N(t) is a martingale under P̃(N)

defined by (9.2.6).

Exercise 9.2 (Portfolios under change of numéraire).

Consider two assets with prices S(t) and N(t) given by

S(t) = S(0) exp

{
σW̃ (t) +

(
r − 1

2
σ2

)
t

}
,

N(t) = N(0) exp

{
νW̃ (t) +

(
r − 1

2
ν2

)
t

}
,

where W̃ (t) is a one-dimensional Brownian motion under the risk-neutral measure P̃
and the volatilities σ > 0 and ν > 0 are constant, as is the interest rate r. We define a
third asset, the money market account, whose price per share at time t is M(t) = ert.
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Let us now denominate prices in terms of the numéraire N , so that the redenomi-
nated first asset price is

Ŝ(t) =
S(t)

N(t)

and the redenominated money market account price is

M̂(t) =
M(t)

N(t)
.

According to Theorem 9.2.2, dŜ(t) = (σ − ν)Ŝ(t)dŴ (t), where Ŵ (t) = W̃ (t)− νt.

(i) Compute the differential of 1
N(t)

(ii) Compute the differential of M̂(t), expressing it in terms of dŴ (t). Consider a
portfolio that at each time t holds ∆(t) shares of the first asset and finances this
by investing in or borrowing from the money market. According to the usual
formula, the differential of the value X(t) of this portfolio is

dX(t) = ∆(t)dS(t) + r
(
X(t)−∆(t)S(t)

)
dt.

We define
Γ(t) =

X(t)−∆(t)S(t)

M(t)

to be the number of shares of money market account held by this portfolio at
time t and can then rewrite the differential of X(t) as

dX(t) = ∆(t)dS(t) + Γ(t)dM(t). (9.7.1)

Note also that by the definition of Γ(t), we have

X(t) = ∆(t)S(t) + Γ(t)M(t). (9.7.2)

We redenominate the portfolio value, defining

X̂(t) =
X(t)

N(t)
, (9.7.3)

so that (dividing (9.7.2) by N(t)) we have

X̂(t) = ∆(t)Ŝ(t) + Γ(t)M̂(t). (9.7.4)

(iii) Use stochastic calculus to show that

dX̂(t) = ∆(t)dŜ(t) + Γ(t)dM̂(t).

This equation is the counterpart in the new numéraire of equation (9.7.1) and
says that the change in X̂(t) is solely due to changes in the prices of the assets
held by the portfolio. (Hint: Start from equation (9.7.3) and use (9.7.1) and
(9.7.4) along the way.)

Exercise 9.3 (Change in volatility caused by change of numéraire).
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Let S(t) and N(t) be the prices of two assets, denominated in a common currency,
and let σ and ν denote their volatilities, which we assume are constant. We assume
also that the interest rate r is constant. Then

dS(t) = rS(t)dt + σS(t)dW̃1(t),

dN(t) = rN(t)dt + νN(t)dW̃3(t),

where W̃1(t) and W̃3(t) are Brownian motions under the risk-neutral measure P̃. We
assume these Brownian motions are correlated, with dW̃1(t)dW̃3(t) = ρdt for some
constant ρ.

(i) Show that S(N)(t) = S(t)
N(t) has volatility γ =

√
σ2 − 2ρσν + ν2. In other words,

show that there exists a Brownian motion W̃4 under P̃ such that

dS(N)(t)

S(N)(t)
= (Something)dt + γdW̃4(t).

(ii) Show how to construct a Brownian motion W̃2(t) under P̃ that is independent of
W̃1(t) such that dN(t) may be written as

dN(t) = rN(t)dt + νN(t)
[
ρdW̃1(t) +

√
1− ρ2dW̃2(t)

]
.

(iii) Using Theorem 9.2.2, determine the volatility vector of S(N)(t). In other words,
find a vector (v1, v2) such that

dS(N)(t) = S(N)(t)
[
v1dW̃

(N)
1 (t) + v2dW̃

(N)
2 (t)

]
,

where W̃1(t) and W̃2(t) are independent Brownian motions under P̃(N). Show
that √

v2
1 + v2

2 =
√

σ2 − 2ρσν + ν2.

Exercise 9.4.

From the differential formulas (9.3.14) and (9.3.15) for the stock and discounted
exchange rate in terms of the Brownian motions under the domestic risk-neutral mea-
sure, derive the differential formulas (9.3.22) and (9.3.23) for the redenominated
money market account and stock discounted at the foreign interest rate and written
in terms of the Brownian motions under the foreign risk-neutral measure.

Exercise 9.5 (Quanto option).

A quanto option pays off in one currency the price in another currency of an
underlying asset without taking the currency conversion into account. For example,
a quanto call on a British asset struck at $25 would pay $5 if the price of the asset
upon expiration of the option is £30. To compute the payoff of the option, the price
30 is treated as if it were dollars, even though it is pounds sterling.

In this problem we consider a quanto option in the foreign exchange model of
Section 9.3. We take the domestic and foreign interest rates to be constants r and
rf , respectively, and we assume that σ1 > 0, σ2 > 0, and ρ ∈ (−1, 1) are likewise
constant.



9.7 Exercises 371

(i) From (9.3.14), show that

S(t) = S(0) exp

{
σ1W̃1(t) +

(
r − 1

2
σ2

1

)
t

}
.

(ii) From (9.3.16), show that

Q(t) = Q(0) exp

{
σ2ρW̃1(t) + σ2

√
1− ρ2W̃2(t) +

(
r − rf − 1

2
σ2

2

)
t

}
.

(iii) Show that
S(t)

Q(t)
=

S(0)

Q(0)
exp

{
σ4W̃4(t) +

(
r − a− 1

2
σ2

4

)
t

}
,

where

σ4 =
√

σ2
1 − 2ρσ1σ2 + σ2

2,

a = r − rf + ρσ1σ2 − σ2
2,

and

W̃4(t) =
σ1 − σ2ρ

σ4
W̃1(t)− σ2

√
1− ρ2

σ4
W̃2(t)

is a Brownian motion,

(iv) Consider a quanto call that pays off
(

S(T )

Q(T )
−K

)+

units of domestic currency at time T . (Note that S(T )
Q(T ) is denominated in units

of foreign currency, but in this payoff it is treated as if it is a number of units of
domestic currency.) Show that if at time t ∈ [0, T ] we have S(t)

Q(t) = x, then the
price of the quanto call at this time is

q(t, x) = xe−aτN
(
d+(τ, x)

)− e−rτKN
(
d−(τ, x)

)
,

where τ = T − t and

d±(τ, x) =
1

σ4
√

τ

[
log

x

K
+

(
r − a± 1

2
σ2

4

)
τ

]
.

(Hint: Argue that this is a case of formula (5.5.12).)

Exercise 9.6.

Verify equation (9.4.16),

ForS(t, T )dN
(
d+(t)

)
+ dForS(t, T )dN

(
d+(t)

)−KdN
(
d−(t)

)
= 0,

in the following steps.

(i) Use (9.4.10) to show that

d−(t) = d+(t)− σ
√

T − t.
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(ii) Use (9.4.10) to show that

d2
+(t)− d2

−(t) = 2 log
ForS(t, T )

K
.

(iii) Use (ii) to show that

ForS(t, T )e−d2
+(t)/2 −Ke−d2

−(t)/2 = 0.

(iv) Use (9.4.8) and the Itô-Doeblin formula to show that

dd+(t) =
1

2σ(T − t)3/2
log

ForS(t, T )

K
dt− 3σ

4
√

T − t
dt +

1√
T − t

dW̃

(v) Use (i) to show that

dd−(t) = dd+(t) +
σ

2
√

T − t
dt.

(vi) Use (iv) and (v) to show that

dd+(t)dd+(t) = dd−(t)dd−(t) =
dt

T − t
.

(vii) Use the Itô-Doeblin formula to show that

dN
(
d+(t)

)
=

1√
2π

e−d2
+(t)/2dd+(t)− d+(t)

2(T − t)
√

2π
e−d2

+(t)/2dt.

(viii) Use the Itô-Doeblin formula, (v), (i), and (vi) to show that

dN
(
d−(t)

)
=

1√
2π

e−d2
−(t)/2dd+(t)+

σ√
2π(T − t)

e−d2
−(t)/2dt− d+(t)

2(T − t)
√

2π
e−d2

−(t)/2dt.

(ix) Use (9.4.8), (vii), and (iv) to show that

dForS(t, T )dN
(
d+(t)

)
=

σForS(t, T )√
2π(T − t)

e−d2
+(t)/2dt.

(x) Now prove (9.4.16).



Chapter 10

Term-Structure Models

10.1 Introduction

Real markets do not have a single interest rate. Instead, they have bonds of different
maturities, some paying coupons and others not paying coupons. From these bonds,
yields to different maturities can be implied. More specifically, let 0 = T0 < T1 <

T2 < · · · < Tn be a given set of dates, and let B(0, Tj) denote the price at time zero
of a zero-coupon bond paying 1 at maturity Tj . Consider a coupon-paying bond that
makes fixed payments C1, C2, . . . , Cj at dates T1, T2, . . . , Tj , respectively. Each of the
numbers C1, C2, . . . , Cj−1 represents a coupon (interest payment), and Cj represents
the interest plus principal paid at the maturity Tj of the bond. The price of this bond
at time zero can be decomposed as

i∑

j=i

CiB(0, Ti). (10.1.1)

On the other hand, if one is given the price of a coupon-paying bond of each maturity
T1, T2, . . . , Tn, then using (10.1.1) one can solve recursively for B(0, T1), . . . , B(0, Tn)

by first observing that B(0, T1) is the price of the T1-maturity bond divided by the
payment it will make at T1, then using this value of B(0, T1) and the price of the
T2-maturity bond to solve for B(0, T2), and continuing in this manner. This method
of determining zero-coupon bond prices from coupon-paying bond prices is called
bootstrapping.

In any event, from market data one can ultimately determine prices of zero- coupon
bonds for a number of different maturity dates. Each of these bonds has a yield spe-
cific to its maturity, where yield is defined to be the constant continuously compound-
ing interest rate over the lifetime of the bond that is consistent with its price:

price of zero-coupon bond = face value× e−yield × time to maturity.

The face value of a zero-coupon bond is the amount it promises to pay upon maturity.
The formula above implies that capital equal to the price of the bond, invested at a
continuously compounded interest rate equal to the yield, would, over the lifetime
of the bond, result in a final payment of the face value. In this chapter, we shall
normalize zero-coupon bonds by taking the face value to be 1.
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In summary, instead of having a single interest rate, real markets have a yield
curve, which one can regard either as a function of finitely many yields plotted ver-
sus their corresponding maturities or more often as a function of a nonnegative real
variable (time) obtained by interpolation from the finitely many maturity-yield pairs
provided by the market. The interest rate (sometimes called the short rate) is an ide-
alization corresponding to the shortest maturity yield or perhaps the overnight rate
offered by the government, depending on the particular application.

We assume throughout this chapter that the bonds have no risk of default. One
generally regards U.S. government bonds to be nondefaultable.

Models for interest rates have already appeared in this text, most notably in Section
6.5, where the partial differential equation satisfied by zero-coupon bonds in a one-
factor short-rate model was developed and the Hull-White and Cox-Ingersoll-Ross
models were given as examples. In Section 10.2 of this chapter, we extend these
models to permit finitely many factors. These are Markov models in which the state
of the model at each time is a multidimensional vector.

Unlike the models for equities considered heretofore and the Heath-Jarrow-Merton
model considered later, the multifactor models in Section 10.2 do not immediately
provide a mechanism for evolution of the prices of tradeable assets. In the earlier
models, we assume an evolution of the price of a primary asset or the prices of mul-
tiple primary assets under the actual measure and then determine the market prices
of risk that enable us to switch to a risk-neutral measure. In the multifactor models
of Section 10.2, we begin with the evolution of abstract “factors,” and from these
the interest rate is obtained. But the interest rate is not the price of an asset, and
we cannot infer a market price of risk from the interest rate alone. If we also had
prices of some primary assets, say zero-coupon bonds, we could determine market
prices of risk. However, in the models of Section 10.2, the only way to get prices
of zero-coupon bonds is to use the risk-neutral pricing formula, and this cannot be
done until we have a risk-neutral measure. Therefore, we build these models under
the risk-neutral measure from the outset. Zero-coupon bond prices are given by the
risk-neutral pricing formula, which implies that discounted zero-coupon bond prices
are martingales under the risk-neutral measure. This implies in turn that no arbitrage
can be achieved by trading in the zero-coupon bonds and the money market. After
these models are built, they are calibrated to market prices for zero-coupon bonds and
probably also some fixed income derivatives. The actual probability measure and the
market prices of risk never enter the picture.

In contrast to the models of Section 10.2, the Heath-Jarrow-Merton (HJM) model
takes its state at each time to be the forward curve at that time. The forward rate
f(t, T ), which is the state of the HJM model, is the instantaneous rate that can be
locked in at time t for borrowing at time T ≥ t. For fixed t, one calls the function
T 7→ f(t, T ), defined for T ≥ t, the forward rate curve. The HJM model provides
a mechanism for evolving this curve (a “curve” in the variable T ) forward in time
(the variable t). The forward rate curve can be deduced from the zero-coupon bond
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prices, and the zero-coupon bond prices can be deduced from the forward rate curve.
Because zero-coupon bond prices are given directly by the HJM model rather than
indirectly by the risk-neutral pricing formula, one needs to be careful that the model
does not generate prices that admit arbitrage. Hence, HJM is more than a model be-
cause it provides a necessary and sufficient condition for a model driven by Brownian
motion to be free of arbitrage. Every Brownian-motion-driven model must satisfy the
HJM no-arbitrage condition, and to illustrate that point we provide Exercise 10.10 to
verify that the Hull-White and Cox-Ingersoll-Ross models satisfy this condition.

For practical applications, it would be convenient to build a model where the for-
ward rate had a log-normal distribution. Unfortunately, this is not possible. However,
if one instead models the simple interest rate L(t, T ) that one can lock in at time t

for borrowing over the interval T to T + δ, where δ is a positive constant, this prob-
lem can be overcome. We call L(t, T ) forward LIBOR (London interbank offered
rate). The constant δ is typically 0.25 (three-month LIBOR) or 0.50 (six-month LI-
BOR). The model that takes forward LIBOR as its state is often called the forward
LIBOR model, the market model, or the Brace-Gatarek-Musiela (BGM) model. It is
presented in Section 10.4.

10.2 Affine-Yield Models

The one-factor Cox-Ingersoll-Ross (CIR) and Hull-White models appearing in Sec-
tion 6.5 are called affine-yield models because in these models the yield for zero-
coupon bond prices is an affine (linear plus constant) function of the interest rate. In
this section, we develop the two-factor, constant-coefficient versions of these mod-
els. (The constant-coefficient version of the Hull-White model is the Vasicek model.)
Models with three or more factors can be developed along the lines of the two-factor
models of this section.

It turns out that there are essentially three different two-factor affine-yield models,
one in which both factors have constant diffusion terms (and hence are Gaussian
processes, taking negative values with positive probability), one in which both factors
appear under the square root in diffusion terms (and hence must be nonnegative at all
times), and one in which only one factor appears under the square root in the diffusion
terms (and only this factor is nonnegative at all times, whereas the other factor can
become negative). We shall call these the two-factor Vasicek, the two-factor CIR, and
the two-factor mixed term-structure models, respectively. For each of these types of
models, there is a canonical model (i.e., a simplest way of writing the model).

Two-factor affine yield-models appearing in the literature, which often seem to be
more complicated than the canonical models of this section, can always be obtained
from one of the three canonical models by changing variables. It is desirable when
calibrating a model to first change the variables to put the model into a form having
the minimum number of parameters; otherwise, the calibration can be confounded by
the fact that multiple sets of parameters yield the same result. The canonical models
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presented here have the minimum number of parameters.

10.2.1 Two-Factor Vasicek Model

For the two-factor Vasicek model, we let the factors X1(t) and X2(t) be given by the
system of stochastic differential equations

dX1(t) =
(
a1 − b11X1(t)− b12X2(t)

)
dt + σ1dB̃1(t), (10.2.1)

dX2(t) =
(
a2 − b21X1(t)− b22X2(t)

)
dt + σ2dB̃2(t), (10.2.2)

where the processes B̃1(t) and B̃2(t) are Brownian motions under a risk- neutral mea-
sure P̃ with constant correlation ν ∈ (−1, 1) (i.e., dB̃1(t)B̃2(t) = νdt). The constants
σ1 and σ2 are assumed to be strictly positive. We further assume that the matrix

B =




b11 b12

b21 b22




has strictly positive eigenvalues λ1 and λ2. The positivity of these eigenvalues causes
the factors X1(t) and X2(t), as well as the canonical factors Y1(t) and Y2(t) defined
below, to be mean-reverting. Finally, we assume the interest rate is an affine function
of the factors,

R(t) = ε0 + ε1X1(t) + ε2X2(t), (10.2.3)

where ε0, ε1, and ε2 are constants. This is the most general two-factor Vasicek model.

Canonical Form

As presented above, the two-factor Vasicek model is “overparametrized” (i.e., dif-
ferent choices of the parameters ai, bij , σi, and εi can lead to the same distribution
for the process R(t)). To eliminate this overparametrization, we reduce the model
(10.2.1)-(10.2.3) to the canonical two-factor Vasicek model

dY1(t) = −λ1Y1(t)dt + dW̃1(t), (10.2.4)

dY2(t) = −λ21Y1(t)dt− λ2Y2(t)dt + dW̃2(t), (10.2.5)

R(t) = δ0 + δ1Y1(t) + δ2Y2(t), (10.2.6)

where W̃1(t) and W̃2(t) are independent Brownian motions.
The canonical two-factor Vasicek model has six parameters:

λ1 > 0, λ2 > 0, λ21, δ0, δ1, δ2.

The parameters are used to calibrate the model. In practice, one often permits some
of these parameters to be time-varying but nonrandom in order to make the model fit
the initial yield curve; see Exercise 10.3.
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To achieve this reduction, we first transform B to its Jordan canonical form by
choosing a nonsingular matrix

P =




p11 p12

p21 p22




such that

K = PBP−1 =




λ1 0

κ λ2


 .

If λ1 6= λ2, then the columns of P−1 are eigenvectors of B and κ = 0 (i.e., K is
diagonal). If λ1 = λ2, then κ might be zero, but it can also happen that κ 6= 0, in
which case we may choose P so that κ = 1. Using the notation

X(t) =




X1(t)

X2(t)


 , A =




a1

a2


 , Σ =




σ1 0

0 σ2


 , B̃(t) =




B̃1(t)

B̃2(t)


 ,

we may rewrite (10.2.1) and (10.2.2) in vector notation:

dX(t) = Adt−BX(t)dt + ΣdB̃(t).

Multiplying both sides by P and defining X(t) = PX(t), we obtain

dX(t) = PAdt−KX(t)dt + PΣdB̃(t),

which can be written componentwise as

dX1(t) = (p11a1 + p12a2)dt− λ1X1(t)dt + p11σ1dB̃1(t) + p12σ2dB̃2(t), (10.2.7)

dX2(t) = (p21a1 + p22a2)dt− κX1(t)dt− λ2X2(t)dt + p21σ1dB̃1(t) + p22σ2dB̃2(t).

(10.2.8)

Lemma 10.2.1. Under our assumptions that σ1 > 0, σ2 > 0, −1 < ν < 1, and P is
nonsingular, we have

γi = p2
i1σ

2
1 + 2νpi1pi2σ1σ2 + p2

i2σ
2
2, i = 1, 2, (10.2.9)

are strictly positive, and

ρ =
1√
γ1γ2

(
p11p21σ

2
1 + ν(p11p22 + p12p21)σ1σ2 + p12p22σ

2
2

)
(10.2.10)

is in (−1, 1).

Proof. Because ν ∈ (−1, 1), the matrix

N =




1 ν

ν 1






378 Term-Structure Models

has a matrix square root. Indeed, one such square root is

√
N =




a
√

1− a2

√
1− a2 a


 ,

where a = sign(ν)
√

1
2 + 1

2

√
1− ν2. Verification of this uses the equation

2a
√

1− a2 = 2sign(ν)

√
1

2
+

1

2

√
1− ν2 ·

√
1

2
− 1

2

√
1− ν2

= 2sign(ν)

√
1

4
− 1

4
(1− ν2)

= 2sign(ν) · 1

2
|ν| = ν.

The matrices
√

N , Σ, and P ′ are nonsingular, which implies nonsingularity of the
matrix

√
NΣP ′ =




p11σ1a + p12σ2

√
1− a2 p21σ1a + p22σ2

√
1− a2

p11σ1

√
1− a2 + p12σ2a p21σ1

√
1− a2 + p22σ2a


 .

Let c1 be the first column of this matrix and c2 the second column. Because of the
nonsingularity of

√
NΣP ′, these vectors are linearly independent, and hence neither

of them is the zero vector, Therefore,

γi = ‖ci‖2 > 0, i = 1, 2.

For linearly independent vectors, the Cauchy-Schwartz inequality implies

−‖c1‖‖c2‖ < c1 · c2 < ‖c1‖‖c2‖.
This is equivalent to −1 < ρ < 1.

We define

Bi(t) =
1√
γi

(
pi1σ1B̃1(t) + pi2σ2B̃2(t)

)
, i = 1, 2.

The processes B1(t) and B2(t) are continuous martingales starting at zero. Further-
more,

dB1(t)dB1(t) = dB2(t)dB2(t) = dt.

According to Levy’s Theorem, Theorem 4.6.4, B1(t) and B2(t) are Brownian mo-
tions. Furthermore,

dB1(t)dB2(t) = ρdt,

where ρ is denned by (10.2.10). We may rewrite (10.2.7) and (10.2.8) as

dX1(t) = (p11a1 + p12a2)dt− λ1X1(t)dt +
√

γ1dB1(t), (10.2.11)

dX2(t) = (p21a1 + p22a2)dt− κX1(t)dt− λ2X2(t)dt +
√

γ2dB2(t). (10.2.12)
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Setting

X̂1(t) =
1√
γ1

(
X1(t)− p11a1 + p12a2

λ1

)
,

X̂2(t) =
1√
γ2

(
X2(t) +

κ(p11a1 + p12a2)

λ1λ2
− p21a1 + p22a2

λ2

)
,

we may further rewrite (10.2.11) and (10.2.12) as

dX̂1(t) = −λ1X̂1(t)dt + dB1(t), (10.2.13)

dX̂2(t) = −κ

√
γ1

γ2
X̂1(t)dt− λ2X̂2(t)dt + dB2(t). (10.2.14)

As the last step, we define

W̃1(t) = B1(t), W̃2(t) =
1√

1− ρ2

[− ρB1(t) + B2(t)
]
.

Both W̃1(t) and W̃2(t) are continuous martingales, and it is easily verified that

dW̃1(t)dW̃1(t) = dt, dW̃1(t)dW̃2(t) = 0, dW̃2(t)dW̃2(t) = dt.

According to Levy’s Theorem, Theorem 4.6.4, W̃1(t) and W̃2(t) are independent
Brownian motions. Setting

Y1(t) = X̂1(t), Y2(t) = −−ρX̂1(t) + X̂2(t)√
1− ρ2

,

we have

dY2(t) =
1√

1− ρ2

[
−ρdX̂1(t) + dX̂2(t)

]

=
1√

1− ρ2

[(
ρλ1 − κ

√
γ1

γ2

)
X̂1(t)− λ2(t)X̂2(t)

]
dt

+
1√

1− ρ2

[−ρdB1(t) + dB2(t)
]

=
1√

1− ρ2

(
ρλ1 − ρλ2 − κ

√
γ1

γ2

)
Y1(t)dt− λ2Y2(t)dt + dW̃2(t).

We may thus rewrite (10.2.13) and (10.2.14) as

dY1(t) = −λ1Y1(t)dt + dW̃1(t),

dY2(t) = −λ21Y1(t)dt− λ2Y2(t)dt + dW̃2(t),

where

λ21 =
1√

1− ρ2

(
−ρλ1 + ρλ2 + κ

√√
γ1

γ2

)
.

These are the canonical equations (10.2.4) and (10.2.5).
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To obtain (10.2.6), we trace back through the changes of variables:

Y1(t) = X̂1(t)

=
1√
γ1

(
X1(t)− p11a1 + p12a2

λ1

)

=
1√
γ1

(
p11X1(t) + p12X2(t)− p11a1 + p12a2

λ1

)
,

Y2(t) =
1√

1− ρ2

(
−ρX̂1(t) + X̂2(t)

)

= − ρ√
γ1(1− ρ2)

(
X1(t)− p11a1 + p12a2

λ1

)

+
1√

γ2(1− ρ2)

(
X2(t) +

κ(p11a1 + p12a2)

λ1λ2
− p21a1 + p22a2

λ2

)

= − ρ√
γ1(1− ρ2)

(
p11X1(t) + p12X2(t)− p11a1 + p12a2

λ1

)

+
1√

γ2(1− ρ2)

(
p21X1(t) + p22X2(t) +

κ(p11a1 + p12a2)

λ1λ2
− p21a1 + p22a2

λ2

)
.

In vector notation,

Y (t) = Γ
(
PX(t) + V

)
, (10.2.15)

where

Y (t) =




Y1(t)

Y2(t)


 , Γ =




1√
γ1

0

− ρ√
γ1(1−ρ2)

1√
γ2(1−ρ2)


 ,

V =




−p11a1+p12a2

λ1

κ(p11a1+p12a2)
λ1λ2

− p21a1+p22a2

λ2


 .

We solve (10.2.15) for X(t):

X(t) = P−1
(
Γ−1Y (t)− V

)
.

Therefore,

R(t) = ε0 + [ε1 ε2]X(t)

= ε0 + [ε1 ε2]P
−1Γ−1Y (t)− [ε1 ε2]P

−1V

= δ0 + [δ1 δ2]Y (t),

where

δ0 = ε0 − [ε1 ε2]P
−1V, [δ1 δ2] = [ε1 ε2]P

−1Γ−1.

We have obtained (10.2.6).
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Bond Prices

We derive the formula for zero-coupon bond prices in the canonical two-factor Va-
sicek model. According to the risk-neutral pricing formula, the price at time t of a
zero-coupon bond paying 1 at a later time T is

B(t, T ) = Ẽ
[
e−
R T

t
R(u)du

∣∣∣F(t)
]
, 0 ≤ t ≤ T.

Because R(t) given by (10.2.6) is a function of the factors Y1(t) and Y2(t), and the
solution of the system of stochastic differential equations (10.2.4) and (10.2.5) is
Markov, there must be some function f(t, y1, y2) such that

B(t, T ) = f
(
t, Y1(t), Y2(t)

)
. (10.2.16)

The discount factor D(t) = e−
R t

0
R(u)du satisfies dD(t) = −R(t)D(t)dt (see (5.2.18)).

Iterated conditioning implies that the discounted bond price D(t)B(t, T ) is a martin-
gale under P̃. Therefore, the differential of D(t)B(t, T ) has dt term zero. We compute
this differential:

d
(
D(t)B(t, T )

)

= d
(
D(t)f

(
t, Y1(t), Y2(t)

))

= −R(t)D(t)f
(
t, Y1(t), Y2(t)

)
dt + D(t)df

(
t, Y1(t), Y2(t)

)

= D
[
−Rfdt + ftdt + fy1dY1 + fy2dY2

+
1

2
fy1y1dY1dY1 + fy1y2dY1dY2 +

1

2
fy2y2dY2dY2

]
.

(10.2.17)

We use equations (10.2.4)-(10.2.6) to take the next step:

d
(
D(t)B(t, T )

)

= D
[
− (δ0 + δ1Y1 + δ2Y2)f + ft − λ1Y1fy1 − λ21Y1fy2

− λ2Y2fy2 +
1

2
fy1y1 +

1

2
fy2y2

]
dt + D

[
fy1dW̃1 + fy2dW̃2

]
.

Setting the dt term equal to zero, we obtain the partial differential equation

− (δ0 + δ1y1 + δ2y2)f(t, y1, y2) + ft(t, y1, y2)

− λ1y1fy1(t, y1, y2)− λ21y1fy2(t, y1, y2)− λ2y2fy2(t, y1, y2)

+
1

2
fy1y1(t, y1, y2) +

1

2
fy2y2(t, y1, y2) = 0

(10.2.18)

for all t ∈ [0, T ) and all y1 ∈ R, y2 ∈ R. We have also the terminal condition

f(T, y1, y2) = 1 for all y1 ∈ R, y2 ∈ R. (10.2.19)

To solve this equation, we seek a solution of the affine-yield form

f(t, y1, y2) = e−y1C1(T−t)−y2C2(T−t)−A(T−t) (10.2.20)

for some functions C1(τ), C2(τ), and A(τ). Here we define τ = T − t to be the
relative maturity (i.e., the time until maturity). So long as the model parameters do
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not depend on t, zero-coupon bond prices will depend on t and T only through τ . The
terminal condition (10.2.19) implies that

C1(0) = C2(0) = A(0) = 0. (10.2.21)

We compute derivatives, where ′ denotes differentiation with respect to τ . We use the
fact d

dtCi(τ) = C ′
i(τ)· d

dtτ = −C ′
i(τ), i = 1, 2, and the similar equation d

dtA(τ) = −A′(τ)

to obtain

ft =
[
y1C

′
1 + y2C

′
2 + A′

]
f, fy1 = −C1f, fy2 = −C2f,

fy1y1 = C2
1f, fy1y2 = C1C2f, fy2y2 = C2

2f.

Equation (10.2.18) becomes
[
(C ′

1 + λ1C1 + λ21C2 − δ1)y1 + (C ′
2 + λ2C2 − δ2)y2 +

(
A′ +

1

2
C2

1 +
1

2
C2

2 − δ0

)]
f = 0.

(10.2.22)
Because (10.2.22) must hold for all y1 and y2, the term C ′

1 + λ1C1 + λ21C2 − δ1

multiplying y1 must be zero. If it were not, and (10.2.22) held for one value of y1,
then a change in the value of y1 would cause the equation to be violated. Similarly,
the term C ′

2 +λ2C2− δ2 multiplying y2 must be zero, and consequently the remaining
term A′ + 1

2C2
1 + 1

2C2
2 − δ0 must also be zero. This gives us a system of three ordinary

differential equations:

C ′
1(τ) = −λ1C1(τ)− λ21C2(τ) + δ1, (10.2.23)

C ′
2(τ) = −λ2C2(τ) + δ2, (10.2.24)

A′(τ) = −1

2
C2

1(τ)− 1

2
C2

2(τ) + δ0. (10.2.25)

The solution of (10.2.24) satisfying the initial condition C2(0) = 0 (see (10.2.21)) is

C2(τ) =
δ2

λ2
(1− e−λ2τ ). (10.2.26)

We substitute this into (10.2.23) and solve using the initial condition C1(0) = 0. In
particular, (10.2.23) implies

d

dτ

(
eλ1τC1(τ)

)
= eλ1τ

(
λ1C1(τ) + C ′

1(τ)
)

= eλ1τ
(− λ21C2(τ) + δ1

)

= eλ1τ

(
−λ21δ2

λ2
(1− e−λ2τ ) + δ1

)
.

If λ1 6= λ2, integration from 0 to τ yields

C1(τ) =
1

λ1

(
δ1 − λ21δ2

λ2

)
(1− e−λ1τ ) +

λ21δ2

λ2(λ1 − λ2)

(
e−λ2τ − e−λ1τ

)
. (10.2.27)

If λ1 = λ2, we obtain instead

C1(τ) =
1

λ1

(
δ1 − λ21δ2

λ1

)
(1− e−λ1τ ) +

λ21δ2

λ1
τe−λ1τ . (10.2.28)
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Finally, (10.2.25) and the initial condition A(0) = 0 imply

A(τ) =

∫ t

0

[
−1

2
C2

1(u)− 1

2
C2

2(u) + δ0

]
du, (10.2.29)

and this can be obtained in closed form by a lengthy but straightforward computation.

Short Rate and Long Rate

We fix a positive relative maturity τ (say, thirty years) and call the yield at time t

on the zero-coupon bond with relative maturity τ (i.e., the bond maturing at date
t + τ ) the long rate L(t). Once we have a model for evolution of the short rate R(t)

under the risk-neutral measure, then for each t ≥ 0 the price of the (t + τ)-maturity
zero-coupon bond is determined by the risk-neutral pricing formula, and hence the
short-rate model alone determines the long rate. We cannot therefore write down an
arbitrary stochastic differential equation for the long rate. Nonetheless, in any affine-
yield model, the long rate satisfies some stochastic differential equation, and we can
work out this equation.

Consider the canonical two-factor Vasicek model. As we have seen in the previous
discussion, zero-coupon bond prices in this model are of the form

B(t, T ) = e−Y1(t)C1(T−t)−Y2(t)C2(T−t)−A(T−t),

where C1(τ), C2(τ), and A(τ) are given by (10.2.26)-(10.2.29). Thus, the long rate at
time t is

L(t) = −1

τ
log B(t, t + τ) =

1

τ
[C1(τ)Y1(t) + C2(τ)Y2(t) + A(τ)] , (10.2.30)

which is an affine function of the canonical factors Y1(t) and Y2(t) at time t. Because
the canonical factors do not have an economic interpretation, we may wish to use R(t)

and L(t) as the model factors. We now show how to do this, obtaining a two-factor
Vasicek model of the form (10.2.1), (10.2.2), and (10.2.3), where X1(t) is replaced
by R(t) and X2(t) is replaced by L(t).

We begin by writing the formulas (10.2.6) and (10.2.30) in vector notation:



R(t)

L(t)


 =




δ1 δ2

1
τ C1(τ) 1

τ C2(τ)







Y1(t)

Y2(t)


 +




δ0

1
τ A(τ)


 . (10.2.31)

We wish to solve this system for
(
Y1(t), Y2(t)

)
.

Lemma 10.2.2. The matrix

D =




δ1 δ2

1
τ C1(τ) 1

τ C2(τ)




is nonsingular if and only if δ2 6= 0 and

(λ1 − λ2)δ1 + λ21δ2 6= 0. (10.2.32)
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Proof. Consider the function f(x) = 1− e−x − xe−x, for which f(0) = 0 and f ′(x) =

xe−x > 0 for all x > 0. We have f(x) > 0 for all x > 0. Define h(x) = 1
x(1 − e−x).

Since h′(x) = −x−2f(x), which is strictly negative for all x > 0, h(x) is strictly
decreasing on (0,∞).

To examine the nonsingularity of D, we consider first the case λ1 6= λ2. In this
case, (10.2.26) and (10.2.27) imply

det(D) =
1

τ
[δ1C2(τ)− δ2C1(τ)]

=
δ1δ2

λ2τ

(
1− e−λ2τ

)
− δ1δ2

λ1τ

(
1− e−λ1τ

)

+
λ21δ

2
2

(λ1 − λ2)λ1λ2τ

[
(λ1 − λ2)

(
1− e−λ1τ

)
− λ1e

λ2τ + λ1e
λ1τ

]

= δ1δ2

[
1

λ2τ

(
1− e−λ2τ

)
− 1

λ1τ

(
1− e−λ1τ

)]

+
λ21δ

2
2

(λ1 − λ2)λ1λ2τ

[
λ1

(
1− e−λ2τ

)
− λ2

(
1− e−λ1τ

)]

= δ2

(
δ1 +

λ21δ2

(λ1 − λ2)

)[
1

λ2τ

(
1− e−λ2τ

)
− 1

λ1τ

(
1− e−λ1τ

)]

= δ2

(
δ1 +

λ21δ2

(λ1 − λ2)

)
[h(λ2τ)− h(λ1τ)] .

Because λ1 6= λ2 and h is strictly decreasing, h(λ2τ) 6= h(λ1τ). The determinant of D

is nonzero if and only if δ2 6= 0 and (10.2.32) holds.
Next consider the case λ1 = λ2. In this case, (10.2.26) and (10.2.28) imply

det(D) =
1

τ
[δ1C2(τ)− δ2C1(τ)]

=
δ1δ2

λ2τ

(
1− e−λ2τ

)
− δ2

λ2τ

(
δ1 − λ21δ

2

λ1

) (
1− e−λ1τ

)
− λ21δ

2
2

λ1
e−λ1τ

=
λ21δ

2
2

λ2
1τ

f(λ1τ).

Because λ1τ is positive, f(λ1τ) is not zero. In this case, (10.2.32) is equivalent to
δ2 6= 0 and λ21 6= 0. The determinant of D is nonzero if and only if (10.2.32) holds
(in which case δ2 6= 0 and λ21 6= 0).

Under the assumptions of Lemma 10.2.2, we can invert (10.2.31) to obtain




Y1(t)

Y2(t)


 =




δ1 δ2

1
τ C1(τ) 1

τ C2(τ)




−1 





R(t)

L(t)


−




δ0

1
τ A(τ)





 . (10.2.33)

We can compute the differential in (10.2.31) using (10.2.4) and (10.2.5). This leads
to a formula in which Y1(t) and Y2(t) appear on the right-hand side, but we can then
use (10.2.33) to rewrite the right-hand side in terms of R(t), L(t). These steps result
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in the equation



dR(t)

dL(t)


 =




δ1 δ2

1
τ C1(τ) 1

τ C2(τ)







dY1(t)

dY2(t)




=




δ1 δ2

1
τ C1(τ) 1

τ C2(τ)





−




λ1 0

λ21 λ2







Y1(t)

Y2(t)


 dt +




dW̃1(t)

dW̃2(t)







=




δ1 δ2

1
τ C1(τ) 1

τ C2(τ)







λ1 0

λ21 λ2







δ1 δ2

1
τ C1(τ) 1

τ C2(τ)




−1 


δ0

1
τ A(τ)


 dt

−




δ1 δ2

1
τ C1(τ) 1

τ C2(τ)







λ1 0

λ21 λ2







δ1 δ2

1
τ C1(τ) 1

τ C2(τ)




−1 


R(t)

L(t)


 dt

+




δ1 δ2

1
τ C1(τ) 1

τ C2(τ)







dW̃1(t)

dW̃2(t)


 .

This is the vector notation for a pair of equations of the form (10.2.1) and (10.2.2)
for a two-factor Vasicek model for the short rate R(t) and the long rate L(t). The
parameters a1 and a2 appearing in (10.2.1) and (10.2.2) are given by




a1

a2


 =




δ1 δ2

1
τ C1(τ) 1

τ C2(τ)







λ1 0

λ21 λ2







δ1 δ2

1
τ C1(τ) 1

τ C2(τ)




−1 


δ0

1
τ A(τ)


 .

The matrix B is



b11 b12

b21 b22


 =




δ1 δ2

1
τ C1(τ) 1

τ C2(τ)







λ1 0

λ21 λ2







δ1 δ2

1
τ C1(τ) 1

τ C2(τ)




−1

,

and the eigenvalues of B are λ1 > 0, λ2 > 0. With

σ1 =
√

δ2
1 + δ2

2, σ2 =
1

τ

√
C2

1(τ) + C2
2(τ),

the processes

B̃1(t) =
1

σ1

(
δ1W̃1(t) + δ2W̃2(t)

)
,

B̃2(t) =
1

σ2τ

(
C1(τ)W̃1(t) + C2(τ)W̃2(t)

)
,
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are the Brownian motions appearing in (10.2.1) and (10.2.2). Finally, equation (10.2.3)
takes the form

R(t) = 0 + 1 ·R(t) + 0 · L(t)

(i.e., ε0 = ε2 = 0, ε1 = 1).

Gaussian Factor Processes

The canonical two-factor Vasicek model in vector notation is

dY (t) = −ΛY (t) + dW̃ (t), (10.2.34)

where

Y (t) =




Y1(t)

Y2(t)


 , Λ =




λ1 0

λ21 λ2


 , W̃ (t) =




W̃1(t)

W̃2(t)


 .

Recall that λ1 > 0, λ2 > 0. There is a closed-form solution to this matrix differential
equation. To derive this solution, we first form the matrix exponential eΛt defined by

eΛt =
∞∑

n=0

1

n!
(Λt)n,

where (Λt)0 = I, the 2 × 2 identity matrix.

Lemma 10.2.3. If λ1 6= λ2, then

eΛt =




eλ1t 0

λ21

λ1−λ2

(
eλ1t − eλ2t

)
eλ2t


 . (10.2.35)

If λ1 = λ2, then

eΛt =




eλ1t 0

λ21te
λ1t eλ1t


 . (10.2.36)

In either case,
d

dt
eΛt = ΛeΛt = eΛtΛ, (10.2.37)

where the derivative is defined componentwise, and

e−Λt =
(
eΛt

)−1
, (10.2.38)

where e−Λt is obtained by replacing λ1, λ2, and λ21 in the formula for eΛt by −λ1,
−λ2, and −λ21, respectively.
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Proof. We consider first the case λ1 6= λ2. We claim that in this case

(Λt)n =




(λ1t)
n 0

λ21t
n λn

1−λn
2

λ1−λ2
(λ2t)

n


 , n = 0, 1, . . . . (10.2.39)

This equation holds for the base case n = 0: (Λt)0 =




1 0

0 1


. We show by math-

ematical induction that the equation holds in general. Assume (10.2.39) is true for
some value of n. Then

(Λt)n+1 = (Λt)(Λt)n

=




λ1t 0

λ21t λ2t







(λ1t)
n 0

λ21t
n λn

1−λn
2

λ1−λ2
(λ2t)

n




=




(λ1t)
n+1 0

λ21t
n+1

(
λn

1 + λ2
λn

1−λn
2

λ1−λ2

)
(λ2t)

n+1




=




(λ1t)
n+1 0

λ21t
n+1 λn+1

1 −λn+1
2

λ1−λ2
(λ2t)

n+1


 ,

which is (10.2.39) with n replaced by n + 1. Having thus established (10.2.39) for all
values of n, we have

eΛt =
∞∑

n=0

1

n!
(Λt)n

=




∑∞
n=0

1
n!(λ1t)

n 0

λ21

λ1λ2

(∑∞
n=0

1
n!(λ1t)

n −∑∞
n=0

1
n!(λ2t)

n
) ∑∞

n=0
1
n!(λ2t)

n




=




eλ1t 0

λ21

λ1λ2

(
eλ1t − eλ2t

)
eλ2t


 .

This is (10.2.35).
We next consider the case λ1 = λ2. We claim in this case that

(Λt)n =




(λ1t)
n 0

nλ21λ
n−1
1 tn (λ1t)

n


 , n = 1, 2, . . . . (10.2.40)
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This equation holds for the base case n = 0. We again use mathematical induction to
establish the equation for all n. Assume (10.2.40) holds for some value of n. Then

(Λt)n+1 = (Λt)(Λt)n

=




λ1t 0

λ21t λ1t







(λ1t)
n 0

nλ21λ
n−1
1 tn (λ1t)

n




=




(λ1t)
n+1 0

(λ21λ
n
1 + nλ21λ

n
1 ) tn+1 (λ1t)

n+1




=




(λ1t)
n+1 0

(n + 1)λ21λ
n
1 tn+1 (λ1t)

n+1


 ,

which is (10.2.40) with n replaced by n + 1. Having thus established (10.2.40) for all
values of n, we have

eΛt =
∞∑

n=0

1

n!
(Λt)n =




∑∞
n=0

1
n!(λ1t)

n 0

λ21
∑∞

n=0
n
n!λ

n−1
1 tn

∑∞
n=0

1
n!(λ1t)

n


 . (10.2.41)

But

λ21

∞∑

n=0

n

n!
λn−1

1 tn = λ21
d

dλ1

∞∑

n=0

1

n!
(λ1t)

n = λ21
d

dλ1
eλ1t = λ21te

λ1t.

Substituting this into (10.2.41), we obtain (10.2.36).
When λ1 6= λ2, we have

d

dt
eΛt =




λ1e
λ1t 0

λ21

λ1−λ2

(
λ1e

λ1t − λ2e
λ2t

)
λ2e

λ2t




and

e−Λt =




e−λ1t 0

λ21

λ1−λ2

(
e−λ1t − e−λ2t

)
e−λ2t


 .

When λ1 = λ2,

d

dt
eΛt =




λ1e
λ1t 0

λ21(1 + λ1t)e
λ1t λ1e

λ1t
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and

e−Λt =




e−λ1t 0

−λ21te
−λ1t e−λ1t


 .

The verification of (10.2.37) and (10.2.38) can be done by straightforward matrix
multiplications.

We use (10.2.34) to compute

d
(
eΛtY (t)

)
= eΛt

(
ΛY (t)dt + dY (t)

)
= eΛtdW̃ (t).

Integration from 0 to t yields

eΛtY (t) = Y (0) +

∫ t

0
eΛtdW̃ (u).

We solve for

Y (t) = e−ΛtY (0) + e−Λt

∫ t

0
eΛtdW̃ (u)

= e−ΛtY (0) +

∫ t

0
e−Λ(t−u)dW̃ (u).

(10.2.42)

If λ1 6= λ2, equation (10.2.42) may be written componentwise as

Y1(t) = e−λ1tY1(0) +

∫ t

0
e−λ1(t−u)dW̃1(u), (10.2.43)

Y2(t) =
λ21

λ1 − λ2

(
e−λ1t − e−λ2t

)
Y1(0) + e−λ2tY2(0)

+
λ21

λ1 − λ2

∫ t

0

(
e−λ1(t−u) − e−λ2(t−u)

)
dW̃1(u)

+

∫ t

0
e−λ2(t−u)dW̃2(u). (10.2.44)

If λ1 = λ2, then the componentwise form of (10.2.42) is

Y1(t) = e−λ1tY1(0) +

∫ t

0
e−λ1(t−u)dW̃1(u), (10.2.45)

Y2(t) = −λ21te
−λ1tY1(0) + e−λ1tY2(0)

− λ21

∫ t

0
(t− u)e−λ1(t−u)dW̃1(u) +

∫ t

0
e−λ1(t−u)dW̃2(u). (10.2.46)

Being nonrandom quantities plus Itô integrals of nonrandom integrands, the pro-
cesses Y1(t) and Y2(t) are Gaussian, and so R(t) = δ0 + δ1Y1(t) + δ2Y2(t) is normally
distributed. The statistics of Y1(t) and Y2(t) are provided in Exercise 10.1.

10.2.2 Two-Factor CIR Model

In the two-factor Vasicek model, the canonical factors Y1(t) and Y2(t) are jointly
normally distributed. Because these factors are driven by independent Brownian mo-
tions, they are not perfectly correlated and hence, for all t > 0,

R(t) = δ0 + δ1Y1(t) + δ2Y2(t) (10.2.47)
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is a normal random variable with positive variance except in the degenerate case
δ1 = δ2 = 0. In particular, for each t > 0, there is a positive probability that R(t) is
strictly negative.

In the two-factor Cox-Ingersoll-Ross model (CIR) of this subsection, both factors
are guaranteed to be nonnegative at all times almost surely. We again define the
interest rate by (10.2.47) but now assume that

δ0 ≥ 0, δ1 > 0, δ2 > 0. (10.2.48)

We take the initial interest rate R(0) to be nonnegative, and then we have R(t) ≥ 0

for all t ≥ 0 almost surely.

The evolution of the factor processes in the canonical two-factor CIR model is
given by

dY1(t) =
(
µ1 − λ11Y1(t)− λ12Y2(t)

)
dt +

√
Y1(t)dW̃1(t), (10.2.49)

dY2(t) =
(
µ2 − λ21Y1(t)− λ22Y2(t)

)
dt +

√
Y2(t)dW̃2(t). (10.2.50)

In addition to (10.2.48), we assume

µ1 ≥ 0, µ2 ≥ 0, λ11 > 0, λ22 > 0, λ12 ≤ 0, λ21 ≤ 0. (10.2.51)

These conditions guarantee that although the drift term µ1−λ11Y1(t)−λ12Y2(t) can be
negative, it is nonnegative whenever Y1(t) = 0 and Y2(t) ≥ 0. Similarly, the drift term
µ2 − λ21Y1(t) − λ22Y2(t) is nonnegative whenever Y2(t) = 0 and Y1(t) ≥ 0. Starting
with Y1(0) ≥ 0 and Y2(0) ≥ 0, we have Y1(t) ≥ 0 and Y2(t) ≥ 0 for all t ≥ 0 almost
surely.

The Brownian motions W̃1(t) and W̃2(t) in (10.2.49) and (10.2.50) are assumed to
be independent. We do not need this assumption to guarantee nonnegativity of Y1(t)

and Y2(t) but rather to obtain the affine-yield result below; see Remark 10.2.4.

Bond Prices

We derive the formula for zero-coupon bond prices in the canonical two-factor CIR
model. As in the two-factor Vasicek model, the price at time t of a zero-coupon bond
maturing at a later time T must be of the form

B(t, T ) = f
(
t, Y1(t), Y2(t)

)
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for some function f(t, y1, y2). The discounted bond price has differential

d
(
D(t)B(t, T )

)

= d
(
D(t)f

(
t, Y1(t), Y2(t)

))

= −R(t)D(t)f
(
t, Y1(t), Y2(t)

)
dt + D(t)df

(
t, Y1(t), Y2(t)

)

= D
[
−Rfdt + ftdt + fy1dY1 + fy2dY2

+
1

2
fy1y1dY1dY1 + fy1y2dY1dY2 +

1

2
fy2y2dY2dY2

]

= D
[
− (δ0 + δ1Y1 + δ2Y2)f + ft + (µ1 − λ11Y1 − λ12Y2)fy1

+ (µ2 − λ21Y1 − λ22Y2)fy2 +
1

2
Y1fy1y1 +

1

2
Y2fy2y2

]
dt

+ D
[√

Y1fy1dW̃1 +
√

Y2fy2dW̃2

]
.

Setting the dt term equal to zero, we obtain the partial differential equation

−(δ0 + δ1y1 + δ2y2)f(t, y1, y2) + ft(t, y1, y2)

+ (µ1 − λ11y1 − λ12y2)fy1(t, y1, y2) + (µ2 − λ21y1 − λ22y2)fy2(t, y1, y2)

+
1

2
y1fy1y1(t, y1, y2) +

1

2
y2fy2y2(t, y1, y2) = 0

(10.2.52)

for all t ∈ [0, T ) and all y1 ≥ 0, y2 ≥ 0. To solve this equation, we seek a solution of
the affine-yield form

f(t, y1, y2) = e−y1C1(T−t)−y2C2(T−t)−A(T−t) (10.2.53)

for some functions C1(τ), C2(τ), and A(τ), where τ = T − t. The terminal condition

f
(
T, Y1(T ), Y2(T )

)
= B(T, T ) = 1

implies
C1(0) = C2(0) = A(0) = 0. (10.2.54)

With ′ denoting differentiation with respect to τ , we have d
dtCi(τ) = −C ′

i(τ), i = 1, 2,
d
dtA(τ) = −A′(τ), and (10.2.52) becomes

[(
C ′

1 + λ11C1 + λ21C2 +
1

2
C2

1 − δ1

)
y1

+
(
C ′

2 + λ12C1 + λ22C2 +
1

2
C2

2 − δ2

)
y2

+ (A′ − µ1C1 − µ2C2 − δ0)
]
f = 0.

(10.2.55)

Because (10.2.55) must hold for all y1 ≥ 0 and y2 ≥ 0, the term C ′
1 +λ11C1 +λ21C2 +

1
2C2

1−δ1 multiplying y1 must be zero. Similarly, the term C ′
2+λ12C1+λ22C2+

1
2C2

2−δ2

multiplying y2 must be zero, and consequently the remaining term A′−µ1C1−µ2C2−
δ0 must also be zero. This gives us a system of three ordinary differential equations:

C ′
1(τ) = −λ11C1(τ)− λ21C2(τ)− 1

2
C2

1(τ) + δ1, (10.2.56)

C ′
2(τ) = −λ12C1(τ)− λ22C2(τ)− 1

2
C2

2(τ) + δ2, (10.2.57)

A′(τ) = µ1C1(τ) + µ2C2(τ) + δ0. (10.2.58)
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The solution to these equations satisfying the initial condition (10.2.54) can be found
numerically. Solving this system of ordinary differential equations numerically is
simpler than solving the partial differential equation (10.2.52).

Remark 10.2.4. We note that if the Brownian motions W̃1(t) and W̃2(t) in (10.2.49)
and (10.2.50) were correlated with some correlation coefficient ρ 6= 0, then the partial
differential equation (10.2.52) would have the additional term ρ

√
y1y2fy1y2 on the

left-hand side. This term would ruin the argument that led to the system of ordinary
differential equations (10.2.56)-(10.2.58). For this reason, we assume at the outset
that these Brownian motions are independent.

10.2.3 Mixed Model

Both factors in the two-factor CIR model are always nonnegative. In the two-factor
Vasicek model, both factors can become negative. In the two-factor mixed model,
one of the factors is always nonnegative and the other can become negative.

The canonical two-factor mixed model is

dY1(t) =
(
µ− λ1Y1(t)

)
dt +

√
Y1(t)dW̃1(t), (10.2.59)

dY2(t) = −λ2Y2(t)dt + σ21

√
Y1(t)dW̃1(t) +

√
α + βY1(t)dW̃2(t). (10.2.60)

We assume µ ≥ 0, λ1 > 0, λ2 > 0, α ≥ 0, β ≥ 0, and σ21 ∈ R. The Brownian motions
W̃1(t) and W̃2(t) are independent. We assume Y1(0) ≥ 0, and we have Y1(t) ≥ 0 for
all t ≥ 0 almost surely. On the other hand, even if Y2(t) is positive, Y2(t) can take
negative values for t > 0. The interest rate is defined by

R(t) = δ0 + δ1Y1(t) + δ2Y2(t). (10.2.61)

In this model, zero-coupon bond prices have the affine-yield form

B(t, T ) = e−Y1(t)C1(T−t)−Y2(t)C2(T−t)−A(T−t). (10.2.62)

Just as in the two-factor Vasicek model and the two-factor CIR model, the functions
C1(τ), C2(τ), and A(τ) must satisfy the terminal condition

C1(0) = C2(0) = A(0). (10.2.63)

Exercise 10.2 derives the system of ordinary differential equations that determine the
functions C1(τ), C2(τ), and A(τ).

10.3 Heath-Jarrow-Merton Model

The Heath-Jarrow-Merton (HJM) model of this section evolves the whole yield curve
forward in time. There are several possible ways to represent the yield curve, and the
one chosen by the HJM model is in terms of the forward rates that can be locked
in at one time for borrowing at a later time. In this section, we first discuss forward
rates, then write down the HJM model for their evolution, discuss how to guarantee
that the resulting model does not admit arbitrage, and conclude with a procedure for
calibrating the HJM model.
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10.3.1 Forward Rates

Let us fix a time horizon T (say 50 years). All bonds in the following discussion
will mature at or before time T . For 0 ≤ t ≤ T ≤ T , as before, we denote by
B(t, T ) the price at time t of a zero-coupon bond maturing at time T and having face
value 1. We assume this bond bears no risk of default. We assume further that, for
every t and T satisfying 0 ≤ t ≤ T ≤ T , the bond price B(t, T ) is defined. If the
interest rate is strictly positive between times t and T , then B(t, T ) must be strictly
less than one whenever t < T . This is the situation to keep in mind, although some
implementations of the HJM model violate it.

At time t, we can engage in forward investing at the later time T by setting up the
following portfolio. Here δ is a small positive number.

• Take a short position of size 1 in T -maturity bonds. This generates income
B(t, T ).

• Take a long position of size B(t,T )
B(t,T+δ) in (T+δ)-maturity bonds. This costs B(t, T ).

The net cost of setting up this portfolio at time t is zero. At the later time T ,
holding this portfolio requires that we pay 1 to cover the short position in the T -
maturity bond. At the still later time T +δ, we receive B(t,T )

B(t,T+δ) from the long position
in the T +δ-maturity bond. In other words, we have invested 1 at time T and received
more than 1 at time T + δ. The yield that explains the surplus received at time T + δ

is
1

δ
log

B(t, T )

B(t, T + δ)
= − log B(t, T + δ)− log B(t, T )

δ
. (10.3.1)

This is the continuously compounding rate of interest that, applied to the 1 invested at
time T , would return B(t,T )

B(t,T+δ) at time T +δ. If the bond B(t, T +δ) with the longer time
to maturity has the smaller price, as it would if the interest rate is strictly positive,
then the quotient B(t,T )

B(t,T+δ) is strictly greater than 1 and the yield is strictly positive.
Note that the yield in (10.3.1) is F(t)-measurable. Although it is an interest rate

for investing at time T , it can be “locked in” at the earlier time t. In fact, if someone
were to propose any other interest rate for investing (or borrowing) at time T that is
set at the earlier time t, then by accepting this interest rate and setting up the portfolio
described above or its opposite, one could create an arbitrage.

We define the forward rate at time t for investing at time T to be

f(t, T ) = − lim
δ↓0

− log B(t, T + δ)− log B(t, T )

δ

= − ∂

∂T
log B(t, T ).

(10.3.2)

This is the limit of the yield in (10.3.1) as δ ↓ 0 and can thus be regarded as the
instantaneous interest rate at time T that can be locked in at the earlier time t.

If we know f(t, T ) for all values of 0 ≤ t ≤ T ≤ T , we can recover B(t, T ) for all
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values of 0 ≤ t ≤ T ≤ T by the formula
∫ T

t
f(t, v)dv = −[log B(t, T )− log B(t, t)] = − log B(t, T ),

where we have used the fact that B(t, t) = 1. Therefore,

B(t, T ) = exp

{
−

∫ T

t
f(t, v)dv

}
, 0 ≤ t ≤ T ≤ T . (10.3.3)

From bond prices, we can determine forward rates from (10.3.2). From forward
rates, we can determine bond prices from (10.3.3). Therefore, at least theoretically,
it does not appear to matter whether we build a model for forward rates or for bond
prices. In fact, the no-arbitrage condition works out to have a simple form when
we model forward rates. From a practical point of view, forward rates are a more
difficult object to determine from market data because the differentiation in (10.3.2)
is sensitive to small changes in the bond prices. On the other hand, once we have
forward rates, bond prices are easy to determine because the integration in (10.3.3)
is not sensitive to small changes in the forward rates.

The interest rate at time t is

R(t) = f(t, t). (10.3.4)

This is the instantaneous rate we can lock in at time t for borrowing at time t.

10.3.2 Dynamics of Forward Rates and Bond Prices

Assume that f(0, T ), 0 ≤ T ≤ T , is known at time 0. We call this the initial forward
rate curve. In the HJM model, the forward rate at later times t for investing at still
later times T is given by

f(t, T ) = f(0, T ) +

∫ t

0
α(u, T )du +

∫ t

0
σ(u, T )dW (u). (10.3.5)

We may write this in differential form as

df(t, T ) = α(t, T )dt + σ(t, T )dW (t), 0 ≤ t ≤ T. (10.3.6)

Here and elsewhere in this section, d indicates the differential with respect to the
variable t; the variable T is being held constant in (10.3.6).

Here the process W (u) is a Brownian motion under the actual measure P. In
particular, α(t, T ) is the drift of f(t, T ) under the actual measure. The processes
α(t, T ) and σ(t, T ) may be random. For each fixed T , they are adapted processes in
the t variable. To simplify the notation, we assume that the forward rate is driven
by a single Brownian motion. The case when the forward rate is driven by multiple
Brownian motions is addressed in Exercise 10.9.

From (10.3.6), we can work out the dynamics of the bond prices given by (10.3.3).
Note first that because− ∫ T

t f(t, v)dv has a t-variable in two places, its differential has
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two terms. Indeed,

d

(
−

∫ T

t
f(t, v)dv

)
= f(t, t)dt−

∫ T

t
df(t, v)dv.

The first term on the right-hand side is the result of taking the differential with respect
to the lower limit of integration t. The fact that this is the lower limit produces a
minus sign, which cancels the minus sign on the left-hand side. The other term is the
result of taking the differential with respect to the t under the integral sign. Using
(10.3.4) and (10.3.6), we see that

d

(
−

∫ T

t
f(t, v)dv

)
= R(t)dt−

∫ T

t
[α(t, v)dt + σ(t, v)dW (t)]dv.

We next reverse the order of the integration (see Exercise 10.8), writing
∫ T

t
α(t, v)dtdv =

∫ T

t
α(t, v)dvdt = α∗(t, T )dt, (10.3.7)

∫ T

t
σ(t, v)dW (t)dv =

∫ T

t
σ(t, v)dvdW (t) = σ∗(t, T )dW (t), (10.3.8)

where

α∗(t, T ) =

∫ T

t
α(t, v)dv, σ∗(t, T ) =

∫ T

t
σ(t, v)dv. (10.3.9)

In conclusion, we have

d

(
−

∫ T

t
f(t, v)dv

)
= R(t)dt− α∗(t, T )dt− σ∗(t, T )dW (t). (10.3.10)

Let g(x) = ex, so that g′(x) = ex and g′′(x) = ex. According to (10.3.3),

B(t, T ) = g

(
−

∫ T

t
f(t, v)dv

)
.

The Itô-Doeblin formula implies

dB(t, T ) = g′
(
−

∫ T

t
f(t, v)dv

)
d

(
−

∫ T

t
f(t, v)dv

)

+
1

2
g′′

(
−

∫ T

t
f(t, v)dv

)[
d

(
−

∫ T

t
f(t, v)dv

)]2

= B(t, T )[R(t)dt− α∗(t, T )dt− σ∗(t, T )dW (t)] +
1

2
B(t, T )

(
σ∗(t, T )

)2
dt

= B(t, T )

[
R(t)− α∗(t, T ) +

1

2

(
σ∗(t, T )

)2
]

dt− σ∗(t, T )B(t, T )dW (t).

(10.3.11)

10.3.3 No-Arbitrage Condition

The HJM model has a zero-coupon bond with maturity T for every T ∈ [0, T ]. We
need to make sure there is no opportunity for arbitrage by trading in these bonds. The
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First Fundamental Theorem of Asset Pricing, Theorem 5.4.7, says that, in order to
guarantee this, we should seek a probability measure P̃ under which each discounted
bond price

D(t)B(t, T ) = exp

{
−

∫ t

0
R(u)du

}
B(t, T ), 0 ≤ t ≤ T,

is a martingale. Because dD(t) = −R(t)D(t)dt, we have the differential

d
(
D(t)B(t, T )

)

= −R(t)D(t)B(t, T )dt + D(t)dB(t, T )

= D(t)B(t, T )

[(
−α∗(t, T ) +

1

2

(
σ∗(t, T )

)2
)

dt− σ∗(t, T )dW (t)

]
.

(10.3.12)

We want to write the term in square brackets as

−σ∗(t, T )[Θ(t)dt + dW (t)],

and we can then use Girsanov’s Theorem, Theorem 5.2.3, to change to a probability
measure P̃ under which

W̃ (t) =

∫ t

0
Θ(u)du + W (t) (10.3.13)

is a Brownian motion. Using this Brownian motion, we may rewrite (10.3.12) as

d
(
D(t)B(t, T )

)
= −D(t)B(t, T )σ∗(t, T )dW̃ (t). (10.3.14)

It would then follow that D(t)B(t, T ) is a martingale under P̃ (i.e., P̃ would be risk-
neutral).

For the program above to work, we must solve the equation
[(
−α∗(t, T ) +

1

2

(
σ∗(t, T )

)2
)

dt− σ∗(t, T )dW (t)

]
= −σ∗(t, T )[Θ(t)dt + dW (t)]

for Θ(t). In other words, we must find a process Θ(t) satisfying

−α∗(t, T ) +
1

2

(
σ∗(t, T )

)2
= −σ∗(t, T )Θ(t). (10.3.15)

Actually, (10.3.15) represents infinitely many equations, one for each maturity T ∈
(0, T ]. These are the market price of risk equations, and we have one such equation
for each bond (maturity). However, there is only one process Θ(t). This process is
the market price of risk, and we have as many such processes as there are sources of
uncertainty. In this case, there is only one Brownian motion driving the model.

To solve (10.3.15), we recall from (10.3.9) that
∂

∂T
α∗(t, T ) = α(t, T ),

∂

∂T
σ∗(t, T ) = σ(t, T ).

Differentiating (10.3.15) with respect to T , we obtain

−α(t, T ) + σ∗(t, T )σ(t, T ) = −σ(t, T )Θ(t)

or, equivalently,
α(t, T ) = σ(t, T )[σ∗(t, T ) + Θ(t)]. (10.3.16)
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Theorem 10.3.1 (Heath-Jarrow-Merton no-arbitrage condition). A term-structure model
for zero-coupon bond prices of all maturities in (0, T ] and driven by a single Brown-
ian motion does not admit arbitrage if there exists a process Θ(t) such that (10.3.16)
holds for all 0 ≤ t ≤ T ≤ T . Here α(t, T ) and σ(t, T ) are the drift and diffusion,
respectively, of the forward rate (i.e., the processes satisfying (10.3.6)), σ∗(t, T ) =∫ T
t σ(t, v)dv, and Θ(t) is the market price of risk.

Proof. It remains only to check that if Θ(t) solves (10.3.16), then it also satisfies
(10.3.15), for then we can use Girsanov’s Theorem as described above to construct a
risk-neutral measure. The existence of a risk-neutral measure guarantees the absence
of arbitrage.

Suppose Θ(t) solves (10.3.16). We rewrite this equation, replacing T by v:

α(t, v) = σ(t, v)[σ∗(t, v) + Θ(t)].

Integrating with respect to v from v = t to v = T , we obtain

α∗(t, v)
∣∣∣
v=T

v=t
=

1

2

(
σ∗(t, v)

)2
∣∣∣
v=T

v=t
+ σ∗(t, v)Θ(t)

∣∣∣
v=T

v=t
.

But because α∗(t, t) = σ∗(t, t) = 0, this reduces to

α∗(t, T ) =
1

2

(
σ∗(t, T )

)2
+ σ∗(t, T )Θ(t),

which is (10.3.15).

So long as σ(t, T ) is nonzero, we can solve (10.3.16) for Θ(t):

Θ(t) =
α(t, T )

σ(t, T )
− σ∗(t, T ), 0 ≤ t ≤ T. (10.3.17)

This shows that Θ(t) is unique, and hence the risk-neutral measure is unique. In this
case, the Second Fundamental Theorem of Asset Pricing, Theorem 5.4.9, guarantees
that the model is complete (i.e., all interest rate derivatives can be hedged by trading
in zero-coupon bonds).

10.3.4 HJM Under Risk-Neutral Measure

We began with the formula (10.3.5) for the evolution of the forward rate, and the
driving process W (u) appearing in (10.3.5) is a Brownian motion under the actual
measure P. Assuming the model satisfies the HJM no-arbitrage condition (10.3.16),
we may rewrite (10.3.5) as

df(t, T ) = α(t, T )dt + σ(t, T )dW (t)

= σ(t, T )σ∗(t, T )dt + σ(t, T )[Θ(t)dt + dW (t)]

= σ(t, T )σ∗(t, T )dt + σ(t, T )dW̃ (t),

where W̃ (t) is given by (10.3.13). To conclude that there is no arbitrage, we need
the drift of the forward rate under the risk-neutral measure to be σ(t, T )σ∗(t, T ). We
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saw in the proof of Theorem 10.3.1 that the no-arbitrage condition (10.3.16) implies
(10.3.15), and using (10.3.15) we may rewrite the differential of the discounted bond
price (10.3.12) as

d
(
D(t)B(t, T )

)
= −σ∗(t, T )D(t)B(t, T )[Θ(t)dt + dW (t)]

= −σ∗(t, T )D(t)B(t, T )dW̃ (t).

Because d 1
D(t) = R(t)

D(t)dt, the differential of the undiscounted bond price is

dB(t, T ) = d

(
1

D(t)
·D(t)B(t, T )

)

=
R(t)

D(t)
D(t)B(t, T )dt− σ∗(t, T )

1

D(t)
D(t)B(t, T )dW̃ (t)

= R(t)B(t, T )dt− σ∗(t, T )B(t, T )dW̃ (t).

The following theorem summarizes this discussion.

Theorem 10.3.2 (Term-structure evolution under risk-neutral measure). In a term-
structure model satisfying the HJM no-arbitrage condition of Theorem 10.3.1, the
forward rates evolve according to the equation

df(t, T ) = σ(t, T )σ∗(t, T )dt + σ(t, T )dW̃ (t), (10.3.18)

and the zero-coupon bond prices evolve according to the equation

dB(t, T ) = R(t)B(t, T )dt− σ∗(t, T )B(t, T )dW̃ (t), (10.3.19)

where W̃ (t) is a Brownian motion under a risk-neutral measure P̃. Here σ∗(t) =∫ T
t σ(t, v)dv and R(t) = f(t, t) is the interest rate. The discounted bond prices satisfy

d
(
D(t)B(t, T )

)
= −σ∗(t, T )D(t)B(t, T )dW̃ (t), (10.3.20)

where D(t) = e−
R t

0
R(u)du is the discount process. The solution to the stochastic

differential equation (10.3.19) is

B(t, T ) = B(0, T ) exp

{∫ t

0
R(u)du−

∫ t

0
σ∗(u, T )dW̃ (u)− 1

2

∫ T

0

(
σ∗(u, T )

)2
du

}

=
B(0, T )

D(t)
exp

{
−

∫ t

0
σ∗(u, T )dW̃ (u)− 1

2

∫ T

0

(
σ∗(u, T )

)2
du

}
.

(10.3.21)

10.3.5 Relation to Affine-Yield Models

Every term-structure model driven by Brownian motion is an HJM model. In any
such model, there are forward rates. The drift and diffusion of the forward rates must
satisfy the conditions of Theorem 10.3.1 in order for a risk- neutral measure to exist,
which rules out arbitrage. Under these conditions, the formulas of Theorem 10.3.2
describe the evolution of the forward rates and bonds under the risk-neutral measure.
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We illustrate this with the one-factor Hull-White and Cox-Ingersoll-Ross (CIR)
models of Examples 6.5.1 and 6.5.2. For both these models, the interest rate dynam-
ics are of the form

dR(t) = β
(
t, R(t)

)
dt + γ

(
t, R(t)

)
dW̃ (t),

where W̃ (t) is a Brownian motion under a risk-neutral probability measure P̃. In the
case of the Hull-White model,

β(t, r) = a(t)− b(t)r, γ(t, r) = σ(t),

for some nonrandom positive functions a(t), b(t), and σ(t). For the CIR model,

β(t, r) = a− br, γ(t, r) = σ
√

r, (10.3.22)

for some positive constants a, b, and σ. The zero-coupon bond prices are of the form

B(t, T ) = e−R(t)C(t,T )−A(t,T ), (10.3.23)

where C(t, T ) and A(t, T ) are nonrandom functions. In the case of the Hull-White
model, C(t, T ) and A(t, T ) are given by (6.5.10) and (6.5.11), which we repeat here:

C(t, T ) =

∫ T

t
e−
R s

t
b(v)dvds, (10.3.24)

A(t, T ) =

∫ T

t

(
a(s)C(s, T )− 1

2
σ2(s)C2(s, T )

)
ds. (10.3.25)

In the case of the CIR model, C(t, T ) and A(t, T ) are given by (6.5.16) and (6.5.17).
According to (10.3.2), the forward rates are

f(t, T ) = − ∂

∂T
log B(t, T ) = R(t)

∂

∂T
C(t, T ) +

∂

∂T
A(t, T ).

With C ′(t, T ) and A′(t, T ) denoting derivatives with respect to t, we have the forward
rate differential

df(t, T ) =
∂

∂T
C(t, T )dR(t) + R(t)

∂

∂T
C ′(t, T )dt +

∂

∂T
A′(t, T )dt

=

[
∂

∂T
C(t, T )β

(
t, R(t)

)
+ R(t)

∂

∂T
C ′(t, T ) +

∂

∂T
A′(t, T )

]
dt

+
∂

∂T
C(t, T )γ

(
t, R(t)

)
dW̃ (t).

This is an HJM model with

σ(t, T ) =
∂

∂T
C(t, T )γ

(
t, R(t)

)
. (10.3.26)

Since we are working under the risk-neutral measure, Theorem 10.3.2 implies that
the drift term should be σ(t, T )σ∗(t, T ) = σ(t, T )

∫ T
t σ(t, v)dv. In other words, for
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these affine-yield models, the HJM no-arbitrage condition becomes

∂

∂T
C(t, T )β

(
t, R(t)

)
+ R(t)

∂

∂T
C ′(t, T ) +

∂

∂T
A′(t, T )

=

(
∂

∂T
C(t, T )

)
γ
(
t, R(t)

) ∫ T

t

∂

∂v
C(t, v)γ

(
t, R(t)

)
dv

=

(
∂

∂T
C(t, T )

)
γ
(
t, R(t)

)
[C(t, T )− C(t, t)]γ

(
t, R(t)

)

=

(
∂

∂T
C(t, T )

)
C(t, T )γ2

(
t, R(t)

)
.

(10.3.27)

We verify (10.3.27) for the Vasicek model, which is the Hull-White model with
constant a, b, and σ, and we leave the verification for the Hull-White and CIR models
as Exercise 10.10. For the Vasicek model, (10.3.24) and (10.3.25) reduce to

C(t, T ) =
1

b

(
1− e−b(T−t)

)
,

A′(t, T ) = −aC(t, T ) +
1

2
σ2C2(t, T ),

and hence
∂

∂T
C(t, T ) = e−b(T−t),

∂

∂T
A′(t, T ) =

(
σ2

b
− a

)
e−b(T−t) − σ2

a
e−2b(T−t).

Therefore,
σ(t, T ) = σe−b(T−t),

and

σ∗(t, T ) =

∫ T

t
σ(t, u)du = σ

∫ T

t
e−b(T−u)du =

σ

b

(
1− e−b(T−t)

)
.

It follows that
∂

∂T
C(t, T )β

(
t, R(t)

)
+ R(t)

∂

∂T
C ′(t, T ) +

∂

∂T
A′(t, T )

= e−b(T−t)
(
a− bR(t)

)
+ R(t)be−b(T−t) +

(
σ2

b
− a

)
e−b(T−t) − σ2

b
e−2b(T−t)

=
σ2

b

(
e−b(T−t) − e−2b(T−t)

)

= σ(t, T )σ∗(t, T ),

as expected.

10.3.6 Implementation of HJM

To implement an HJM model, we need to know σ(t, T ) for 0 ≤ t ≤ T ≤ T . We can
use historical data to estimate this because the same diffusion process σ(t, T ) appears
in both the stochastic differential equation (10.3.6) driven by the Brownian motion
W (t) under the actual probability measure P and in the stochastic differential equation
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(10.3.18) driven by the Brownian motion W̃ (t) under the risk-neutral measure P̃.
Once we have σ(t, T ), we can compute σ∗(t, T ) =

∫ T
t σ(t, v)dv. This plus the initial

forward curve f(0, T ), 0 ≤ T ≤ T , permits us to determine all the terms appearing
in the formulas in Theorem 10.3.2. In particular, we use the initial forward curve to
compute

R(t) = f(t, t) = f(O, t) +

∫ t

0
σ(u, t)σ∗(u, t)du +

∫ t

0
σ(u, t)dW̃ (u). (10.3.28)

Since all expectations required for pricing interest rate derivatives are computed un-
der P̃, we need only the formulas in Theorem 10.3.2; the market price of risk Θ(t)

and the drift of the forward rate α(t, T ) in (10.3.6) are irrelevant to derivative pricing.
They are relevant, however, if we want to estimate nondiffusion terms from historical
data (e.g., the probability of credit class migration for defaultable bonds) or we want
to compute a quantity such as Value-at-Risk that requires use of the actual measure.

Assume for the moment that σ(t, T ) is of the form

σ(t, T ) = σ̃(T − t) min{M, f(t, T )} (10.3.29)

for some nonrandom function σ̃(τ), τ ≥ 0, and some positive constant M . In (10.3.29),
we need to have the capped forward rate min{M, f(t, T )} on the right-hand side rather
than the forward rate f(t, T ) itself to prevent explosion of the forward rate. This is
discussed in more detail in Subsection 10.4.1. One consequence of this fact is that
forward rates (recall we are working here with continuously compounding forward
rates; see (10.3.2)) cannot be log-normal. This is a statement about forward rates,
not about the HJM model. Section 10.4 discusses how to overcome this feature of
continuously compounding forward rates by building a model for simple forward
rates.

We choose σ̃(T − t) to match historical data. The forward rate evolves according
to the continuous-time model

df(t, T ) = α(t, T )dt + σ̃(T − t) min{M, f(t, T )}dW (t).

Suppose we have observed this forward rate at times t1 < t2 < · · · < tJ < 0 in the
past, and the forward rate we observed at those times was for the relative maturities
τ1 < τ2 < · · · < τK (i.e., we have observed f(tj , tj + τk) for j = 1, . . . , J and k =

1, . . . , K). Suppose further that for some small positive δ we have also observed
f(tj + δ, tj + τk). We assume that δ is sufficiently small that tj + δ < tj+1 for j =

1, . . . , J − 1 and tJ + δ ≤ 0. According to our model,

f(tj + δ, tj + τk)− f(tj , tj + τk)

≈ δα(tj , tj + τk) + σ̃(τk) min{M, f(tj , tj + τk)}
(
W (tj + δ)−W (tj)

)
.

We identify σ̃ by defining

Dj,k =
f(tj + δ, tj + τk)− f(tj , tj + τk)√

δ min{M, f(tj , tj + τk)}
(10.3.30)
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and observing that

Dj,k ≈
√

δα(tj , tj + τk)

min{M, f(tj , tj + τk)}
+ σ̃(τk)

W (tj + δ)−W (tj)√
δ

.

The first term on the right-hand side is small relative to the second term because the
first term contains the factor

√
δ. We define

Xj =
W (tj + δ)−W (tj)√

δ
, j = 1, . . . , J, (10.3.31)

the expression appearing in the second term, which is a standard normal random
variable. We conclude that

Dj,k ≈ σ̃(τk)Xj . (10.3.32)

Observe that not only are X1, . . . , XJ standard normal random variables but are
also independent of one another. The approximation (10.3.32) permits us to regard
D1k, D2k, . . . , DJk as independent observations taken at times t1, t2, . . . , tJ on forward
rates, all with the same relative maturity τk. We compute the empirical covariance

Ck1,k2
=

1

J

J∑

j=1

Dj,k1
Dj,k2

.

The theoretical covariance, computed from the right-hand side of (10.3.32), is

Ẽ
[
σ̃(τk1

)σ̃(τk2
)X2

j

]
= σ̃(τk1

)σ̃(τk2
).

Ideally, we would find σ̃(τ1), σ̃(τ2), . . . , σ̃(τK) so that

Ck1,k2
= σ̃(τk1

)σ̃(τk2
), k1, k2 = 1, 2, . . . , K. (10.3.33)

However, we have K2 equations and only K unknowns. (Actually, for different val-
ues of k1 and k2, the equations Ck1,k2

= σ̃(τk1
)σ̃(τk2

) and Ck2,k1
= σ̃(τk2

)σ̃(τk1
) are

the same. By eliminating these duplicates, one can reduce the system to 1
2K(K + 1)

equations, but this is still more than the number of unknowns if K ≥ 2.)
To determine a best choice of σ̃(τ1), σ̃(τ2), . . . , σ̃(τK), we use principal components

analysis. Set

D =




D1,1 D1,2 · · · D1,K

D2,1 D2,2 · · · D2,K

...
...

...

DJ,1 DJ,2 · · · DJ,K




.

The J rows of D correspond to observation times, and the K columns correspond to
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relative maturities. Then

C =




C1,1 C1,2 · · · C1,K

C2,1 C2,2 · · · C2,K

...
...

...

CK,1 CK,2 · · · CK,K




=
1

J
D′D

is symmetric and positive semidefinite. Every symmetric, positive semidefinite ma-
trix has a principal component decomposition

C = λ1e1e
′
1 + λ2e2e

′
2 + · · ·+ λKeKe′K

where λ1 ≥ λ2 ≥ · · · ≥ λK ≥ 0 are the eigenvalues of C and the column vectors
e1, e2, . . . , eK are the orthogonal eigenvectors, all normalized to have length one. We
want to write

C =




σ̃(τ1)

σ̃(τ2)

...

σ̃(τK)




[
σ̃(τ1), σ̃(τ2), . . . , σ̃(τK)

]
.

However, this cannot be done exactly. The best approximation is



σ̃(τ1)

σ̃(τ2)

...

σ̃(τK)




=
√

λ1e1.

To get a better approximation to C, we can introduce more Brownian motions into
the equation driving the forward rates (see Exercise 10.9). Each of these has its own
σ̃ vector, and these can be chosen to be

√
λ2e2,

√
λ3e3, etc.

So far we have used only historical data. In the final step of the calibration, we
introduce a nonrandom function s(t) into the forward rate evolution under the risk-
neutral measure, writing

df(t, T ) = σ(t, T )σ∗(t, T )dt + s(t)σ̃(T − t) min{M, f(t, T )}dW̃ (t). (10.3.34)

This is our final model. We use the values of σ̃(T − t) estimated from historical data
under the assumption s(t) ≡ 1. We then allow the possibility that s(t) is different
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from 1. We have σ(t, T ) = s(t)σ̃(T − t) min{M, f(t, T )}. Therefore,

σ∗(t, T ) =

∫ T

t
σ(t, v)dv = s(t)

∫ T

t
σ̃(v − t) min{M, f(t, v)}dv. (10.3.35)

We substitute this function into (10.3.34) and evolve the forward rate. Even with
this last-minute introduction of s(t) into the model, the model is free of arbitrage
when σ∗(t, T ) in (10.3.34) is defined by (10.3.35). Typically, one assumes that s(t) is
piecewise constant, and the values of these constants are free parameters that can be
used to get the model to agree with market prices. Recalibrations of the model affect
s(t) only.

10.4 Forward LIBOR Model

In this section, we present the forward LIBOR model, which leads to the Black caplet
formula. This requires us to build a model for LIBOR (London interbank offered rate)
and use the forward measures introduced in Section 9.4. We begin by explaining why
the continuously compounding forward rates of Section 10.3 are inadequate for the
purposes of this section.

10.4.1 The Problem with Forward Rates

We have seen in Theorem 10.3.2 that in an arbitrage-free term-structure model, for-
ward rates must evolve according to (10.3.18),

df(t, T ) = σ(t, T )σ∗(t, T )dt + σ(t, T )dW̃ (t), (10.3.18)

where W̃ is a Brownian motion under a risk-neutral measure P̃. In order to adapt
the Black-Scholes formula for equity options to fixed income markets, and thereby
obtain the Black caplet formula (see Theorem 10.4.2 below), it would be desirable to
build a model in which forward rates are log-normal under a risk-neutral measure. To
do that, we should set σ(t, T ) = σf(t, T ) in (10.3.18), where σ is a positive constant.
However, we would then have

σ∗(T, t) =

∫ T

t
σ(t, v)dv = σ

∫ T

t
f(t, v)dv,

and the dt term in (10.3.18) would be

σ2f(t, T )

∫ T

t
f(t, v)dv. (10.4.1)

Heath, Jarrow, and Merton [83] show that this drift term causes forward rates to
explode. For T near t, the dt term (10.4.1) is approximately equal to σ2(T−t)f2(t, T ),
and the square of the forward rate creates the problem. With the drift term (10.4.1),
equation (10.3.18) is similar to the deterministic ordinary differential equation

f ′(t) = σ2f2(t) (10.4.2)
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with a positive initial condition f(0). The solution to (10.4.2) is

f(t) =
f(0)

1− σ2f(0)t
,

as can easily be verified by computing

f ′(t) =
σ2f2(0)(

1− σ2f(0)t
)2

The function f(t) explodes at time t = 1
σ2f(0) . In fact, when the drift function (10.4.1)

is used in (10.3.18), then (10.3.18) is worse than (10.4.2) because the randomness in
(10.3.18) causes some paths to explode immediately no matter what initial condition
is given. This difficulty with continuously compounding forward rates causes us to
introduce forward LIBOR.

10.4.2 LIBOR and Forward LIBOR

Let 0 ≤ t ≤ T and δ > 0 be given. We recall the discussion in Subsection 10.3.1 of
how at time t one can lock in an interest rate for investing over the interval [T, T + δ]

by taking a short position of size 1 in a T -maturity zero-coupon bond and a long
position of size B(t,T )

B(t,T+δ) in (T + δ)-maturity zero-coupon bonds. This position can
be created at zero cost at time t, it calls for “investment” of 1 at time T to cover
the short position, and it “repays” B(t,T )

B(t,T+δ) at T + δ. The continuously compounding
interest rate that would explain this repayment on the investment of 1 over the time
interval [T, T + δ] is given by (10.3.1). In this section, we study the simple interest
rate that would explain this repayment, and this interest rate L(t, T ) is determined by
the equation

investment× (1 + duration of investment× interest rate) = repayment,

or in symbols:

1 + δL(t, T ) =
B(t, T )

B(t, T + δ)
. (10.4.3)

We solve this equation for L(t, T ):

L(t, T ) =
B(t, T )−B(t, T + δ)

δB(t, T + δ)
. (10.4.4)

When 0 ≤ t < T , we call L(t, T ) forward LIBOR. When t = T , we call it spot LIBOR,
or simply LIBOR, set at time T . The positive number δ is called the tenor of the
LIBOR, and it is usually either 0.25 years or 0.50 years.

10.4.3 Pricing a Backset LIBOR Contract

An interest rate swap is an agreement between two parties A and B that A will make
fixed interest rate payments on some “notional amount” to B at regularly spaced dates
and B will make variable interest rate payments on the same notional amount on these
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same dates. The variable rate is often backset LIBOR, defined on one payment date to
be the LIBOR set on the previous payment date. The no-arbitrage price of a payment
of backset LIBOR on a notional amount of 1 is given by the following theorem.

Theorem 10.4.1 (Price of backset LIBOR). Let 0 ≤ t ≤ T and δ > 0 be given. The
no-arbitrage price at time t of a contract that pays L(T, T ) at time T + δ is

S(t) =





B(t, T + δ)L(t, T ), 0 ≤ t ≤ T,

B(t, T + δ)L(T, T ), T ≤ t ≤ T + δ.

(10.4.5)

Proof. There are two cases to consider. In the first case, T ≤ t ≤ T + δ, LIBOR has
been set at L(T, T ) and is known at time t. The value at time t of a contract that pays
1 at time T + δ is B(t, T + δ), so the value at time t of a contract that pays L(T, T ) at
time T + δ is B(t, T + δ)L(T, T ).

In the second case, 0 ≤ t ≤ T , we note from (10.4.4) that

B(t, T + δ)L(t, T ) =
1

δ

[
B(t, T )−B(t, T + δ)

]
.

We must show that the right-hand side is the value at time t of the backset LIBOR
contract. To do this, suppose at time t we have 1

δ

[
B(t, T ) − B(t, T + δ)

]
, and we use

this capital to set up a portfolio that is:

• long 1
δ bonds maturing at T ;

• short 1
δ bonds maturing at T + δ.

At time T , we receive 1
δ from the long position and use it to buy 1

δB(T,T+δ) bonds
maturing at time T + δ, so that we now have a position of 1

δB(T,T+δ) − 1
δ in (T + δ)-

maturity bonds. At time T + δ, this portfolio pays

1

δB(T, T + δ)
− 1

δ
=

B(T, T )−B(T, T + δ)

δB(T, T + δ)
= L(T, T ).

We conclude that the capital 1
δ

[
B(t, T ) − B(t, T + δ)

]
we used at time t to set up the

portfolio must be the value at time t of the payment L(T, T ) at time T + δ.

We have proved Theorem 10.4.1 by a no-arbitrage argument. One can also obtain
(10.4.5) from the risk-neutral pricing formula. For the case t = 0, this is Exercise
10.12.

10.4.4 Black Caplet Formula

A common fixed income derivative security is an interest rate cap, a contract that
pays the difference between a variable interest rate applied to a principal and a fixed
interest rate (a cap) applied to the same principal whenever the variable interest rate
exceeds the fixed rate. More specifically, let the tenor δ, the principal (also called
the notional amount) P , and the cap K be fixed positive numbers. An interest rate



10.4 Forward LIBOR Model 407

cap pays
(
δPL(δj, δj)−K

)+ at time δ(j + 1) for j = 0, . . . , n. To determine the price
at time zero of the cap, it suffices to price one of the payments, a so-called interest
rate caplet, and then sum these prices over the payments. We show here how to do
this and obtain the Black caplet formula. We also note that each of these payments is
of the form δP

(
L(δj, δj) −K ′)+, where K ′ = K

δP . Thus, it suffices to determine the
time-zero price of the payment

(
L(T, T ) −K

)+ at time T + δ for an arbitrary T and
K > 0.

Consider the contract that pays L(T, T ) at time T + δ whose price S(t) at earlier
times is given by Theorem 10.4.1. Suppose we use the zero-coupon bond B(t, T + δ)

as the numéraire. In terms of this numéraire, the price of the contract paying backset
LIBOR is

S(t)

B(t, T + δ)
=





L(t, T ), 0 ≤ t ≤ T,

L(T, T ), T ≤ t ≤ T + δ.

(10.4.6)

Recalling Definition 5.6.1 and Theorem 5.6.2, at least for 0 ≤ t ≤ T , we see that
forward LIBOR L(t, T ) is the (T + δ)-forward price of the contract paying backset
LIBOR L(T, T ) at time T + δ.

If we build a term-structure model driven by a single Brownian motion under the
actual probability measure P and satisfying the Heath-Jarrow-Merton no-arbitrage
condition of Theorem 10.3.1, then there is a Brownian motion W̃ (t) under a risk-
neutral probability measure P̃ such that forward rates are given by (10.3.18) and bond
prices by (10.3.19). Theorem 9.2.2 implies that the risk-neutral measure correspond-
ing to numéraire B(t, T + δ) is given by

P̃T+δ(A) =
1

B(0, T + δ)

∫

A
D(T + δ)dP̃ for all A ∈ F (10.4.7)

and

W̃ T+δ(t) =

∫ t

0
σ∗(u, T + δ)du + W̃ (t) (10.4.8)

is a Brownian motion under P̃T+δ. We call P̃T+δ the (T + δ)-forward measure.
Theorem 9.2.2 implies that S(t)

B(t,T+δ) is a martingale under P̃T+δ. (See the discus-
sion in Subsections 9.4.1 and 9.4.2.) According to the Martingale Representation
Theorem (see Corollary 5.3.2), there must exist some process γ(t, T ), a process in
t ∈ [0, T ] for each fixed T , such that

dL(t, T ) = γ(t, T )L(t, T )dW̃ T+δ(t), 0 ≤ t ≤ T. (10.4.9)

We relate this process to the zero-coupon bond volatilities in Subsection 10.4.5. The
point of (10.4.9) is that there is no dt term, which was the term causing the problem
with forward rates in Subsection 10.4.1. The dt term has been removed by changing
to the (T + δ)-forward measure, under which L(t, T ) is a martingale.

The forward LIBOR model is constructed so that γ(t, T ), defined for 0 ≤ t ≤ T ≤
T , is nonrandom. When γ(t, T ) is nonrandom, forward LIBOR L(t, T ) will be log-
normal under the forward measure P̃T+δ. This leads to the following pricing result.



408 Term-Structure Models

Theorem 10.4.2 (Black caplet formula). Consider a caplet that pays
(
L(T, T )−K

)+

at time T + δ, where K is some nonnegative constant. Assume forward LIBOR is
given by (10.4.9) and γ(t, T ) is nonrandom. Then the price of the caplet at time zero
is

B(0, T + δ)
[
L(0, T )N(d+)−KN(d−)

]
, (10.4.10)

where

d± =
1√∫ T

0 γ2(t, T )dt

[
log

L(0, T )

K
± 1

2

∫ T

0
γ2(t, T )dt

]
. (10.4.11)

Proof. According to the risk-neutral pricing formula, the price of the caplet at time
zero is the discounted risk-neutral (under P̃) expected value of the payoff, which is

Ẽ
[
D(T + δ)

(
L(T, T )−K

)+
]

= B(0, T + δ)Ẽ
[

D(T + δ)

B(0, T + δ)

(
L(T, T )−K

)+
]

= B(0, T + δ)ẼT+δ
(
L(T, T )−K

)+
.

(10.4.12)

The solution to the stochastic differential equation (10.4.9) is

L(T, T ) = L(0, T ) exp

{∫ T

0
γ(t, T )dW̃ T+δ(t)− 1

2

∫ t

0
γ2(t, T )dt

}
.

Let us define γ̄(T ) =

√
1
T

∫ T
0 γ2(t, T )dt. According to Example 4.7.3, the Itô integral∫ T

0 γ(t, T )dW̃ T+δ(t) is a normal random variable under P̃T+δ with mean zero and vari-
ance γ̄2(T )T , we may thus write it as−γ̄(T )

√
TX, where X = − 1

γ̄(T )
√

T

∫ T
0 γ(t, T )dW̃ T+δ(t)

is a standard normal random variable under P̃T+δ. In this notation,

L(T, T ) = L(0, T )e−γ̄(T )
√

TX− 1
2
γ̄2(T )T ,

and

ẼT+δ
(
L(T, T )−K

)+
= ẼT+δ

[(
L(0, T )e−γ̄(T )

√
TX− 1

2
γ̄2(T )T −K

)+
]

.

This is the same computation as in (5.2.35), which led to (5.2.36). Therefore,

ẼT+δ
(
L(T, T )−K

)+
= BS

(
T, L(0, T ); K, 0, γ̄(T )

)

= L(0, T )N(d+)−KN(d−),

and the risk-neutral price of the caplet (10.4.12) is (10.4.10).

10.4.5 Forward LIBOR and Zero-Coupon Bond Volatilities

Recall that forward LIBOR is determined by the equation (10.4.3), which we can
rewrite as

L(t, T ) +
1

δ
=

B(t, T )

δB(t, T + δ)
.
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We work out the evolution of L(t, T ) under the forward measure PT+δ. According to
Theorem 10.3.2,

D(t)B(t, T ) = B(0, T ) exp

{
−

∫ t

0
σ∗(u, T )dW̃ (u)− 1

2

∫ t

0

(
σ∗(u, T )

)2
du

}
,

D(t)B(t, T + δ) = B(0, T + δ) exp

{
−

∫ t

0
σ∗(u, T + δ)dW̃ (u)− 1

2

∫ t

0

(
σ∗(u, T + δ)

)2
du

}
.

This implies

L(t, T ) +
1

δ
=

B(t, T )

δB(t, T + δ)

=
B(0, T )

δB(0, T + δ)
exp

{∫ t

0
[σ∗(u, T + δ)− σ∗(u, T )] dW̃ (u)

+
1

2

∫ t

0

[(
σ∗(u, T + δ)

)2 − (
σ∗(u, T )

)2
]
du

}
.

The Itô-Doeblin formula implies

d(t, T ) =

(
L(t, T ) +

1

δ

) {
[σ∗(t, T + δ)− σ∗(t, T )] dW̃ (t)

+
1

2

[(
σ∗(t, T + δ)

)2 − (
σ∗(t, T )

)2
]
dt

+
1

2
[σ∗(t, T + δ)− σ∗(t, T )]2 dW̃ (t)dW̃ (t)

}

=

(
L(t, T ) +

1

δ

) {
[σ∗(t, T + δ)− σ∗(t, T )] dW̃ (t)

+
1

2

[(
σ∗(t, T + δ)

)2 − (
σ∗(t, T )

)2
+

(
σ∗(t, T + δ)

)2

− 2σ∗(t, T + δ)σ∗(t, T ) +
(
σ∗(t, T )

)2]}

=

(
L(t, T ) +

1

δ

) {
[σ∗(t, T + δ)− σ∗(t, T )] dW̃ (t)

+ [
(
σ∗(t, T + δ)

)2 − σ∗(t, T + δ)σ∗(t, T )]dt
}

=

(
L(t, T ) +

1

δ

)
[σ∗(t, T + δ)− σ∗(t, T )]

[
σ∗(t, T + δ)dt + dW̃ (t)

]
.

From (10.4.8), we have

dW̃ T+δ(t) = σ∗(t, T + δ)dt + dW̃ (t). (10.4.13)

Therefore,

dL(t, T ) =
1

δ

(
1 + δL(t, T )

)
[σ∗(t, T + δ)− σ∗(t, T )] dW̃ T+δ(t). (10.4.14)

Comparing this with (10.4.9), we conclude that the forward LIBOR volatility γ(t, T )

of (10.4.9) and the (T + δ)- and T -maturity zero-coupon bond volatilities σ∗(t, T + δ)

and σ∗(t, T ) are related by the formula

γ(t, T ) =
1 + δL(t, T )

δL(t, T )
[σ∗(t, T + δ)− σ∗(t, T )] . (10.4.15)
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10.4.6 A Forward LIBOR Term-Structure Model

The Black caplet formula of Theorem 10.4.2 is used to calibrate the forward LI-
BOR model. However, this calibration does not determine all the parameters needed
to have a full term-structure model. In this section, we discuss the calibration and
display some of the choices left open by it. We begin by collecting the equations
appearing earlier in this section that we need for this subsection:

1 + δL(t, T ) =
B(t, T )

B(t, T + δ)
, 0 ≤ t ≤ T ≤ T − δ,

P̃T+δ(A) =
1

B(0, T + δ)

∫

A
D(T + δ)dP̃ for all A ∈ F , 0 ≤ T ≤ T − δ,

dW̃ T+δ(t) = σ∗(t, T + δ)dt + dW̃ (t), 0 ≤ t ≤ T ≤ T − δ,

dL(t, T ) = γ(t, T )L(t, T )dW̃ T+δ(t), 0 ≤ t ≤ T ≤ T − δ,

γ(t, T ) =
1 + δL(t, T )

δL(t, T )
[σ∗(t, T + δ)− σ∗(t, T )] , 0 ≤ t ≤ T ≤ T − δ.

Suppose now, at time zero, that market data allow us to determine caplet prices
for maturity dates Tj = jδ for j = 1, . . . , n. We can then imply the volatilities γ(Tj),
j = 1, . . . , n, appearing in the proof of Theorem 10.4.2. We wish to build a term
structure model consistent with these data. We begin by setting T in the equations
above equal to (n + 1)δ.

• We choose nonrandom nonnegative functions

γ(t, Tj), 0 ≤ t ≤ Tj , j = 1, . . . , n,

so that
√

1
Tj

∫ Tj

0 γ2(t, Tj)dt = γ(Tj).

For example, we could take γ(t, Tj) = γ(Tj) for 0 ≤ t ≤ Tj .
With these volatility functions γ(t, Tj), we can evolve forward LIBORs by equa-

tion (10.4.9), at least for T = Tj , j = 1, . . . , n, and the forward LIBORs we obtain will
agree with the market cap prices. However, (10.4.9) with T = Tj gives us a formula
for forward LIBOR L(t, Tj) in terms of the forward Brownian motion W̃ Tj+1(t), and
these are different for different values of j. Before we use (10.4.9) to evolve forward
LIBORs, we must determine the relationship among these different equations.

Construction of Forward LIBOR Processes

Observe from (10.4.8) that

dW̃ Tj(t) = σ∗(t, Tj)dt + dW̃ (t), 0 ≤ t ≤ Tj .

Similarly,
dW̃ Tj+1(t) = σ∗(t, Tj+1)dt + dW̃ (t), 0 ≤ t ≤ Tj+1.
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Subtracting these equations, we obtain

dW̃ Tj(t) = [σ∗(t, Tj)− σ∗(t, Tj+1)]dt + dW̃ Tj+1(t)

= −δγ(t, Tj)L(t, Tj)

1 + δL(t, Tj)
dt + dW̃ Tj+1(t), 0 ≤ t ≤ Tj ,

(10.4.16)

where we have used (10.4.15) for the second equality. Setting j = n in (10.4.16), we
have

dW̃ Tn(t) = −δγ(t, Tn)L(t, Tn)

1 + δL(t, Tn)
dt + dW̃ Tn+1(t), 0 ≤ t ≤ Tn. (10.4.17)

Setting j = n− 1 in (10.4.16) and using (10.4.17), we obtain

dW̃ Tn−1(t) = −δγ(t, Tn−1)L(t, Tn−1)

1 + δL(t, Tn−1)
dt + dW̃ Tn(t)

= −δγ(t, Tn−1)L(t, Tn−1)

1 + δL(t, Tn−1)
dt− δγ(t, Tn)L(t, Tn)

1 + δL(t, Tn)
dt + dW̃ Tn+1(t), 0 ≤ t ≤ Tn−1.

Repeating this process, we conclude that

dW̃ Tj+1(t) = −
n∑

i=j+1

δγ(t, Ti)L(t, Ti)

1 + δL(t, Ti)
dt + dW̃ Tn+1(t), 0 ≤ t ≤ Tj+1. (10.4.18)

Equation (10.4.18) holds for j = 0, . . . , n, provided we interpret
∑n

i=n+1 to be zero.
We return to (10.4.9), using (10.4.18) to write

dL(t, Tj) = γ(t, Tj)L(t, Tj)


−

n∑

i=j+1

δγ(t, Ti)L(t, Ti)

1 + δL(t, Ti)
dt + dW̃ Tn+1(t)


 ,

0 ≤ t ≤ Tj , j = 1, . . . , n.

(10.4.19)

Now we have a single Brownian motion driving all n equations. Thus, to construct
the forward LIBOR model, we choose a Brownian motion, which we call W̃ Tn+1(t),
0 ≤ t ≤ Tn+1, under a probability measure we call P̃Tn+1 . That is, we start with
a probability space (Ω,F , P̃Tn+1) on which is defined a Brownian motion W̃ Tn+1(t),
0 ≤ t ≤ Tn+1. We assume the initial forward LIBORs L(0, Tj), j = 1, . . . , n + 1,
are known from market data. With these initial conditions, (10.4.19) generates the
forward LIBOR processes L(t, Tj), 0 ≤ t ≤ Tj , generating first L(t, Tn), which has
no drift in (10.4.19), then using L(t, Tn) in the differential equation for L(t, Tn−1) to
generate that process, then using L(t, Tn) and L(t, Tn−1) in the differential equation
for L(t, Tn−2) to generate that process, and so on. Implicit in this computation is a
dependence among these different forward LIBOR processes.

Construction of Tj-Maturity Discounted Bond Prices

We construct the volatility σ∗(t, Tj) for the zero-coupon bond maturing at Tj , j =

1, . . . , n+1. The forward LIBOR model has a tenor δ > 0, and while it puts constraints
on the cumulative effect of processes between set points Tj , it does not provide fine
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detail about what happens between set points. In particular, we are free to choose the
bond volatilities σ∗(t, Tj) for Tj−1 ≤ t < Tj . The only constraint is that

lim
t↑Tj

σ∗(t, Tj) = σ∗(Tj , Tj) = 0. (10.4.20)

This constraint is present because the bond price B(t, Tj) converges to 1 as t ↑ Tj , and
so the volatility must vanish. This is also apparent in the second formula in (10.3.9).

• For each j = 1, . . . , n + 1, choose σ∗(t, Tj) for Tj−1 ≤ t < Tj so that (10.4.20) is
satisfied.

We show that this determines σ(t, Tj) for all values of t ∈ [0, Tj). (Again, we know
from the outset that σ(Tj , Tj) = 0; that does not need to be chosen or determined.)

First of all, the initial choice of σ∗(t, T1) determines this function for all relevant
values of t, namely, for 0 ≤ t < T1. From (10.4.15), we have

σ∗(t, T2) = σ∗(t, T1) +
δγ(t, T1)L(t, T1)

1 + δL(t, T1)
,

and since σ∗(t, T1) has been chosen for 0 ≤ t < T1, the function σ(t, T2) is determined
by this equation for 0 ≤ t < T1. For T1 ≤ t < T2, σ(t, T2) has already been chosen.
Therefore, σ∗(t, T2) is determined for 0 ≤ t < T2. From (10.4.15), we also have

σ∗(t, T3) = σ∗(t, T2) +
δγ(t, T2)L(t, T2)

1 + δL(t, T2)
,

and since σ∗(t, T2) has been determined for 0 ≤ t < T2, the function σ(t, T3) is deter-
mined by this equation for 0 ≤ t < T2. For T2 ≤ t < T3, σ(t, T3) has already been
chosen. Therefore, σ∗(t, T3) is determined for 0 ≤ t < T3. Continuing in this way, we
determine σ(t, Tj) for all j = 1, . . . , n + 1 and 0 ≤ t < Tj .

Using the bond volatilities σ∗(t, T ) and (10.4.8), we may write the zero-coupon
bond price formula (10.3.19) of Theorem 10.3.2 as

dB(t, Tj) = R(t)B(t, Tj)dt− σ∗(t, Tj)B(t, Tj)dW̃ (t)

= R(t)B(t, Tj)dt + σ∗(t, Tj)σ
∗(t, Tn+1)B(t, Tj)dt− σ∗(t, Tj)B(t, Tj)dW̃ Tn+1(t).

However, we have not yet determined an interest rate process R(t), and so we prefer
to write this equation in discounted form. For j = 1, . . . , n + 1,

d
(
D(t)B(t, Tj)

)
= σ∗(t, Tj)σ

∗(t, Tn+1)D(t)B(t, Tj)dt

− σ∗(t, Tj)D(t)B(t, Tj)dW̃ Tn+1(t), 0 ≤ t ≤ Tj .
(10.4.21)

The initial condition can be obtained from (10.4.3):

D(0)B(0, Tj) = B(0, Tj) =

j−1∏

i=0

B(0, Ti+1)

B(0, Ti)
=

j−1∏

i=0

(
1 + δL(0, Ti)

)−1
. (10.4.22)
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This permits us to generate the discounted bond prices D(t)B(t, Tj), j = 1, . . . , n + 1.
Indeed, the solution to (10.4.21) is

D(t)B(t, Tj) = B(0, Tj) exp

{
−

∫ t

0
σ∗(u, Tj)dW̃ Tn+1(u)

−
∫ t

0

[
1

2

(
σ∗(u, Tj)

)2 − σ∗(u, Tj)σ
∗(u, Tn+1)

]
du

}
.

(10.4.23)

Remark 10.4.3. Equation (10.4.23) does not determine the discount process D(t)

and the bond price B(t, Tj) separately, except when t = Tj for some j. In the case
when t = Tj , we have B(Tj , Tj) = 1, so

D(Tj) = D(Tj)B(Tj , Tj)

= B(0, Tj) exp

{
−

∫ Tj

0
σ∗(u, Tj)dW̃ Tn+1(u)

−
∫ Tj

0

[
1

2

(
σ∗(u, Tj)

)2 − σ∗(u, Tj)σ
∗(u, Tn+1)

]
du

}
.

(10.4.24)

In the special case when j = n + 1, we obtain

D(Tn+1) = B(0, Tn+1) exp

{
−

∫ Tn+1

0
σ∗(u, Tn+1)dW̃ Tn+1(u) +

1

2

∫ Tn+1

0

(
σ∗(u, Tn+1)

)2
du

}
.

(10.4.25)

Risk-Neutral Measure

The risk-neutral measure P̃ is related to the forward measure P̃Tn+1 by (10.4.7),

P̃Tn+1(A) =

∫

A

D(Tn+1)

B(0, Tn+1)
dP̃ for all A ∈ F ,

or, equivalently,

P̃(A) =

∫

A

B(0, Tn+1)

D(Tn+1)
dP̃Tn+1 for all A ∈ F . (10.4.26)

Because we have begun with the measure P̃Tn+1 rather than P, we use (10.4.26) to
define P̃. According to (10.4.25),

B(0, Tn+1)

D(Tn+1)
= exp

{∫ Tn+1

0
σ∗(u, Tn+1)dW̃ Tn+1(u)− 1

2

∫ Tn+1

0

(
σ∗(u, Tn+1)

)2
du

}
.

(10.4.27)
and so the terms appearing on the right-hand side of (10.4.26) are defined. The
following theorem justifies calling P̃ the risk-neutral measure.

Theorem 10.4.4. Under P̃ given by (10.4.26), the discounted zero-coupon bond
prices given by (10.4.21) and (10.4.22), or equivalently by (10.4.23), are martin-
gales.
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Proof. With

W̃ (t) = W̃ Tn+1(t)−
∫ t

0
σ∗(u, Tn+1)du, 0 ≤ t ≤ Tn+1,

(10.4.21) may be written as

d
(
D(t)B(t, Tj)

)
= −σ∗(t, Tj)D(t)B(t, Tj)dW̃ (t). (10.4.28)

It suffices to show that W̃ (t) is a Brownian motion under P̃ defined by (10.4.26).
According to Girsanov’s Theorem, Theorem 5.2.3, with Θ(u) = −σ∗(u, Tn+1), since
W̃ Tn+1(t) is a Brownian motion under P̃Tn+1 , then W̃ (t) is a Brownian motion under a
measure P̂ defined by

P̂(A) =

∫

A
Z(Tn+1)dP̃Tn+1 for all A ∈ F ,

where

Z(Tn+1) = exp

{
−

∫ Tn+1

0
Θ(u)dW̃ Tn+1(u)− 1

2

∫ Tn+1

0
Θ2(u)du

}
.

From (10.4.27), we see that Z(Tn+1) = B(0,Tn+1)
D(Tn+1)

, so P̂ = P̃.

Remark 10.4.5. In order to complete the determination of a full term-structure model
with bond prices for all maturities T , a discount process, and forward rates, it is
necessary to choose γ(t, T ) for 0 ≤ t ≤ T and T ∈ (0, Tn+1)\{T1, . . . , Tn} and to
also make some choices in order to determine bond volatility σ∗(t, T ) for 0 ≤ t ≤ T

and T ∈ (0, Tn+1)\{T1, . . . , Tn}. This can be done, and thus the forward LIBOR
model is consistent with a full term-structure model. However, the model obtained
by exercising these choices arbitrarily is not a reliable vehicle for pricing instruments
that depend on these choices.

10.5 Summary

We have presented three types of term-structure models: finite-factor Markov models
for the short rate, the Heath-Jarrow-Merton model, and the forward LIBOR model.

There are many finite-factor short-rate models. For all of them, one writes down
a stochastic differential equation or system of stochastic differential equations for
the “factors”, and then provides a formula for the interest rate as a function of these
factors. One then uses the risk-neutral pricing formula to obtain prices of bonds and
fixed income derivatives. In particular, these models begin under the risk-neutral
measure, for otherwise there is no way to infer prices of assets from the factor pro-
cesses and the interest rate.

Affine-yield models belong to the class of finite-factor short-rate models, and we
have presented the two-factor affine-yield models. In these models, the interest rate
is given by an equation of the form

R(t) = δ0 + δ1Y1(t) + δ2Y2(t),
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where δ0, δ1, and δ2 are either constants (as in the text) or nonrandom functions of
time (as in Exercise 10.3), and Y1(t) and Y2(t) are the factor processes. When re-
garded as a two-dimensional process,

(
Y1(t), Y2(t)

)
is Markov, and hence bond prices

and the prices of interest rate derivatives are functions of these processes. These
functions can be determined by solving partial differential equations with boundary
conditions depending on the particular instrument being priced. For the boundary
condition associated with zero-coupon bonds, the partial differential equations re-
duce to a system of ordinary differential equations, which permits rapid calibration
of the models.

For the two-factor affine-yield models, the price at time t of a zero-coupon bond
maturing at a later time T and paying 1 upon maturity is of the form

B(t, T ) = e−Y1(t)C1(t,T )−Y2(t)C2(t,T )−A(t,T ).

The nonrandom functions C1(t, T ), C2(t, T ), and A(t, T ) are given by a system of
ordinary differential equations in the t variable and the boundary condition

C1(T, T ) = C2(T, T ) = A(T, T ) = 0.

When the model coefficients, both δ0, δ1, and δ2 in (10.2.6) and the coefficients in
the differential equations satisfied by the factor processes, are constant, the functions
C1(t, T ), C2(t, T ), and A(t, T ) depend on t and T only through their difference τ =

T − t.
The affine-yield models are calibrated by choosing the coefficients in (10.2.6)

and/or in the stochastic differential equations for the factor processes. To introduce
more variables for the calibration, it is customary to take the coefficients to be non-
random, often piecewise constant, functions of time. It is helpful before beginning
the calibration to make sure that the models are written in their most parsimonious
form so that one cannot obtain the same model statistics from two different sets of
parameter choices. The canonical forms presented here are “most parsimonious” in
this sense.

There are three canonical two-factor affine-yield models, which we call the two-
factor Vasicek model, the two-factor Cox-Ingersoll-Ross model, and the two-factor
mixed model. In the first of these, both factors can become negative. In the second,
both factors are guaranteed to be nonnegative. In the third, one factor is guaranteed
to be nonnegative and the other can become negative. All three of these models are
driven by independent Brownian motions W̃1(t), W̃2(t) under a risk-neutral measure
P̃.

The canonical two-factor Vasicek model is

dY1(t) = −λ1Y1(t)dt + dW̃1(t),

dY2(t) = −λ21Y1(t)dt− λ2Y2(t)dt + dW̃2(t),

where λ1 > 0 and λ2 > 0. These factors are Gaussian processes, and their statistics
and the statistics of the resulting interest rate R(t) can be determined (Exercise 10.2).
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The functions C1(T − t), C2(T − t), and A(T − t) in (10.5.1) are determined by the
system of ordinary differential equations (10.2.23)-(10.2.25), and the solution to this
system is given by (10.2.26)-(10.2.29). The canonical two-factor Cox-Ingersoll-Ross
model is

dY1(t) =
(
µ1 − λ11Y1(t)− λ12Y2(t)

)
dt +

√
Y1(t)dW̃1(t),

dY2(t) =
(
µ2 − λ21Y1(t)− λ22Y2(t)

)
dt +

√
Y1(t)dW̃2(t),

where µ1 ≥ 0, µ2 ≥ 0, λ11 > 0, λ22 > 0, λ12 ≤ 0, and λ21 ≤ 0. The system of
ordinary differential equations (10.2.56)-(10.2.58) determines the functions C1(T−t),
C2(T − t), and A(T − t) in (10.5.1). The canonical two-factor mixed model is

dY1(t) =
(
µ− λ1Y1(t)

)
dt +

√
Y1(t)dW̃1(t),

dY2(t) = −λ2Y2(t)dt + σ21

√
Y1(t)dW̃1(t) +

√
α + βY1(t)dW̃2(t),

where µ ≥ 0, λ1 > 0, λ2 > 0, α ≥ 0, and β ≥ 0. The functions C1(T−t), C2(T−t), and
A(T − t) in (10.5.1) are determined by the system of differential equations (10.7.4)-
(10.7.6). When the model coefficients depend on time, the differential equations in
all three cases are modified by replacing the constant coefficients by time-varying
coefficients and replacing C ′

i in these equations (which is the derivative of Ci with
respect to τ = T − t) by − ∂

∂tCi(t, T ) and making the similar replacement for A′.
The Heath-Jarrow-Merton (HJM) model evolves the whole yield curve forward

in time rather than a finite set of factors. The yield curve is an infinite-dimensional
object. Note, however, that the HJM model is driven by finitely many Brownian
motions (in fact, by one Brownian motion in Section 10.3 but by multiple Brownian
motions in Exercise 10.9). As a result, the HJM model is “finite-dimensional” in the
sense that not every possible yield curve can be obtained from the model.

The yield curve in the HJM model is characterized by forward rates. The forward
rate f(t, T ) is the instantaneous interest rate that can be locked in at time t for borrow-
ing at a later time T . The HJM model begins under the actual probability measure P
and derives a condition on the drift α(t, T ) and diffusion σ(t, T ) of f(t, T ) that guar-
antees the existence of a risk-neutral measure P̃ and hence guarantees the absence of
arbitrage. This condition is that there must exist a market price of risk process Θ(t)

that does not depend on T and that satisfies

α(t, T ) = σ(t, T )[σ∗(t, T ) + Θ(t)], 0 ≤ t ≤ T ;

see Theorem 10.3.1. Although this condition was developed within the HJM model,
one would not encounter in practice an arbitrage-free term-structure model driven
by a single Brownian motion and not satisfying this condition. For term-structure
models driven by multiple Brownian motions, the analogous condition appears in
Exercise 10.9(i).

In terms of the Brownian motion W̃ (t) under the risk-neutral measure, bond prices
in the HJM model satisfy

dB(t, T ) = R(t)B(t, T )dt− σ∗(t, T )B(t, T )dW̃ (t),
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where σ∗(t, T ) =
∫ T
t σ(t, v)dv; see Theorem 10.3.2. A calibration procedure for the

HJM model is provided in Subsection 10.3.6.
In contrast to the continuously compounding forward rate f(t, T ), which is the

basis of the HJM model, forward LIBOR L(t, T ) is the simple interest rate that can
be locked in at time t for borrowing at a later time T over the interval [T, T + δ]. Here
δ is a positive constant, and although not indicated by the notation, L(t, T ) depends
on the choice of this constant.

Section 10.4 introduces a model for forward LIBOR. One can build this model
so that forward LIBOR L(t, T ) is log-normal under the forward measure P̃T+δ, and
this permits a mathematically rigorous derivation of the Black caplet formula. This
formula is similar to the Black-Scholes-Merton formula for equities but used in fixed
income markets in which the essence of the market is that the interest rate is random,
in contrast to the Black-Scholes-Merton assumption.

10.6 Notes

The Vasicek model appears in [154] and the Cox-Ingersoll-Ross model in [41]. Hull
and White generalized the Vasicek model in [88]. The general concept of multifac-
tor affine-yield models is developed in Duffie and Kan [57], [58]. The reduction of
affine-yield models to canonical versions is due to Dai and Singleton [44]. A sam-
pling of other articles related to affine-yield models includes Ait-Sahalia [1], Bal-
duzzi, Das, Foresi, and Sundaram [7], Chen [29], Chen and Scott [30], [31], [32],
Collin-Dufresne and Goldstein [38], [39], Duffee [55], and Piazzesi [132]. Magh-
soodi [116] provides a detailed study of the one-dimensional CIR equation when the
parameters are time-varying.

Although affine-yield models have simple bond price formulas, the prices for fixed
income derivatives are more complicated. However, numerical solution of partial
differential equations can be avoided by Fourier transform analysis; see, Duffie, Pan,
and Singleton [59].

Some other common short rate models are those of Black, Derman, and Toy [15],
Black and Karasinski [16], and Longstaff and Schwartz [111]. An empirical compar-
ison of various short rate models is provided by Chan et al. [28].

Ho and Lee [85] developed a discrete-time model for the evolution of the yield
curve. The continuous-time limit of the Ho-Lee model is a constant-diffusion forward
rate. In particular, the interest rate behaves like that in a Vasicek model and can
become negative.

An arbitrage-free framework for the evolution of the yield curve in continuous
time was developed by Heath, Jarrow, and Merton [83]. Related papers are [81]
and [82]. The HJM framework presented in this chapter is general, but it can be
specialized to obtain a Markov implementation; see Brace and Musiela [20], Cheyette
[34], and Hunt, Kennedy, and Pelsser [90]. Filipović [66] examines the issue of
making the yield curves generated by the HJM model consistent with the scheme



418 Term-Structure Models

used to generate the initial yield curve. Jara [96] considers an HJM-type model but
for interest rate futures rather than forward rates. The advantage is that the drift
term causing the explosion discussed in Subsection 10.4.1 does not appear in such a
model.

The switch from continuously compounding forward rates to simple forward rates
in order to remove the explosion problem described in Section 10.4.1 was proposed
by Sandmann and Sondermann [146], [147]. The use of a log-normal simple interest
rate to price caps and floors was worked out by Miltersen, Sandmann, and Sonder-
mann [125]. This idea was embedded in a full forward LIBOR term-structure model
by Brace, Ga̧tarek, and Musiela [19]. This was the first full term-structure model
consistent with the heuristic formula provided by Black [13] in 1976 and in common
use since then.

Recently, a variation on forward LIBOR models has been developed for swaps
markets; see Jamshidian [95] and the three books cited below. Term-structure models
with jumps have been studied by Björk, Kabanov, and Runggaldier [12], Das [46],
Das and Foresi [47], Glasserman and Kou [73], Glasserman and Merener [74], and
Shirakawa [149].

Three recent books by authors with practical experience in term-structure model-
ing are Pelsser [131], Brigo and Mercurio [21], and Rebonato [137]. Pelsser’s text
[131] is succinct but comprehensive, Brigo and Mercurio’s text [21] contains consid-
erably more detail, and Rebonato’s book [137] is devoted to forward LIBOR models.

10.7 Exercises

Exercise 10.1 (Statistics in the two-factor Vasicek model).

According to Example 4.7.3, Y1(t) and Y2(t) in (10.2.43)-(10.2.46) are Gaussian
processes.

(i) Show that
ẼY1(t) = e−λ1tY1(0), (10.7.1)

that when λ1 6= λ2, then

ẼY2(t) =
λ21

λ1 − λ2

(
e−λ1t − e−λ2t

)
Y1(0) + e−λ2tY2(0), (10.7.2)

and when λ1 = λ2, then

ẼY2(t) = −λ21te
−λ1tY1(0) + e−λ1tY2(0). (10.7.3)

We can write
Y1(t)− ẼY1(t) = e−λ1tI1(t),

when λ1 6= λ2,

Y2(t)− EY2(t) =
λ21

λ1 − λ2

(
e−λ1tI1(t)− e−λ2tI2(t)

)
− e−λ2tI3(t),
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and when λ1 = λ2,

Y2(t)− ẼY2(t) = −λ21te
−λ1tI1(t) + λ21e

−λ1tI4(t) + e−λ1tI3(t),

where the Itô integrals

I1(t) =

∫ t

0
eλ1udW̃1(u), I2(t) =

∫ t

0
eλ2udW̃1(u),

I3(t) =

∫ t

0
eλ2udW̃2(u), I4(t) =

∫ t

0
ueλ1udW̃1(u),

all have expectation zero under the risk-neutral measure P̃. Consequently, we
can determine the variances of Y1(t) and Y2(t) and the covariance of Y1(t) and
Y2(t) under the risk-neutral measure from the variances and covariances of Ij(t)

and Ik(t). For example, if λ1 = λ2, then

Var
(
Y1(t)

)
= e−2λ1tẼI2

1 (t),

Var
(
Y2(t)

)
= λ2

21t
2e−2λ1tẼI2

1 (t) + λ2
21e

−2λ1tẼI2
4 (t) + e−2λ1tẼI2

3 (t)

− 2λ2
21te

−2λ1tẼ[I1(t)I4(t)]− 2λ21te
−2λ1tẼ[I1(t)I3(t)]

+ 2λ21e
−2λ1tẼ[I4(t)I3(t)],

Cov
(
Y1(t), Y2(t)

)
= −λ21te

−2λ1tẼI2
1 (t) + λ21e

−2λ1tẼ[I1(t)I4(t)]

+ e−2λ1tẼ[I1(t)I3(t)],

where the variances and covariance above are under the risk-neutral measure P̃.

(ii) Compute the five terms

Ẽ[I2
1 (t)], Ẽ[I1(t)I2(t)], Ẽ[I1(t)I3(t)], Ẽ[I1(t)I4(t)], Ẽ[I2

4 (t)].

The five other terms, which you are not being asked to compute, are

ẼI2
2 (t) =

1

2λ2

(
e2λ2t − 1

)
,

Ẽ[I2(t)I3(t)] = 0,

Ẽ[I2(t)I4(t)] =
t

λ1 + λ2
e(λ1+λ2)t +

1

(λ1 + λ2)2

(
1− e(λ1+λ2)t

)
,

ẼI2
3 (t) =

1

λ2

(
e2λ2t − 1

)
,

Ẽ[I3(t)I4(t)] = 0.

(iii) Some derivative securities involve time spread (i.e., they depend on the inter-
est rate at two different times). In such cases, we are interested in the joint
statistics of the factor processes at different times. These are still jointly normal
and depend on the statistics of the Itô integrals Ij at different times. Compute
Ẽ[I1(s)I2(t)], where 0 ≤ s < t. (Hint: Fix s ≥ 0 and define

J1(t) =

∫ t

0
eλ1uI{u≤s}dW̃1(u),

where I{u≤s} is the function of u that is 1 if u ≤ s and 0 if u > s. Note that
J1(t) = I1(s) when t ≥ s.)
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Exercise 10.2 (Ordinary differential equations for the mixed affine-yield model).

In the mixed model of Subsection 10.2.3, as in the two-factor Vasicek model and
the two-factor Cox-IngersoU-Ross model, zero-coupon bond prices have the affine-
yield form

f(t, y1, y2) = e−y1C1(T−t)−y2C2(T−t)−A(T−t),

where C1(0) = C2(0) = A(0) = 0.

(i) Find the partial differential equation satisfied by f(t, y1, y2).

(ii) Show that C1, C2, and A satisfy the system of ordinary differential equations

C ′
1 = −λ1C1 − 1

2
C2

1 − σ21C1C2 − (1 + β)C2
2 + δ1, (10.7.4)

C ′
2 = −λ2C2 + δ2, (10.7.5)

A′ = µC1 − 1

2
αC2

2 + δ0. (10.7.6)

Exercise 10.3 (Calibration of the two-factor Vasicek model).

Consider the canonical two-factor Vasicek model (10.2.4), (10.2.5), but replace
the interest rate equation (10.2.6) by

R(t) = δ0(t) + δ1Y1(t) + δ2Y2(t), (10.7.7)

where δ1 and δ2 are constant but δ0(t) is a nonrandom function of time. Assume that
for each T there is a zero-coupon bond maturing at time T . The price of this bond at
time t ∈ [0, T ] is

B(t, T ) = Ẽ
[
e−
R T

t
R(u)du

∣∣∣F(t)
]
.

Because the pair of processes
(
Y1(t), Y2(t)

)
is Markov, there must exist some function

f(t, T, y1, y2) such that B(t, T ) = f
(
t, T, Y1(t), Y2(t)

)
. (We indicate the dependence of

f on the maturity T because, unlike in Subsection 10.2.1, here we shall consider more
than one value of T .)

(i) The function f(t, T, y1, y2) is of the affine-yield form

f(t, T, y1, y2) = e−y1C1(t,T )−y2C2(t,T )−A(t,T ). (10.7.8)

Holding T fixed, derive a system of ordinary differential equations for d
dtC1(t, T ),

d
dtC2(t, T ), and d

dtA(t, T ).

(ii) Using the terminal conditions C1(T, T ) = C2(T, T ) = 0, solve the equations in
(i) for C1(t, T ) and C2(t, T ). (As in Subsection 10.2.1, the functions C1 and C2

depend on t and T only through the difference τ = T − t; however, the function
A discussed in part (iii) below depends on t and T separately.)

(iii) Using the terminal condition A(T, T ) = 0, write a formula for A(t, T ) as an
integral involving C1(u, T ), C2(u, T ), and δ0(u). You do not need to evaluate
this integral.
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(iv) Assume that the model parameters λ1 > 0, λ2 > 0, λ21, δ1 and δ2 and the initial
conditions Y1(0) and Y2(0) are given. We wish to choose a function δ0 so that
the zero-coupon bond prices given by the model match the bond prices given by
the market at the initial time zero. In other words, we want to choose a function
δ(T ), T ≥ 0, so that

f
(
0, T, Y1(0), Y2(0)

)
= B(0, T ), T ≥ 0.

In this part of the exercise, we regard both t and T as variables and use the no-
tation ∂

∂t to indicate the derivative with respect to t when T is held fixed and the
notation ∂

∂t to indicate the derivative with respect to T when t is held fixed. Give
a formula for δ0(T ) in terms of ∂

∂T log B(0, T ) and the model parameters. (Hint:
Compute ∂

∂T A(0, T ) in two ways, using (10.7.8) and also using the formula ob-
tained in (iii). Because Ci(t, T ) depends only on t and T through τ = T − t,
there are functions Ci(τ) such that Ci(τ) = Ci(T − t) = Ci(t, T ), i = 1, 2. Then

∂

∂t
Ci(t, T ) = −C

′
i(τ),

∂

∂T
Ci(t, T ) = C

′
i(τ)

where ′ denotes differentiation with respect to τ . This shows that

∂

∂t
Ci(t, T ) = − ∂

∂T
Ci(t, T ), i = 1, 2, (10.7.9)

a fact that you will need.)

Exercise 10.4.

Hull and White [89] propose the two-factor model

dU(t) = −λ1U(t)dt + σ1dB̃2(t), (10.7.10)

dR(t) = [θ(t) + U(t)− λ2R(t)]dt + σ2dB̃1(t), (10.7.11)

where λ1, λ2, σ1, and σ2 are positive constants, θ(t) is a nonrandom function, and
B̃1(t) and B̃2(t) are correlated Brownian motions with dB̃1(t)dB̃2(t) = ρdt for some
ρ ∈ (−1, 1). In this exercise, we discuss how to reduce this to the two-factor Vasicek
model of Subsection 10.2.1, except that, instead of (10.2.6), the interest rate is given
by (10.7.7), in which δ0(t) is a nonrandom function of time.

(i) Define

X(t) =




U(t)

R(t)


 , K =




λ1 0

−1 λ2


 , Σ =




σ1 0

0 σ2




Θ(t) =




0

θ(t)


 , B̃(t) =




B̃1(t)

B̃2(t)


 ,
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so that (10.7.10) and (10.7.11) can be written in vector notation as

dX(t) = Θ(t)dt−KX(t)dt + ΣdB̃(t). (10.7.12)

Now set

X̂(t) = X(t)− e−Kt

∫ t

0
eKuΘ(u)du.

Show that
dX̂(t) = −KX̂(t)dt + ΣdB̃(t). (10.7.13)

(ii) With

C =




1
σ1

0

− ρ

σ1

√
1−ρ2

1

σ2

√
1−ρ2


 ,

define Y (t) = CX̂(t), W̃ (t) = CΣB̃(t). Show that the components of W̃1(t) and
W̃2(t) are independent Brownian motions and

dY (t) = −ΛY (t) + dW̃ (t), (10.7.14)

where

Λ = CKC−1 =




λ1 0

ρσ2(λ2−λ1)−σ1

σ2

√
1−ρ2

λ2


 .

Equation (10.7.14) is the vector form of the canonical two-factor Vasicek equa-
tions (10.2.4) and (10.2.5).

(iii) Obtain a formula for R(t) of the form (10.7.7). What are δ0(t), δ1, and δ2?

Exercise 10.5 (Correlation between long rate and short rate in the one-factor Vasicek
model).

The one-factor Vasicek model is the one-factor Hull-White model of Example
6.5.1 with constant parameters,

dR(t) =
(
a− bR(t)

)
dt + σdW̃ (t), (10.7.15)

where a, b, and σ are positive constants and W̃ (t) is a one-dimensional Brownian
motion. In this model, the price at time t ∈ [0, T ] of the zero-coupon bond maturing
at time T is

B(t, T ) = e−C(t,T )R(t)−A(t,T ),

where C(t, T ) and A(t, T ) are given by (6.5.10) and (6.5.11):

C(t, T ) =

∫ T

t
e−
R s

t
bdvds =

1

b

(
1− e−b(T−t)

)
,

A(t, T ) =

∫ T

t

(
aC(s, T )− 1

2
σ2C2(s, T )

)
ds

=
2ab− σ2

2b2
(T − t) +

σ2 − ab

b3

(
1− e−b(T−t)

)
− σ2

4b3

(
1− e−2b(T−t)

)



10.7 Exercises 423

In the spirit of the discussion of the short rate and the long rate in Subsection
10.2.1, we fix a positive relative maturity τ and define the long rate L(t) at time t by
(10.2.30):

L(t) =
1

τ
log B(t, t + τ).

Show that changes in L(t) and R(t) are perfectly correlated (i.e., for any 0 ≤ t1 < t2,
the correlation coefficient between L(t2) − L(t1) and R(t2) − R(t1) is one). This
characteristic of one-factor models caused the development of models with more
than one factor.

Exercise 10.6 (Degenerate two-factor Vasicek model).

In the discussion of short rates and long rates in the two-factor Vasicek model of
Subsection 10.2.1, we made the assumptions that δ2 6= 0 and (λ1 − λ2)δ1 + λ21δ2 6= 0

(see Lemma 10.2.2). In this exercise, we show that if either of these conditions is
violated, the two-factor Vasicek model reduces to a one-factor model, for which long
rates and short rates are perfectly correlated (see Exercise 10.5).

(i) Show that if δ2 = 0 (and δ0 > 0, δ1 > 0), then the short rate R(t) given by the
system of equations (10.2.4)-(10.2.6) satisfies the one-dimensional stochastic
differential equation

dR(t) =
(
a− bR(t)

)
dt + dW̃1(t). (10.7.16)

Define a and b in terms of the parameters in (10.2.4)-(10.2.6).

(ii) Show that if (λ1 − λ2)δ1 + λ21δ2 = 0 (and δ0 > 0, δ2
1 + δ2

2 6= 0), then the short
rate R(t) given by the system of equations (10.2.4)-(10.2.6) satisfies the one-
dimensional stochastic differential equation

dR(t) =
(
a− bR(t)

)
dt + σdB̃(t). (10.7.17)

Define a and b in terms of the parameters in (10.2.4)-(10.2.6) and define the
Brownian motion B̃(t) in terms of the independent Brownian motions W̃1(t)

and W̃2(t) in (10.2.4) and (10.2.5).

Exercise 10.7 (Forward measure in the two-factor Vasicek model).

Fix a maturity T > 0. In the two-factor Vasicek model of Subsection 10.2.1,
consider the T -forward measure P̃T of Definition 9.4.1:

P̃T (A) =
1

B(0, T )

∫

A
D(T )dP̃ for all A ∈ F .

(i) Show that the two-dimensional P̃T -Brownian motions W̃ T
1 (t), W̃ T

2 (t) of (9.2.5)
are

W̃ T
j (t) =

∫ t

0
C1(T − u)du + W̃j(t), j = 1, 2, (10.7.18)

where C1(τ) and C2(τ) are given by (10.2.26)-(10.2.28).
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(ii) Consider a call option on a bond maturing at time T > T . The call expires at
time T and has strike price K. Show that at time zero the risk-neutral price of
this option is

B(0, T )ẼT

[(
e−C1(T−T )Y1(T )−C2(T−T )Y2(T )−A(T−T ) −K

)+
]

. (10.7.19)

(iii) Show that, under the T -forward measure P̃T , the term

X = −C1(T − T )Y1(T )− C2(T − T )Y2(T )− A(T − T )

appearing in the exponent in (10.7.19) is normally distributed.

(iv) It is a straightforward but lengthy computation, like the computations in Exer-
cise 10.1, to determine the mean and variance of the term X. Let us call its
variance σ2 and its mean µ− 1

2σ2, so that we can write X as

X = µ− 1

2
σ2 − σZ,

where Z is a standard normal random variable under P̃T . Show that the call
option price in (10.7.19) is

B(0, T )
(
eµN(d+)−KN(d−)

)
,

where
d± =

1

σ

(
µ− log K ± 1

2
σ2

)
.

Exercise 10.8 (Reversal of order of integration in forward rates).

The forward rate formula (10.3.5) with v replacing T states that

f(t, v) = f(0, v) +

∫ t

0
α(u, v)du +

∫ t

0
σ(u, v)dW (u).

Therefore,

−
∫ T

t
f(t, v)dv = −

∫ T

t

[
f(0, v) +

∫ t

0
α(u, v)du +

∫ t

0
σ(u, v)dW (u)

]
dv. (10.7.20)

(i) Define

α̂(u, t, T ) =

∫ T

t
α(u, v)dv, σ̂(u, t, T ) =

∫ T

t
σ(u, v)dv.

Show that if we reverse the order of integration in (10.7.20), we obtain the
equation

−
∫ T

t
f(t, v)dv = −

∫ T

t
f(0, v)dv −

∫ t

0
α̂(u, t, T )du−

∫ t

0
σ̂(u, t, T )dW (u).

(10.7.21)
(In one case, this is a reversal of the order of two Riemann integrals, a step
that uses only the theory of ordinary calculus. In the other case, the order of
a Riemann and an Itô integral are being reversed. This step is justified in the
appendix of [83]. You may assume without proof that this step is legitimate.)
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(ii) Take the differential with respect to t in (10.7.21), remembering to get two terms
from each of the integrals

∫ t
0 α̂(u, t, T )du and

∫ t
0 σ̂(u, t, T )dW (u) because one

must differentiate with respect to each of the two ts appearing in these integrals.

(iii) Check that your formula in (ii) agrees with (10.3.10).

Exercise 10.9 (Multifactor HJM model).

Suppose the Heath-Jarrow-Merton model is driven by a d-dimensional Brownian
motion, so that σ(t, T ) is also a d-dimensional vector and the forward rate dynamics
are given by

df(t, T ) = α(t, T )dt +
d∑

j=1

σj(t, T )dWj(t).

(i) Show that (10.3.16) becomes

α(t, T ) =
d∑

j=1

σj(t, T )[σ∗j (t, T ) + Θj(t)].

(ii) Suppose there is an adapted, d-dimensional process

Θ(t) =
(
Θ1(t), . . . , Θd(t)

)

satisfying this equation for all 0 ≤ t ≤ T ≤ T . Show that if there are maturities
T1, . . . , Td such that the d × d matrix

(
σj(t, Ti)

)
i,j

is nonsingular, then Θ(t) is
unique.

Exercise 10.10.

(i) Use the ordinary differential equations (6.5.8) and (6.5.9) satisfied by the func-
tions A(t, T ) and C(t, T ) in the one-factor Hull-White model to show that this
model satisfies the HJM no-arbitrage condition (10.3.27).

(ii) Use the ordinary differential equations (6.5.14) and (6.5.15) satisfied by the
functions A(t, T ) and C(t, T ) in the one-factor Cox-Ingersoll-Ross model to
show that this model satisfies the HJM no-arbitrage condition (10.3.27).

Exercise 10.11.

Let δ > 0 be given. Consider an interest rate swap paying a fixed interest rate K

and receiving backset LIBOR L(Tj−1, Tj−1) on a principal of 1 at each of the payment
dates Tj = δj, j = 1, 2, . . . , n + 1. Show that the value of the swap is

δK

n+1∑

j=1

B(0, Tj)− δ
n+1∑

j=1

B(0, Tj)L(0, Tj−1). (10.7.22)

Remark 10.7.1. The swap rate is defined to be the value of K that makes the initial
value of the swap equal to zero. Thus, the swap rate is

K =

∑n+1
j=1 B(0, Tj)L(0, Tj−1)∑n+1

j=1 B(0, Tj)
. (10.7.23)
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Exercise 10.12.

In the proof of Theorem 10.4.1, we showed by an arbitrage argument that the value
at time 0 of a payment of backset LIBOR L(T, T ) at time T + δ is B(0, T + δ)L(0, T ).
The risk-neutral price of this payment, computed at time zero, is

Ẽ[D(t + δ)L(T, T )].

Use the definitions

L(T, T ) =
1−B(T, T + δ)

δB(T, T + δ)

B(0, T + δ) = Ẽ[D(T + δ)],

and the properties of conditional expectations to show that

Ẽ[D(T + δ)L(T, T )] = B(0, T + δ)L(0, T ).



Chapter 11

Introduction to Jump Processes

11.1 Introduction

This chapter studies jump-diffusion processes. The “diffusion” part of the nomencla-
ture refers to the fact that these processes can have a Brownian motion component or,
more generally, an integral with respect to Brownian motion. In addition, the paths of
these processes may have jumps. We consider in this chapter the special case when
there are only finitely many jumps in each finite time interval.

One can also construct processes in which there are infinitely many jumps in a fi-
nite time interval, although for such processes it is necessarily the case that, for each
positive threshold, only finitely many jumps can have a size exceeding the threshold
in any finite time interval. The number exceeding the threshold can depend on the
threshold and become arbitrarily large as the threshold approaches zero. Such pro-
cesses are not considered here, although the theory provided here gives some idea of
how such processes can be analyzed.

The fundamental pure jump process is the Poisson process, and this is presented
in Section 11.2. All jumps of a Poisson process are of size one. A compound Poisson
process is like a Poisson process, except that the jumps are of random size. Com-
pound Poisson processes are the subject of Section 11.3.

In Section 11.4, we define a jump process to be the sum of a nonrandom initial con-
dition, an Itô integral with respect to a Brownian motion dW (t), a Riemann integral
with respect to dt, and a pure jump process. A pure jump process begins at zero, has
finitely many jumps in each finite time interval, and is constant between jumps. Sec-
tion 11.4 defines stochastic integrals with respect to jump processes. These stochastic
integrals are themselves jump processes. Section 11.4 also examines the quadratic
variation of jump processes and their stochastic integrals.

In Section 11.5, we present the stochastic calculus for jump processes. The key
result is the extension of the Itô-Doeblin formula to cover these processes.

In Section 11.6, we take up the matter of changing measures for Poisson processes
and for compound Poisson processes. We conclude with a discussion of how to
simultaneously change the measure for a Brownian motion and a compound Poisson
process. The effect of this change is to adjust the drift of the Brownian motion and
to adjust the intensity (average rate of jump arrival) and the distribution of the jump
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sizes for the compound Poisson process.
In Section 11.7, we apply this theory to the problem of pricing and partially hedg-

ing a European call in a jump-diffusion model.

11.2 Poisson Process

In the way that Brownian motion is the basic building block for continuous-path
processes, the Poisson process serves as the starting point for jump processes. In this
section, we construct the Poisson process and develop its basic properties.

11.2.1 Exponential Random Variables

Let τ be a random variable with density

f(t) =





λe−λt, t ≥ 0,

0 t < 0,

(11.2.1)

where λ is a positive constant. We say that τ has the exponential distribution or
simply that τ is an exponential random variable.

The expected value of τ can be computed by an integration by parts:

Eτ =

∫ ∞

0
tf(t)dt = λ

∫ ∞

0
te−λtdt

= −te−λt
∣∣∣
t=∞
t=0

+

∫ ∞

0
e−λtdt = 0− 1

λ
e−λt

∣∣∣
t=∞
t=0

=
1

λ
.

For the cumulative distribution function, we have

F (t) = P{τ ≤ t} =

∫ t

0
λe−λudu = −e−λu

∣∣∣
u=t

u=0
= 1− e−λt, t ≥ 0,

and hence
P{τ > t} = e−λt t ≥ 0. (11.2.2)

Suppose we are waiting for an event, such as default of a bond, and we know that
the distribution of the time of this event is exponential with mean 1

λ (i.e., it has the
density (11.2.1)). Suppose we have already waited s time units, and we are interested
in the probability that we will have to wait an additional t time units (conditioned
on knowing that the event has not occurred during the time interval [0, s]). This
probability is

P{τ > t + s|τ > s} =
P{τ > t + s and τ > s}

P{τ > s}

=
P{τ > t + s}
P{τ > s} =

e−λ(t+s)

e−λs
= e−λt.

(11.2.3)

In other words, after waiting s time units, the probability that we will have to wait
an additional t time units is the same as the probability of having to wait t time
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units when we were starting at time 0. The fact that we have already waited s time
units does not change the distribution of the remaining time. This property for the
exponential distribution is called memorylessness.

11.2.2 Construction of a Poisson Process

To construct a Poisson process, we begin with a sequence τ1, τ2, . . . of independent
exponential random variables, all with the same mean 1

λ . We will build a model in
which an event, which we call a “jump,” occurs from time to time. The first jump
occurs at time τ1, the second occurs τ2 time units after the first, the third occurs τ3

time units after the second, etc. The τk random variables are called the interarrival
times. The arrival times are

Sn =
n∑

k=1

τk (11.2.4)

(i.e., Sn is the time of the nth jump). The Poisson process N(t) counts the number of
jumps that occur at or before time t. More precisely,

N(t) =





0 if 0 ≤ t < S1,

1 if S1 ≤ t < S2,

...

n if Sn ≤ t < Sn+1,

...

Note that at the jump times N(t) is defined so that it is right-continuous (i.e., N(t) =

lims↓t N(s)). We denote by F(t) the σ-algebra of information acquired by observing
N(s) for 0 ≤ s ≤ t.

Because the expected time between jumps is 1
λ , the jumps are arriving at an aver-

age rate of λ per unit time. We say the Poisson process N(t) has intensity λ. Figure
11.2.1 shows one path of a Poisson process.
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11.2.3 Distribution of Poisson Process Increments

In order to determine the distribution of the increments of a Poisson process, we must
first determine the distribution of the jump times S1, S2, . . ..

Lemma 11.2.1. For n ≥ 1, the random variable Sn defined by (11.2.4) has the gamma
density

gn(s) =
(λs)n−1

(n− 1)!
λe−λs, s ≥ 0. (11.2.5)

Proof. We prove (11.2.5) by induction on n. For n = 1, we have that S1 = τ1 is
exponential, and (11.2.5) becomes the exponential density

g1(s) = λe−λs, s ≥ 0.

(Recall that 0! is defined to be 1.) Having thus established the base case, let us
assume that (11.2.5) holds for some value of n and prove it for n + 1. In other words,
we assume Sn has density gn(s) given in (11.2.5) and we want to compute the density
of Sn+1 = Sn + τn+1. Since Sn and τn+1 are independent, the density of Sn+1 can be
computed by the convolution

∫ s

0
gn(v)f(s− v)dv =

∫ s

0

(λv)n−1

(n− 1)!
λe−λv · λe−λ(s−v)dv

=
λn+1e−λs

(n− 1)!

∫ s

0
vn−1ds =

λn+1e−λs

n!
vn

∣∣∣
v=s

v=0

=
(λs)n

n!
λe−λs = gn+1(s).

This completes the induction step and proves the lemma.

Lemma 11.2.2. The Poisson process N(t) with intensity λ has the distribution

P{N(t) = k} =
(λt)k

k!
e−λt, k = 0, 1, . . . . (11.2.6)
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Proof. For k ≥ 1, we have N(t) ≥ k if and only if there are at least k jumps by time t

(i.e., if and only if Sk, the time of the kth jump, is less than or equal to t). Therefore,

P{N(t) ≥ k} = P{Sk ≤ t} =

∫ t

0

(λs)k−1

(k − 1)!
λe−λsds.

Similarly,

P{N(t) ≥ k + 1} = P{Sk+1 ≤ t} =

∫ t

0

(λs)k

k!
λe−λsds.

We integrate this last expression by parts to obtain

P{N(t) ≥ k + 1} = −(λs)k

k!
e−λs

∣∣∣
s=t

s=0
+

(λs)k−1

(k − 1)!
λe−λsds

= −(λt)k

k!
e−λt + P{N(t) ≥ k}.

This implies that for k ≥ 1,

P{N(t) = k} = P{N(t) ≥ k} − P{N(t) ≥ k + 1} =
(λt)k

k!
e−λt.

For k = 0, we have from (11.2.2)

P{N(t) = 0} = P{S1 > t} = P{τ1 > t} = e−λt,

which is (11.2.6) with k = 0.

Suppose we observe the Poisson process up to time s and then want to know the
distribution of N(t + s) − N(s), conditioned on knowing what has happened up to
and including time s. It turns out that the information about what has happened up
to and including time s is irrelevant. This is a consequence of the memorylessness of
exponential random variables (see (11.2.3)). Because N(t+s)−N(s) is the number of
jumps in the time interval (s, t + s], in order to compute the distribution of N(t + s)−
N(s), we are interested in the time of the next jump after s. At time s, we know the
time since the last jump, but the time between s and the next jump does not depend
on this. Indeed, the time between s and the first jump after s has an exponential
distribution with mean 1

λ , independent of everything that has happened up to time
s. The time between that jump and the one after it is also exponentially distributed
with mean 1

λ , independent of everything that has happened up to time s. The same
applies for all subsequent jumps. Consequently, N(t + s) − N(s) is independent of
F(s). Furthermore, the distribution of N(t + s)−N(s) is the same as the distribution
of N(t). In both cases, one is simply counting the number of jumps that occur in a
time interval of length t, and the jumps are independent and exponentially distributed
with mean 1

λ . When a process has the property that the distribution of the increment
depends only on the difference between the two time points, the increments are said
to be stationary. Both the Poisson process and Brownian motion have stationary
independent increments.
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Theorem 11.2.3. Let N(t) be a Poisson process with intensity λ > 0, and let 0 = t0 <

t1 < · · · < tn be given. Then the increments

N(t1)−N(t0), N(t2)−N(t1), . . . , N(tn)−N(tn−1)

are stationary and independent, and

P{N(tj+1)−N(tj) = k} =
λk(tj+1 − tj)

k

k!
e−λ(tj+1−tj), k = 0, 1, . . . . (11.2.7)

Proof. Let F(t) be the σ-algebra of information acquired by observing N(s) for
0 ≤ s ≤ t. As we just discussed, N(tn) − N(tn−1) is independent of F(tn−1)

and has the same distribution as N(tn − tn−1), which by Lemma 11.2.2 is the dis-
tribution given by (11.2.7) with j = n − 1. Since the other increments N(t1) −
N(t0), . . . , N(tn−1)−N(tn−2) are F(tn−1)-measurable, these increments are indepen-
dent of N(tn)−N(tn−1). We now repeat the argument for the next-to-last increment
N(tn−1)−N(tn−2), then the increment before that, etc.

11.2.4 Mean and Variance of Poisson Increments

Let 0 ≤ s < t be given. According to Theorem 11.2.3, the Poisson increment N(t)−
N(s) has distribution

P{N(t)−N(s) = k} =
λk(t− s)k

k!
e−λ(t−s), k = 0, 1, . . . . (11.2.8)

Recall the exponential power series, which we shall use in the three different forms
given below:

ex =
∞∑

k=0

xk

k!
=

∞∑

k=1

xk−1

(k − 1)!
=

∞∑

k=2

xk−2

(k − 2)!

We note first of all from this that
∞∑

k=0

P{N(t)−N(s) = k} = e−λ(t−s)
∞∑

k=0

λk(t− s)k

k!
= e−λ(t−s) · eλ(t−s) = 1,

as we would expect. We next compute the expected increment

E[N(t)−N(s)] =
∞∑

k=0

k
λk(t− s)k

k!
e−λ(t−s)

= λ(t− s)e−λ(t−s)
∞∑

k=1

λk−1(t− s)k−1

(k − 1)!

= λ(t− s) · e−λ(t−s) · eλ(t−s)

= λ(t− s).

(11.2.9)

This is consistent with our observation at the end of Subsection 11.2.2 that jumps are
arriving at an average rate of λ per unit time. Therefore, the average number of jumps
between times s and t is E[N(t)−N(s)] = λ(t− s).
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Finally, we compute the second moment of the increment

E
[(

N(t)−N(s)
)2]

=
∞∑

k=0

k2λk(t− s)k

k!
e−λ(t−s)

= e−λ(t−s)
∞∑

k=1

(k − 1 + 1)
λk(t− s)k

(k − 1)!

= e−λ(t−s)
∞∑

k=2

λk(t− s)k

(k − 2)!
+ e−λ(t−s)

∞∑

k=1

λk(t− s)k

(k − 1)!

= λ2(t− s)2e−λ(t−s)
∞∑

k=2

λk−2(t− s)k−2

(k − 2)!

+ λ(t− s)e−λ(t−s)
∞∑

k=1

λk−1(t− s)k−1

(k − 1)!

= λ2(t− s)2 + λ(t− s).

This implies

Var[N(t)−N(s)] = E
[(

N(t)−N(s)
)2

]
− (E[N(t)−N(s)])2

= λ2(t− s)2 + λ(t− s)− λ2(t− s)2

= λ(t− s);

(11.2.10)

the variance is the same as the mean.

11.2.5 Martingale Property

Theorem 11.2.4. Let N(t) be a Poisson process with intensity λ. We define the com-
pensated Poisson process (see Figure 11.2.2)

M(t) = N(t)− λt.

Then M(t) is a martingale.

Proof. Let 0 ≤ s < t be given. Because N(t) − N(s) is independent of F(s) and has
expected value λ(t− s), we have

E[M(t)|F(s)] = E[M(t)−M(s)|F(s)] + E[M(s)|F(s)]

= E[M(t)−N(s)− λ(t− s)|F(s)] + M(s)

= E[M(t)−N(s)]− λ(t− s) + M(s)

= M(s).
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11.3 Compound Poisson Process

When a Poisson process or a compensated Poisson process jumps, it jumps up one
unit. For models of financial markets, we need to allow the jump size to be random.
We introduce random jump sizes in this section.

11.3.1 Construction of a Compound Poisson Process

Let N(t) be a Poisson process with intensity λ, and let Y1, Y2, . . . be a sequence of
identically distributed random variables with mean β = EYi. We assume the ran-
dom variables Y1, Y2, . . . are independent of one another and also independent of the
Poisson process N(t). We define the compound Poisson process

Q(t) =

N(t)∑

i=1

Yi, t ≥ 0. (11.3.1)

The jumps in Q(t) occur at the same times as the jumps in N(t), but whereas the
jumps in N(t) are always of size 1, the jumps in Q(t) are of random size. The first
jump is of size Y1, the second of size Y2, etc. Figure 11.3.1 shows one path of a
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compound Poisson process.

Like the simple Poisson process N(t), the increments of the compound Poisson
process Q(t) are independent. In particular, for 0 ≤ s < t,

Q(s) =

N(s)∑

i=1

Yi,

which sums up the first N(s) jumps, and

Q(t)−Q(s) =

N(t)∑

i=N(s)+1

Yi,

which sums up jumps N(s) + 1 to N(t), are independent. Moreover, Q(t)−Q(s) has
the same distribution as Q(t − s) because N(t) − N(s) has the same distribution as
N(t− s).

The mean of the compound Poisson process is

EQ(t) =
∞∑

k=0

E

[
k∑

i=1

Yi

∣∣∣∣∣ N(t) = k

]
P{N(t) = k}

=
∞∑

k=0

βk
(λt)k

k!
e−λt = βλte−λt

∞∑

k=0

(λt)k−1

(k − 1)!
= βλt.

On average, there are λt jumps in the time interval [0, t], the average jump size is β,
and the number of jumps is independent of the size of the jumps. Hence, EQ(t) is the
product βλt.

Theorem 11.3.1. Let Q(t) be the compound Poisson process defined above. Then the
compensated compound Poisson process

Q(t)− βλt

is a martingale.
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Proof. Let 0 ≤ s < t be given. Because the increment Q(t)− Q(s) is independent of
F(s) and has mean βλ(t− s), we have

E[Q(t)− βλt|F(s)] = E[Q(t)−Q(s)|F(s)] + Q(s)− βλt

= βλ(t− s) + Q(s)− βλt

= Q(s)− βλs.

Just like a Poisson process, a compound Poisson process has stationary indepen-
dent increments. We give the precise statement below.

Theorem 11.3.2. Let Q(t) be a compound Poisson process and let 0 = t0 < t1 < t2 <

· · · < tn be given. The increments

Q(t1)−Q(t0), Q(t2)−Q(t1), . . . , Q(tn)−Q(tn−1),

are independent and stationary. In particular, the distribution of Q(tj) − Q(tj−1) is
the same as the distribution of Q(tj − tj−1).

11.3.2 Moment-Generating Function

In Theorem 11.3.2, we did not write an explicit formula for the distribution of Q(tj −
tj−1) because the formula for the density or probability mass function of this ran-
dom variable is quite complicated. However, the formula for its moment-generating
function is simple. For this reason, we use moment generating functions rather than
densities or probability mass functions in much of what follows.

Let Q(t) be the compound Poisson process defined by (11.3.1). Denote the moment-
generating function of the random variable Yi by

ϕY (u) = EeuYi .

This does not depend on the index i because Y1, Y2, . . . all have the same distribution.
The moment generating function for the compound Poisson process Q(t) is

ϕQ(t)(u) = EeuQ(t)

= E exp



u

N(t)∑

i=1

Yi





= P{N(t) = 0}+
∞∑

k=1

E exp

{
u

k∑

i=1

Yi

∣∣∣∣∣ N(t) = k

}
P{N(t) = k}
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= P{N(t) = 0}+
∞∑

k=1

E exp

{
u

k∑

i=1

Yi

}
P{N(t) = k}

= e−λt +
∞∑

k=1

EeuY1EeuY2 · · ·EeuYk
(λt)k

k!
e−λt

= e−λt + e−λt
∞∑

k=1

(
ϕY (u)λt

)k

k!

= e−λt
∞∑

k=0

(
ϕY (u)λt

)k

k!

= exp
{
λt

(
ϕY (u)− 1

)}
.

(11.3.2)

If the random variables Yi are not really random but rather always take the constant
value y, then the compound Poisson process Q(t) is actually yN(t) and ϕY (u) = euy.
It follows that y times a Poisson process has the moment-generating function

ϕyN(t)(u) = EeuyN(t) = exp{λt(euy − 1)}. (11.3.3)

When y = 1, we have the Poisson process, whose moment-generating function is
thus

ϕN(t)(u) = EeuN(t) = exp{λt(eu − 1)}. (11.3.4)

Finally, consider the case when Yi takes one of finitely many possible nonzero
values y1, y2, . . . , yM , with p(ym) = P{Yi = ym} so that p(ym) > 0 for every m and∑M

m=1 p(ym) = 1. Then ϕY (u) =
∑M

m=1 p(ym)euym . It follows from (11.3.2) that

ϕQ(t)(u) = exp

{
λt

(
M∑

m=1

p(ym)euym − 1

)}

= exp

{
λt

M∑

m=1

p(ym) (euym − 1)

}

= exp
{
λp(y1)t (euy1 − 1)

}
exp

{
λp(y2)t (euy2 − 1)

} · · · exp
{
λp(yM )t (euyM − 1)

}
.

(11.3.5)

This last expression is the product of the moment generating-functions for M scaled
Poisson processes, the mth process having intensity λp(ym) and jump size ym (see
(11.3.3)). This observation leads to the following theorem.

Theorem 11.3.3 (Decomposition of a compound Poisson process). Let y1, y2, . . . , yM

be a finite set of nonzero numbers, and let p(y1), p(y2), . . . , p(yM ) be positive numbers
that sum to 1. Let λ > 0 be given, and let N1(t), N2(t), . . . , NM (t) be independent
Poisson processes, each Nm(t), having intensity λp(ym). Define

Q(t) =
M∑

m=1

ymNm(t), t ≥ 0. (11.3.6)

Then Q(t) is a compound Poisson process. In particular, if Y 1 is the size of the first
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jump of Q(t), Y 2 is the size of the second jump, etc., and

N(t) =
M∑

m=1

Nm(t), t ≥ 0.

is the total number of jumps on the time interval (0, t], then N(t) is a Poisson process
with intensity λ, the random variables Y 1, Y 2, . . . are independent with P{Y i = ym} =

p(ym) for m = 1, . . . , M , the random variables Y 1, . . . , Y M are independent of N(t),
and

Q(t) =

N(t)∑

i=0

Y i, t ≥ 0.

OUTLINE OF PROOF: According to (11.3.3), for each m, the characteristic function
of ymNm(t) is

ϕymNm(t)(u) = exp{λp(ym)t(euym − 1)}.
With Q(t) defined by (11.3.6), we use the fact that N1(t), N2(t), . . . NM (t) are inde-
pendent of one another to write

ϕQ(t)(u) = E exp

{
u

M∑

m=1

ymNm(t)

}

= Eeuy1N1(t)Eeuy2N2(t) · · ·EeuyMNM (t)

= ϕy1N1(t)
(u)ϕy2N2(t)

(u) · · ·ϕyMNM (t)(u)

= exp{λp(y1)t(e
uy1 − 1)} exp{λp(y2)t(e

uy2 − 1)} · · · exp{λp(yM )t(euyM − 1)},

which is the right-hand side of (11.3.5). It follows that the random variable Q(t) of
(11.3.6) has the same distribution as the random variable Q(t) appearing on the left-
hand side of (11.3.5). With a bit more work, one can show that the distribution of the
whole path of Q defined by (11.3.6) agrees with the distribution of the whole path of
the process Q appearing on the left-hand side of (11.3.5).

Recall that the process Q appearing on the left-hand side of (11.3.5) is the com-
pound Poisson process defined by (11.3.1). For this process N(t), the total number of
jumps by time t is Poisson with intensity λ, and the sizes of the jumps, Y1, Y2, . . ., are
identically distributed random variables, independent of one another and indepen-
dent of N(t), and with P{Yi = ym} = p(ym) for m = 1, . . . , M . Because the processes
Q and Q have the same distribution, these statements must also be true for the total
number of jumps and the sizes of the jumps of the process Q of (11.3.6), which is
what the theorem asserts.

The substance of Theorem 11.3.3 is that there are two equivalent ways of regarding
a compound Poisson process that has only finitely many possible jump sizes. It can
be thought of as a single Poisson process in which the size-one jumps are replaced
by jumps of random size. Alternatively, it can be regarded as a sum of independent
Poisson processes in each of which the size-one jumps are replaced by jumps of a
fixed size. We restate Theorem 11.3.3 in a way designed to make this more clear.
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Corollary 11.3.4. Let y1, . . . , yM be a finite set of nonzero numbers, and let p(y1), . . . , p(yM )

be positive numbers that sum to 1. Let Y1, T2, . . . be a sequence of independent, iden-
tically distributed random variables with P{Yi = ym} = p(ym), m = 1, . . . , M . Let
N(t) be a Poisson process and define the compound Poisson process

Q(t) =

N(t)∑

i=1

Yi.

For m = 1, . . . , M , let Nm(t) denote the number of jumps in Q of size ym up to and
including time t. Then

N(t) =
M∑

m=1

Nm(t) and Q(t) =
M∑

m=1

ymNm(t).

The processes N1, . . . , NM defined this way are independent Poisson processes, and
each Nm has intensity λp(ym).

11.4 Jump Processes and Their Integrals

In this section, we introduce the stochastic integral when the integrator is a process
with jumps, and we develop properties of this integral. We shall have a Brownian
motion and Poisson and compound Poisson processes. There will always be a single
filtration associated with all of them, in the sense of the following definition.

Definition 11.4.1. Let (Ω,F ,P) be a probability space, and let F(t), t ≥ 0, be a
filtration on this space. We say that a Brownian motion W is a Brownian motion
relative to this filtration if W (t) is F(t)-measurable for every t and for every u > t

the increment W (u) −W (t) is independent of F(t). Similarly, we say that a Poisson
process N is a Poisson process relative to this filtration if N(t) is F(t)-measurable
for every t and for every u > t the increment N(u) − N(t) is independent of F(t).
Finally, we say that a compound Poisson process Q is a compound Poisson process
relative to this filtration if Q(t) is F(t)-measurable for every t and for every u > t the
increment Q(u)−Q(t) is independent of F(t).

11.4.1 Jump Processes

We wish to define the stochastic integral
∫ t

0
Φ(s)dX(s),

where the integrator X can have jumps. Let (Ω,F ,P) be a probability space on which
is given a filtration F(t), t ≥ 0. All processes will be adapted to this filtration.
Furthermore, the integrators we consider in this section will be right-continuous and
of the form

X(t) = X(0) + I(t) + R(t) + J(t). (11.4.1)
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In (11.4.1), X(0) is a nonrandom initial condition. The process

I(t) =

∫ t

0
Γ(s)dW (s) (11.4.2)

is an Itô integral of an adapted process Γ(s) with respect to a Brownian motion rela-
tive to the filtration. We shall call I(t) the Itô integral part of X. The process R(t) in
(11.4.1) is a Riemann integral1

R(t) =

∫ t

0
Θ(s)ds (11.4.3)

for some adapted process Θ(t). We shall call R(t) the Riemann integral part of X.
The continuous part of X(t) is defined to be

Xc(t) = X(0) + I(t) + R(t) = X(0) +

∫ t

0
Γ(s)dW (s) +

∫ t

0
Θ(s)ds.

The quadratic variation of this process is

[Xc, Xc](t) =

∫ t

0
Γ2(s)ds,

an equation that we write in differential form as

dXc(t)dXc(t) = Γ2(t)dt.

Finally, in (11.4.1), J(t) is an adapted, right-continuous pure jump process with
J(0) = 0. By right-continuous, we mean that J(t) = lims↓t J(s) for all t ≥ 0. The
left-continuous version of such a process will be denoted J(t−). In other words, if
J has a jump at time t, then J(t) is the value of J immediately after the jump, and
J(t−) is its value immediately before the jump. We assume that J does not jump
at time zero, has only finitely many jumps on each finite time interval (0, T ], and
is constant between jumps. The constancy between jumps is what justifies calling
J(t) a pure jump process. A Poisson process and a compound Poisson process have
this property. A compensated Poisson process does not because it decreases between
jumps. We shall call J(t) the pure jump part of X.

Definition 11.4.2. A process X(t) of the form (11.4.1), with lto integral part I(t),
Riemann integral part R(t), and pure jump part J(t) as described above, will be
called a jump process. The continuous part of this process is Xc(t) = X(0) + I(t) +

R(t).

A jump process in this book is not the most general possible because we permit
only finitely many jumps in finite time. For many applications, these processes are
sufficient. Furthermore, the stochastic calculus for these processes gives a good indi-
cation of how the stochastic calculus works for the more general case.

1One usually takes this to be a Lebesgue integral with respect to dt, but for all the cases we consider, the
Riemann integral is defined and agrees with the Lebesgue integral.
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A jump process X(t) is right-continuous and adapted. Because both I(t) and R(t)

are continuous, the left-continuous version of X(t) is

X(t−) = X(0) + I(t) + R(t) + J(t−).

The jump size of X at time t is denoted

∆X(t) = X(t)−X(t−).

If X is continuous at t, then ∆X(t) = 0. If X has a jump at time t, then ∆X(t) is
the size of this jump, which is also ∆J(t) = J(t) − J(t−), the size of the jump in J .
Whenever X(0−) appears in the formulas below, we mean it to be X(0). In particular,
∆X(0) = 0; there is no jump at time zero.

Theorem 11.4.3. Let X(t) be a jump process of the form (11.4.1)-(11.4.3) and let
Φ(s) be an adapted process. The stochastic integral of Φ with respect to X is defined
to be

∫ t

0
Φ(s)dX(s) =

∫ t

0
Φ(s)Γ(s)dW (s) +

∫ t

0
Φ(s)Θ(s)ds +

∑

0<s≤t

Γ(s)∆J(s). (11.4.4)

In differential notation,

Φ(t)dX(t) = Φ(t)dI(t) + Φ(t)dR(t) + Φ(t)dJ(t)

= Φ(t)dXc(t) + Φ(t)dJ(t),

where
Φ(t)dI(t) = Φ(t)Γ(t)dW (t), Φ(t)dR(t) = Φ(t)Θ(t)dt,

Φ(t)dXc(t) = Φ(t)Γ(t)dW (t) + Φ(t)Θ(t)dt.

Example 11.4.4.

Let X(t) = M(t) = N(t)− λt, where N(t) is a Poisson process with intensity λ so
that M(t) is the compensated Poisson process of Theorem 11.2.4. In the terminology
of Definition 11.4.2, I(t) = 0, Xc(t) = R(t) = −λt, and J(t) = N(t). Let Φ(s) =

∆N(s) (i.e., Φ(s) is 1 if N has a jump at time s, and Φ(s) is zero otherwise). For
s ∈ [0, t], Φ(s) is zero except for finitely many values of s, and thus

∫ t

0
Φ(s)dXc(s) =

∫ t

0
Φ(s)dR(s) = −λ

∫ t

0
Φ(s)ds = 0.

However, ∫ t

0
Φ(s)dN(s) =

∑

0<s≤t

(
∆N(s)

)2
= N(t).

Therefore,
∫ t

0
Φ(s)dM(s) = −λ

∫ t

0
Φ(s)ds +

∫ t

0
Φ(s)dN(s) = N(t). (11.4.5)

¤
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For Brownian motion W (t), we defined the stochastic integral

I(t) =

∫ t

0
Γ(s)dW (s)

in a way that caused I(t) to be a martingale. To define the stochastic integral, we
approximated the integrand Φ(s) by simple integrands Φn(s), wrote down a formula
for

In(t) =

∫ t

0
Γn(s)dW (s),

and verified that, for each n, In(t) is a martingale. We defined I(t) as the limit of
In(t) as n → ∞ and, because it is the limit of martingales, I(t) also is a martingale.
The only conditions we needed on Φ(s) for this construction were that it be adapted
and that it satisfy the technical condition E

∫ t
0 Γ2(s)ds < ∞ for every t > 0.

This construction makes sense for finance because we ultimately replace Φ(s) by
a position in an asset and replace W (s) by the price of that asset. If the asset price
is a martingale (i.e., it is pure volatility with no underlying trend), then the gain we
make from investing in the asset should also be a martingale. The stochastic integral
is this gain.

In the context of processes that can jump, we still want the stochastic integral with
respect to a martingale to be a martingale. However, we see in Example 11.4.4 that
this is not always the case. The integrator M(t) in that example is a martingale (see
Theorem 11.2.4), but the integral N(t) in (11.4.5) is not because it goes up but cannot
go down.

An agent who invests in the compensated Poisson process M(t) by choosing his
position according to the formula Φ(s) = ∆N(s) has created an arbitrage. To do this,
he is holding a zero position at all times except the jump times of N(s), which are
also the jump times of M(s), at which times he holds a position one. Because the
jumps in M(s) are always up and our investor holds a long position at exactly the
jump times, he will reap the upside gain from all these jumps and have no possibility
of loss.

In reality, the portfolio process Φ(s) = ∆N(s) cannot be implemented because
investors must take positions before jumps occur. No one without insider information
can arrange consistently to take a position exactly at the jump times. However, Φ(s)

depends only on the path of the underlying process M up to and including at time s

and does not depend on the future of the path. That is the definition of adapted we
used when constructing stochastic integrals with respect to Brownian motion. Here
we see that it is not enough to require the integrand to be adapted. A mathematically
convenient way of formulating the extra condition is to insist that our integrands be
left-continuous. That rules out Φ(s) = ∆N(s). In the time interval between jumps,
this process is zero, and a left-continuous process that is zero between jumps must
also be zero at the jump times.

We give the following theorem without proof.
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Theorem 11.4.5. Assume that the jump process X(s) of (11.4.1)-(11.4.3) is a mar-
tingale, the integrand Φ(s) is left-continuous and adapted, and

E
∫ t

0
Γ2(s)Φ2(s)ds < ∞ for all t ≥ 0.

Then the stochastic integral
∫ t
0 Φ(s)dX(s) is also a martingale.

The mathematical literature on integration with respect to jump processes gives a
slightly more general version of Theorem 11.4.5 in which the integrand is required
only to be predictable. Roughly speaking, such processes are those that can be gotten
as the limit of left-continuous processes. We shall not need this more general concept.

Note that although we require the integrand Φ(s) to be left-continuous in Theorem
11.4.5, the integrator X(t) is always taken to be right-continuous, and so the integral∫ t
0 Φ(s)dX(s) will be right-continuous in the upper limit of integration t. The integral

jumps whenever X jumps and Φ is simultaneously not zero. The value of the integral
at time t includes the jump at time t if there is a jump; see (11.4.4).

Example 11.4.6.

Let N(t) be a Poisson process with intensity λ, let M(t) = N(t) − λt be the com-
pensated Poisson process, and let

Φ(s) = I[0,S1](s)

be 1 up to and including the time of the first jump and zero thereafter. Note that Φ is
left-continuous. We have

∫ t

0
Φ(s)dM(s) =





−λt, 0 ≤ t < S1,

1− λS1, t ≥ S1

= I[S1,∞)(t)− λ(t ∧ S1)

(11.4.6)

The notation t ∧ S1 in (11.4.6) denotes the minimum of t and S1. See Figure 11.4.1.

We verify the martingale property for the process I[S1,∞)(t) − λ(t ∧ S1) by direct
computation. For 0 ≤ s < t, we have

E
[
I[S1,∞)(t)− λ(t ∧ S1)|F(s)

]
= P{S1 ≤ t|F(s)} − λE[t ∧ S1|F(s)]. (11.4.7)
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If S1 ≤ s, then at time s we know the value of S1 and the conditional expectations
above give us the random variables being estimated. In particular, the right-hand side
of (11.4.7) is 1− λs = I[S1,∞)(s)− λ(s ∧ S1), and the martingale property is satisfied.
On the other hand, if S1 > s, then

P{S1 ≤ t|F(s)} = 1− P{S1 > t|S1 > s} = 1− e−λ(t−s), (11.4.8)

where we have used the fact that S1 is exponentially distributed and used the mem-
orylessness (11.2.3) of exponential random variables. In fact, the memorylessness
says that, conditioned on S1 > s, the density of S1 is

− ∂

∂u
P{S1 > u|S1 > s} = − ∂

∂u
e−λ(u−s) = λe−λ(u−s), u > s.

It follows that, when S1 > s,

λE[λ ∧ S1|F(s)] = λE[λ ∧ S1|S1 > s]

= λ2

∫ ∞

s
(t ∧ u)e−λ(u−s)du

= λ2

∫ t

s
ue−λ(u−s)du + λ2

∫ ∞

t
te−λ(u−s)du

= −λue−λ(u−s)
∣∣∣
u=t

u=s
+ λ

∫ t

s
e−λ(u−s)du− λte−λ(u−s)

∣∣∣
u=∞
u=t

= λs− λte−λ(t−s) − e−λ(u−s)
∣∣∣
u=t

u=s
+ λte−λ(t−s)

= λs− e−λ(t−s) + 1.

(11.4.9)

Subtracting (11.4.9) from (11.4.8), we obtain in the case S1 > s that

E
[
I[S1,∞)(t)− λ(t ∧ S1)|F(s)

]
= −λs = I[S1,∞)(s)− λ(s ∧ S1).

This completes the verification of the martingale property for the stochastic integral
in (11.4.6).

Note that if we had taken the integrand in (11.4.6) to be I[0,S1)(t), which is right-
continuous rather than left-continuous at S1, then we would have gotten

∫ t

0
I[0,S1)(u)dM(u) = −λ(t ∧ S1). (11.4.10)

which is strictly decreasing in t. Consequently, the integral (11.4.10) obtained from
the right-continuous integrand I[0,S1)(t) is not a martingale.

¤

11.4.2 Quadratic Variation

In order to write down the Itô-Doeblin formula for processes with jumps, we need to
discuss quadratic variation. Let X(t) be a jump process. To compute the quadratic
variation of X on [0, T ], we choose 0 = t0 < t1 < t2 < · · · < tn = T , denote the set
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of these times by Π = {t0, t1, . . . , tn}, denote the length of the longest subinterval by
‖Π‖ = maxj(tj+1 − tj), and define

QΠ(X) =
n−1∑

j=0

(
X(tj+1 −X(tj))

)2
.

The quadratic variation of X on [0, T ] is defined to be

[X,X](T ) = lim
‖Π‖→0

QΠ(X),

where of course as ‖Π‖ → 0 the number of points in Π must approach infinity.
In general, [X,X](T ) can be random (i.e., can depend on the path of X). However,

in the case of Brownian motion, we know that [W,W ](T ) = T does not depend on the
path. In the case of an Itô integral I(T ) =

∫ T
0 Γ(s)dW (s) with respect to Brownian

motion, [I, I](T ) =
∫ T
0 Γ2(s)ds can depend on the path because Γ(s) can depend on

the path.
We will also need the concept of cross variation. Let X1(t) and X2(t) be jump

processes. We define

CΠ(X1, X2) =
n−1∑

j=0

(
X1(tj+1)−X1(tj)

)(
X2(tj+1)−X2(tj)

)

and
[X1, X2](T ) = lim

‖Π‖→0
CΠ(X1, X2).

Theorem 11.4.7. Let X1(t) = X1(0) + I1(t) + R1(t) + J1(t) be a jump process, where
I1(t) =

∫ t
0 Γ1(s)dW (s), R1(t) =

∫ t
0 Θ1(s)ds, and J1(t) is a right-continuous pure jump

process. Then Xc
1(t) = X1(0) + I1(t) + R1(t) and

[X1, X1](T ) = [Xc
1, X

c
1](T ) + [J1, J1](T ) =

∫ T

0
Γ2

1(s)ds +
∑

0<s≤T

(
∆J1(s)

)2
. (11.4.11)

Let X2(t) = X2(0) + I2(t) + R2(t) + J2(t) be another jump process, where I2(t) =∫ t
0 Γ2(s)dW (s), R2(t) =

∫ t
0 Θ2(s)ds, and J2(t) is a right-continuous pure jump pro-

cess. Then Xc
2(t) = X2(0) + I2(t) + R2(t), and

[X1, X2](T ) = [Xc
1, X

c
2](T ) + [J1, J2](T )

=

∫ T

0
Γ1(s)Γ2(s)ds +

∑

0<s≤T

∆J1(s)∆J2(s).
(11.4.12)

Proof. We only need to prove (11.4.12) since (11.4.11) is the special case of (11.4.12)
in which X2 = X1. We have

CΠ(X1, X2) =
n−1∑

j=0

(
X1(tj+1)−X1(tj)

)(
X2(tj+1)−X2(tj)

)

=
n−1∑

j=0

(
Xc

1(tj+1)−Xc
1(tj) + J1(tj+1)− J1(tj)

)

× (
Xc

2(tj+1)−Xc
2(tj) + J2(tj+1)− J2(tj)

)
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=
n−1∑

j=0

(
Xc

1(tj+1)−Xc
1(tj)

)(
Xc

2(tj+1)−Xc
2(tj)

)

+
n−1∑

j=0

(
Xc

1(tj+1)−Xc
1(tj)

)(
J2(tj+1)− J2(tj)

)

+
n−1∑

j=0

(
J1(tj+1)− J1(tj)

)(
Xc

2(tj+1)−Xc
2(tj)

)

+
n−1∑

j=0

(
J1(tj+1)− J1(tj)

)(
J2(tj+1)− J2(tj)

)
.

(11.4.13)

We know from the theory of continuous processes that

lim
‖Π‖→0

n−1∑

j=0

(
Xc

1(tj+1)−Xc
1(tj)

)(
Xc

2(tj+1)−Xc
2(tj)

)
= [Xc

1, X
c
2](T ) =

∫ t

0
Γ1(s)Γ2(s)ds.

We shall show that the second and third terms appearing on the right-hand side of
(11.4.13) have limit zero as ‖Π‖ → 0, and the fourth term has limit

[J1, J2](T ) =
∑

0<s≤T

∆J1(s)∆J2(s).

We consider the second term on the right-hand side of (11.4.13):

∣∣∣∣∣∣

n−1∑

j=0

(
Xc

1(tj+1)−Xc
1(tj)

)(
J2(tj+1)− J2(tj)

)
∣∣∣∣∣∣

≤ max
0≤j<n−1

|Xc
1(tj+1)−Xc

1(tj)| ·
n−1∑

j=0

|J2(tj+1)− J2(tj)|

≤ max
0≤j<n−1

|Xc
1(tj+1)−Xc

1(tj)| ·
∑

0<s≤T

|∆J2(s)|.

As ‖Π‖ → 0, the factor lim0≤j≤n−1 |Xc
1(tj+1)−Xc

1(tj)| has limit zero, whereas
∑

0<s≤T |∆J2(s)|
is a finite number not depending on Π. Hence, the second term on the right-hand side
of (11.4.13) has limit zero as ‖Π‖ → 0. Similarly, the third term on the right-hand
side of (11.4.13) has limit zero.

Let us fix an arbitrary ω ∈ Ω, which fixes the paths of these processes, and choose
the time points in Π so close together that there is at most one jump of J1 in each
interval (tj , tj+1], at most one jump of J2 in each interval (tj , tj+1], and if J1 and J2

have a jump in the same interval, then these jumps are simultaneous. Let A1 denote
the set of indices j for which (tj , tj+1] contains a jump of J1, and let A2 denote the
set of indices j for which (tj , tj+1] contains a jump of J2. The fourth term on the
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right-hand side of (11.4.13) is

n−1∑

j=0

(
J1(tj+1)− J1(tj)

)(
J2(tj+1)− J2(tj)

)

=
∑

j∈A1∩A2

(
J1(tj+1)− J1(tj)

)(
J2(tj+1)− J2(tj)

)

=
∑

0<s≤t

∆J1(s)∆J2(s).

This completes the proof.

Remark 11.4.8. In differential notation, equation (11.4.12) of Theorem 11.4.7 says
that if

X1(t) = X1(0) + Xc
1(t) + J1(t), X2(t) = X2(0) + Xc

2(t) + J2(t),

then
dX1(t)dX2(t) = dXc

1(t)dXc
2(t) + dJ1(t)dJ2(t).

In particular,
dXc

1(t)dJ2(t) = dXc
2(t)dJ1(t) = 0;

the cross variation between a continuous process and a pure jump process is zero. It
follows that the cross variation between a Brownian motion and a Poisson process is
zero.

More generally, the cross variation between two processes is zero if one of them
is continuous and the other has no Itô integral part. In order to get a nonzero cross
variation, both processes must have a dW term or the processes must have simulta-
neous jumps. This means that the cross variation between a Brownian motion and a
compensated Poisson process is also zero. We state this last fact as a corollary.

¤

Corollary 11.4.9. Let W (t) be a Brownian motion and M(t) = N(t) − λt be a com-
pensated Poisson process relative to the same filtration F(t) (Definition 11.4.1). Then

[W,M ](t) = 0, t ≥ 0.

Proof. In Theorem 11.4.7, take I1(t) = W (t), R1(t) = J1(t) = 0 and take I2(t) = 0,
R2(t) = −λt, and J2(t) = N(t).

We shall see in Corollary 11.5.3 that the equation [W,M ](t) = 0 implies that W

and M are independent, and hence W and N are independent. A Brownian motion
and a Poisson process relative to the same filtration must be independent.

Corollary 11.4.10. For i = 1, 2, let Xi(t) be an adapted, right-continuous jump pro-
cess. In other words, Xi(t) = Xi(0)+Ii(t)+Ri(t)+Ji(t), where Ii(t) =

∫ t
0 Γi(s)dW (s),
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Ri(t) =
∫ t
0 Θi(s)ds, and Ji(t) is a pure jump process. Let X̃i(0) be a constant, let Φi(s)

be an adapted process, and set

X̃i(t) = X̃i(0) +

∫ t

0
Φi(s)dXi(s).

By definition,
X̃i(t) = X̃i(0) + Ĩi(t) + R̃i(t) + J̃i(t),

where

Ĩi(t) =

∫ t

0
Φi(s)Γi(s)dW (s), R̃i(t) =

∫ t

0
Φi(s)Θi(s)ds,

J̃i(t) =
∑

0<s≤t

Φi(s)∆Ji(s).

Note that X̃i(t) is a jump process with continuous part X̃c
i (t) = X̃i(0) + Ĩi(t) + R̃i(t)

and pure jump part J̃i(t). We have

[X̃1, X̃2](t) = [X̃c
1, X̃

c
2](t) + [J̃1, J̃2](t)

=

∫ t

0
Φ1(s)Φ2(s)Γ1(s)Γ2(s)ds +

∑

0<s≤t

Φ1(s)Φ2(s)∆J1(s)∆J2(s)

=

∫ t

0
Φ1(s)Φ2(s)d[X1, X2](s).

Remark 11.4.11. Corollary 11.4.10 may be rewritten using differential notation. The
corollary says that if

dX̃1 = Φ1(t)dX1(t) and dX̃2 = Φ2(t)dX2(t)

then
dX̃1(t)dX̃2(t) = Φ1(t)Φ2(t)dX1(t)dX2(t).

11.5 Stochastic Calculus for Jump Processes

11.5.1 Itô-Doeblin Formula for One Jump Process

For a continuous-path process, the Itô-Doeblin formula is the following. Let

Xc(t) = Xc(0) +

∫ t

0
Γ(s)dW (s) +

∫ t

0
Θ(s)ds, (11.5.1)

where Γ(s) and Θ(s) are adapted processes. In differential notation, we write

dXc(s) = Γ(s)dW (s) + Θ(s)ds, dXc(s)dXc(s) = Γ2(s)ds.

Let f(x) be a function whose first and second derivatives are defined and continuous.
Then

df
(
Xc(s)

)
= f ′

(
Xc(s)

)
dXc(s) +

1

2
f ′′

(
Xc(s)

)
dXc(s)dXc(s)

= f ′
(
Xc(s)

)
Γ(s)dW (s) + f ′

(
Xc(s)

)
Θ(s)ds +

1

2
f ′′

(
Xc(s)

)
Γ2(s)ds.

(11.5.2)
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We write this in integral form as

f
(
Xc(t)

)
= f

(
Xc(0)

)
+

∫ t

0
f ′

(
Xc(s)

)
Γ(s)dW (s) +

∫ t

0
f
(
Xc(s)

)
Θ(s)ds

+
1

2

∫ t

0
f ′′

(
Xc(s)

)
Γ2(s)ds.

We now add a right-continuous pure jump term J into (11.5.1), setting

X(t) = X(0) + I(t) + R(t) + J(t),

where I(t) =
∫ t
0 Γ(s)dW (s) and R(t) =

∫ t
0 Θ(s)ds. As usual, we denote by Xc(t) =

X(0) + I(t) + R(t) the continuous part of X(t). Between jumps of J , the analogue of
(11.5.2) holds:

df
(
X(s)

)
= f ′

(
X(s)

)
dX(s) +

1

2
f ′′

(
X(s)

)
dX(s)dX(s)

= f ′
(
X(s)

)
Γ(s)dW (s) + f ′

(
X(s)

)
Θ(s)ds +

1

2
f ′′

(
X(s)

)
Γ2(s)ds.

= f ′
(
X(s)

)
dXc(s) +

1

2
f ′′

(
X(s)

)
dXc(s)dXc(s).

(11.5.3)

When there is a jump in X from X(s−) to X(s), there is typically also a jump in
f(X) from f(X(s−)) to f(X(s)). When we integrate both sides of (11.5.3) from 0 to
t, we must add in all the jumps that occur between these two times. This leads to the
following theorem.

Theorem 11.5.1 (Itô-Doeblin formula for one jump process). Let X(t) be a jump
process and f(x) a function for which f ′(x) and f ′′(x) are defined and continuous.
Then

f
(
X(t)

)
= f

(
X(0)

)
+

∫ t

0
f ′

(
X(s)

)
dXc(s) +

1

2

∫ t

0
f ′′

(
X(s)

)
dXc(s)dXc(s)

+
∑

0<s≤t

[
f
(
X(s)

)− f
(
X(s−)

)]
.

(11.5.4)

Proof. Fix ω ∈ Ω, which fixes the path of X, and let 0 < τ1 < τ2 < · · · < τn−1 < t

be the jump times in [0, t) of this path of the process X. We set τ0 = 0, which is not
a jump time, and τn = t, which may or may not be a jump time. Whenever u < v are
both in the same interval (τj , τj+1), there is no jump between times u and v, and the
Itô-Doeblin formula (11.5.3) for continuous processes applies. We thus have

f
(
X(v)

)− f
(
X(u)

)
=

∫ v

u
f ′

(
X(s)

)
dXc(s) +

1

2

∫ v

u
f ′′

(
X(s)

)
dXc(s)dXc(s).

Letting u ↓ τj and v ↑ τj+1 and using the right-continuity of X, we conclude that

f
(
X(τj+1−)

)− f
(
X(τj)

)
=

∫ τj+1

τj

f ′
(
X(s)

)
dXc(s)+

1

2

∫ τj+1

τj

f ′′
(
X(s)

)
dXc(s)dXc(s).

(11.5.5)
(Note here that

lim
v↑τj+1

∫ v

u
f ′

(
X(s)

)
dXc(s) =

∫ τj+1

v
f ′

(
X(s)

)
dXc(s),
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but this is not the case if we replace dXc(s) by dX(s) in this equation. If we made
this replacement, the jump in X at time τj+1 would appear on the right-hand side
of the equation but not on the left-hand side. It is for this reason that we integrate
with respect to dXc(s) in (11.5.5).) We now add the jump in f(X) at time τj+1 into
(11.5.5), obtaining thereby

f
(
X(τj+1)

)− f
(
X(τj)

)

=

∫ τj+1

τj

f ′
(
X(s)

)
dXc(s) +

1

2

∫ tj+1

τj

f ′′
(
X(s)

)
dXc(s)dXc(s).

+ f
(
X(τj+1)

)− f
(
X(τj+1−)

)
.

Summing over j = 0, . . . , n− 1, we obtain

f
(
X(t)

)− f
(
X(0)

)
=

n−1∑

j=0

[
f
(
X(τj+1)

)− f
(
X(τj)

)]

=

∫ t

0
f ′

(
X(s)

)
dXc(s) +

1

2

∫ t

0
f ′′

(
X(s)

)
dXc(s)dXc(s)

+
n−1∑

j=0

[
f
(
X(τj+1)

)− f
(
X(τj+1−)

)]
,

which is (11.5.4). Note in this connection that if there is no jump at τn = t, then the
last term in the sum on the right-hand side, f(X(τn))− f(X(τn−)), is zero.

It is not always possible to rewrite (11.5.4) in differential form because it is not
always possible to find a differential form for the sum of jumps. We provide one case
in which this can be done in the next example.

Example 11.5.2. (Geometric Poisson process).

Consider the geometric Poisson process

S(t) = S(0) exp{N(t) log(σ + 1)− λσt} = S(0)e−λσt(σ + 1)N(t), (11.5.6)

where σ > −1 is a constant. If σ > 0, this process jumps up and moves down between
jumps; if −1 < σ < 0, it jumps down and moves up between jumps. We show that
the process is a martingale.

We may write S(t) = S(0)f(X(t)), where f(x) = ex and

X(t) = N(t) log(σ + 1)− λσt

has continuous part Xc(t) = −λσt and pure jump part J(t) = N(t) log(σ + 1). Ac-
cording to the Itô-Doeblin formula for jump processes,

S(t) = f
(
X(t)

)

= f
(
X(0)

)− λσ

∫ t

0
f ′

(
X(u)

)
du +

∑

0<u≤t

[
f
(
X(u)

)− f
(
X(u−)

)]

= S(0)− λσ

∫ t

0
S(u)du +

∑

0<u≤t

[S(u)− S(u−)].

(11.5.7)
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If there is a jump at time u, then S(u) = (σ + 1)S(u−). Therefore,

S(u)− S(u−) = σS(u−) (11.5.8)

whenever there is a jump at time u, and of course S(u) − S(u−) = 0 if there is no
jump at time u. In either case, we have

S(u)− S(u−) = σS(u−)∆N(u).

This observation permits us to rewrite the sum on the right-hand side of (11.5.7) as

∑

0<u≤t

[S(u)− S(u−)] =
∑

0<u≤t

σS(u−)∆N(u) = σ

∫ t

0
S(u−)dN(u).

It does not matter whether we write the Riemann integral on the right- hand side of
(11.5.7) as

∫ t
0 S(u)du or as

∫ t
0 S(u−)du. The integrands in these two integrals differ at

only finitely many times, and when we integrate with respect to du, these differences
do not matter. Therefore, we may rewrite (11.5.7) as

S(t) = S(0)− λσ

∫ t

0
S(u−)du + σ

∫ t

0
S(u−)dN(u)

= S(0) + σ

∫ t

0
S(u−)dM(u),

where M is the compensated Poisson process M(u) = N(u) − λu, which is a mar-
tingale. Because the integrand S(u−) is left-continuous, Theorem 11.4.5 guarantees
that S(t) is a martingale.

In this case, the Itô-Doeblin formula (11.5.7) has a differential form, namely,

dS(t) = σS(t−)dM(t) = −λσS(t)dt + σS(t−)dN(t). (11.5.9)

We were able to obtain this differential form because in (11.5.8) we were able to
write the jump in f(X) (i.e., the jump in S) at time u in terms of f(X(u−)) (i.e., in
terms of S(u−)).

¤

Corollary 11.5.3. Let W (t) be a Brownian motion and let N(t) be a Poisson process
with intensity λ > 0, both defined on the same probability space (Ω,F ,P) and relative
to the same filtration F(t), t ≥ 0. Then the processes W (t) and N(t) are independent.

KEY STEP IN PROOF: Let u1 and u2 be fixed real numbers and define

Y (t) = exp

{
u1W (t) + u2N(t)− 1

2
u2

1t− λ(eu2 − 1)t

}
.

We use the Itô-Doeblin formula to show that Y is a martingale.
To do this, we define

X(s) = u1W (s) + u2N(s)− 1

2
u2

1s− λ(eu2 − 1)s
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and f(x) = ex, so that Y (s) = f(X(s)). The process X(s) has Itô integral part
I(s) = u1W (s), Riemann integral part R(s) = −1

2u2
1s − λ(eu2 − 1)s, and pure jump

part J(s) = u2N(s). In particular,

dXc(s) = u1dW (s)− 1

2
u2

1ds− λ(eu2 − 1)ds, dXc(s)dXc(s) = u2
1ds.

We next observe that if Y has a jump at time s, then

Y (s) = exp

{
u1W (s) + u2

(
N(s−) + 1

)− 1

2
u2

1s− λ(eu2 − 1)s

}
= Y (s−)eu2 .

Therefore,
Y (s)− Y (s−) =

(
eu2 − 1

)
Y (s−)∆N(s).

According to the Itô-Doeblin formula for jump processes,

Y (t) = f
(
X(t)

)

= f
(
X(0)

)
+

∫ t

0
f ′

(
X(s)

)
dXc(s) +

1

2

∫ t

0
f ′′

(
X(s)

)
dXc(s)dXc(s)

+
∑

0<s≤t

[
f
(
X(s)

)− f
(
X(s−)

)]

= 1 + u1

∫ t

0
Y (s)dW (s)− 1

2
u2

1

∫ t

0
Y (s)ds− λ(eu2 − 1)

∫ t

0
Y (s)ds

+
1

2
u2

1

∫ t

0
Y (s)ds +

∑

0<s≤t

[Y (s)− Y (s−)]

= 1 + u1

∫ t

0
Y (s)dW (s)− λ(eu2 − 1)

∫ t

0
Y (s−)ds + (eu2 − 1)

∫ t

0
Y (s−)dN(s)

= 1 + u1

∫ t

0
Y (s)dW (s) + (eu2 − 1)

∫ t

0
Y (s−)dM(s),

(11.5.10)

where M(s) = N(s) − λs is a compensated Poisson process. Here we have used the
fact that because Y has only finitely many jumps,

∫ t
0 Y (s)ds =

∫ t
0 Y (s−)ds. The Itô

integral
∫ t
0 Y (s)dW (s) in the last line of (11.5.10) is a martingale, and the integral

of the left-continuous process Y (s−) with respect to the martingale M(s) is also.
Therefore, Y is a martingale.

Because Y (0) = 1 and Y is a martingale, we have EY (t) = 1 for all t. In other
words,

E exp

{
u1W (t) + u2N(t)− 1

2
u2

1t− λ(eu2 − 1)t

}
= 1, for all t ≥ 0.

We have obtained the joint moment-generating function formula

Eeu1W (t)+u2N(t) = exp

{
1

2
u2

1t

}
· exp {λt(eu2 − 1)} .

This is the product of the moment-generating function Eeu1W (t) = exp
{

1
2u2

1t
}

for
W (t) (see Exercise 1.6(i)) and the moment-generating function Eeu2W (t) = exp {λt(eu2 − 1)}
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for N(t) (see (11.3.4)). Since the joint moment-generating function factors into the
product of moment-generating functions, the random variables W (t) and N(t) are
independent.

The corollary asserts more than the independence between N(t) and W (t) for fixed
t, saying that the processes N and W are independent (i.e., anything depending only
on the path of W is independent of anything depending only on the path of N). For
example, the corollary asserts that max0≤s≤t W (s) is independent of

∫ t
0 N(s)ds. The

first step in the proof of this statement is the one just given, which shows that the
random variables W (t) and N(t) are independent of each fixed t. The next step,
which we omit, is to show that for any finite set of times 0 ≤ t1 < t2 < · · · < tn, the
vector of random variables

(
W (t1),W (t2), . . . , W (tn)

)
is independent of the vector

of random variables
(
N(t1), N(t2), . . . , N(tn)

)
. The assertion of the corollary follows

from this.

11.5.2 Itô-Doeblin Formula for Multiple Jump Processes

There is a multidimensional version of the Itô-Doeblin formula for jump processes.
We give the two-dimensional version. The formula for higher dimensions follows the
same pattern.

Theorem 11.5.4 (Two-dimensional Itô-Doeblin formula for processes with jumps).
Let X1(t) and X2(t) be jump processes, and let f(t, x1, x2) be a function whose first
and second partial derivatives appearing in the following formula are defined and
are continuous. Then

f
(
t,X1(t), X2(t)

)

= f
(
0, X1(0), X2(0)

)
+

∫ t

0
ft

(
s,X1(s), X2(s)

)
ds

+

∫ t

0
fx1

(
s,X1(s), X2(s)

)
dXc

1(s) +

∫ t

0
fx2

(
s,X1(s), X2(s)

)
dXc

2(s)

+
1

2

∫ t

0
fx1,x1

(
s,X1(s), X2(s)

)
dXc

1(s)dXc
1(s)

+

∫ t

0
fx1,x2

(
s,X1(s), X2(s)

)
dXc

1(s)dXc
2(s)

+
1

2

∫ t

0
fx2,x2

(
s,X1(s), X2(s)

)
dXc

2(s)dXc
2(s)

+
∑

0<s≤t

[
f
(
s,X1(s), X2(s)

)− (
s,X1(s−), X2(s−)

)]
.

Corollary 11.5.5 (Itô’s product rule for jump processes). Let X1(t) and X2(t) be
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jump processes. Then

X1(t)X2(t) = X1(0)X2(0) +

∫ t

0
X2(s)dXc

1(s) +

∫ t

0
X1(s)dXc

2(s)

+ [Xc
1, X

c
2](t) +

∑

0<s≤t

[X1(s), X2(s)−X1(s−), X2(s−)]

= X1(0)X2(0) +

∫ t

0
X2(s−)dX1(s) +

∫ t

0
X1(s−)dX2(s) + [X1, X2](t).

(11.5.11)

Proof. Take f(x1, x2) = x1x2 so that

fx1 = x2, fx2 = x1, fx1x1 = 0, fx1x2 = 1, fx2x2 = 0.

The two-dimensional Itô-Doeblin formula implies

X1(t)X2(t) = X1(0)X2(0) +

∫ t

0
X2(s)dXc

1(s) +

∫ t

0
X1(s)dXc

2(s)

+

∫ t

0
1dXc

1(s)dXc
2(s) +

∑

0<s≤t

[
X1(s)X2(s)−X1(s−)X2(s−)

]
.

(11.5.12)

The notation
∫ t
0 1dXc

1(s)dXc
2(s) in (11.5.12) means [Xc

1, X
c
2](t) (see Remark 11.4.8).

This establishes the first equality in (11.5.11).
To obtain the second equality, we denote by J1(t) = X1(t) − Xc

1(t) and J2(t) =

X2(t)−Xc
2(t) the pure jump parts of X1(t) and X2(t), respectively, and begin with the

last line of (11.5.11), using (11.4.12) to compute

X1(0)X2(0) +

∫ t

0
X2(s−)dX1(s) +

∫ t

0
X1(s−)dX2(s) + [X1, X2](t)

= X1(0)X2(0) +

∫ t

0
X2(s−)dXc

1(s) +

∫ t

0
X2(s−)dJ1(s)

+

∫ t

0
X1(s−)dXc

2(s) +

∫ t

0
X1(s−)dJ2(s)

+ [Xc
1, X

c
2](t) +

∑

0<s≤t

∆J1(s)∆J2(s)

= X1(0)X2(0) +

∫ t

0
X2(s)dXc

1(s) +

∫ t

0
X1(s)dXc

2(s) + [Xc
1, X

c
2](t)

+
∑

0<s≤t

[
X2(s−)∆X1(s) + X1(s−)∆X2(s) + ∆X1(s)∆X2(s)

]
.

(11.5.13)

We have also used the fact that the jumps in Xi(t) are the same as the jumps in Ji(t).
It remains to show that this last sum is the same as the sum

∑

0<s≤t

[
X1(s)X2(s)−X1(s−)X2(s−)

]
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in the second line of (11.5.11). We expand the typical term in the sum in the second
line of (11.5.11):

X1(s)X2(s)−X1(s−)X2(s−)

=
(
X1(s−) + ∆X1(s)

)(
X2(s−) + ∆X2(s)

)−X1(s−)X2(s−)

= X1(s−)X2(s−) + X1(s−)∆X2(s) + ∆X1(s)X2(s−) + ∆X1(s)∆X2(s)−X1(s−)X2(s−)

= X1(s−)∆X2(s) + ∆X1(s)X2(s−) + ∆X1(s)∆X2(s).

This is the typical term in the sum appearing at the end of (11.5.13).

For stochastic calculus without jumps, Girsanov’s Theorem tells us how to change
the measure using the Radon-Nikodym derivative process

Z(t) = exp

{
−

∫ t

0
Γ(s)dW (s)− 1

2

∫ t

0
Γ2(s)ds

}
.

This process satisfies the stochastic differential equation

dZ(t) = −Γ(t)Z(t)dW (t) = Z(t)dXc(t),

where Xc(t) = − ∫ t
0 Γ(s)dW (s) and [Xc, Xc](t) =

∫ t
0 Γ2(s)ds. We may rewrite Z(t) as

Z(t) = exp

{
Xc(t)− 1

2
[Xc, Xc](t)

}
. (11.5.14)

In stochastic calculus for processes with jumps, the analogous stochastic differen-
tial equation is

dZX(t) = ZX(t−)dX(t), (11.5.15)

where the integrator X is now allowed to have jumps. The solution to (11.5.15) is
like (11.5.14), except now, whenever there is a jump in X, (11.5.15) says there is a
jump in ZX of size

∆ZX(s) = ZX(s−)∆X(s).

Therefore,
ZX(s) = ZX(s−) + ∆ZX(s) = ZX(s−)

(
1 + ∆X(s)

)
.

The following corollary presents the result.

Corollary 11.5.6. Let X(t) be a jump process. The Doleans-Dade exponential of X

is defined to be the process

ZX(t) = exp

{
Xc(t)− 1

2
[Xc, Xc](t)

} ∏

0<s≤t

(
1 + ∆X(s)

)
.

This process is the solution to the stochastic differential equation (11.5.15) with ini-
tial condition ZX(0) = 1, which in integral form is

ZX(t) = 1 +

∫ t

0
ZX(s−)dX(s). (11.5.16)
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Proof. We may write X(t) as X(t) = Xc(t) + J(t), where

Xc(t) =

∫ t

0
Γ(s)dW (s) +

∫ t

0
Θ(s)ds (11.5.17)

is the continuous part of X and J(t) is the pure jump part. We define

Y (t) = exp

{∫ t

0
Γ(s)dW (s) +

∫ t

0
Θ(s)ds− 1

2
Γ2(s)ds

}

= exp

{
Xc(t)− 1

2
[Xc, Xc](t)

}
.

(11.5.18)

From the Itô-Doeblin formula for continuous processes, we know that

dY (t) = Y (t)dXc(t) = Y (t−)dXc(t). (11.5.19)

We next define K(t) = 1 for t between 0 and the time of the first jump of X, and
we set

K(t) =
∏

0<s≤t

(
1 + ∆X(s)

)
(11.5.20)

for t greater than or equal to the first jump time of X. The process K(t) is a pure jump
process, and ZX(t) = Y (t)K(t). If X has a jump at time t, then K(t) = K(t−)

(
1 +

∆X(t)
)
. Therefore,

∆K(t) = K(t)−K(t−) = K(t−)∆X(t). (11.5.21)

Because Y (t) is continuous and K(t) is a pure jump process, [Y, K](t) = 0. We
now use Itô’s product rule for jump processes to obtain

ZX(t) = Y (t)K(t)

= Y (0) +

∫ t

0
K(s−)dY (s) +

∫ t

0
Y (s−)dK(s)

= 1 +

∫ t

0
Y (s−)K(s−)dXc(s) +

∑

0<s≤t

Y (s−)K(s−)∆X(s)

= 1 +

∫ t

0
Y (s−)K(s−)dX(s)

= 1 +

∫ t

0
ZX(s−)dX(s).

(11.5.22)

This is (11.5.16).

11.6 Change of Measure

Just as we can use Girsanov’s Theorem to change the measure so that a Brownian
motion with drift becomes a Brownian motion without drift, we can change the mea-
sure for Poisson processes and compound Poisson processes. For a Poisson process,
the change of measure affects the intensity. For a compound Poisson process, the
change of measure can affect both the intensity and the distribution of the jump sizes.
We treat these two situations in the next two subsections, and in the third subsection
we also include a Brownian motion component in the process under consideration.
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11.6.1 Change of Measure for a Poisson Process

Let N(t) be a Poisson process on a probability space (Ω,F ,P) relative to a filtration
F(t), t ≥ 0. We denote the intensity of N(t) by λ, a positive constant (i.e., EN(t) =

λt). The compensated Poisson process M(t) = N(t) − λt is a martingale under P
(Theorem 11.2.4). Let λ̃ be a positive number. We define

Z(t) = e(λ−λ̃)t

(
λ̃

λ

)N(t)

. (11.6.1)

We fix a time T > 0 and will use Z(T ) to change to a new measure P̃ under which
N(t), 0 ≤ t ≤ T , has intensity λ̃ rather than λ. It is clear that Z(T ) > 0 almost surely.
In order to use Z(T ) to change the measure, we also need to verify that EZ(T ) = 1.

Lemma 11.6.1. The process Z(t) of (11.6.1) satisfies

dZ(t) =
λ̃− λ

λ
Z(t−)dM(t). (11.6.2)

In particular, Z(t) is a martingale under P and EZ(t) = 1 for all t.

Proof. Define X(t) = λ̃−λ
λ M(t), which is a martingale with continuous part Xc(t) =

(λ − λ̃)t and pure jump part J(t) = λ̃−λ
λ N(t). Then [Xc, Xc](t) = 0, and if there is a

jump at time t, then ∆X(t) = λ̃−λ
λ , so

1 + ∆X(t) =
λ̃

λ
.

Therefore, the process in (11.6.1) may be written as

Z(t) = exp

{
Xc(t)− 1

2
[Xc, Xc](t)

} ∏

0<s≤t

(
1 + ∆X(s)

)
.

We see from this formula that Z(t) is the Doleans-Dade exponential ZX(t) of Corol-
lary 11.5.6. In particular,

Z(t) = 1 +

∫ t

0
Z(s−)dX(s).

Since X is a martingale and Z(s−) is left-continuous, Z(t) is a martingale. Because
Z(t) is a martingale and Z(0) = 1, we know that EZ(t) = 1 for all t ≥ 0.

We may now fix a positive time T and use Z(T ) to change the measure. We define

P̃(A) =

∫

A
Z(T )dP for all A ∈ F . (11.6.3)

Theorem 11.6.2 (Change of Poisson intensity). Under the probability measure P̃, the
process N(t), 0 ≤ t ≤ T , is Poisson with intensity λ̃.
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KEY STEP IN PROOF: We compute the moment-generating function of N(t) under
P̃. For 0 ≤ t ≤ T , we can change the Ẽ expectation of euN(t) to the E expectation
by using Z(t) as the Radon-Nikodym derivative rather than Z(T ) (see Lemma 5.2.1).
Using the formula for Z(t) and the moment-generating function formula (11.3.4), we
obtain

E
[
euN(t)Z(t)

]
= e(λ−λ̃)tE


euN(t)

(
λ̃

λ

)N(t)



= e(λ−λ̃)tE

[
exp

{(
u + log

λ̃

λ

)
N(t)

}]

= e(λ−λ̃)t exp
{

λt
(
eu+log(λ̃/λ) − 1

)}

= exp
{

λ̃t(eu − 1)
}

,

which is the moment generating function for a Poisson process with intensity λ̃ (see
again (11.3.4)).

Example 11.6.3.

Consider a stock modeled as a geometric Poisson process

S(t) = S(0) exp{αt + N(t) log(σ + 1)− λσt} = S(0)e(α−λσ)t(σ + 1)N(t),

where σ > −1, σ 6= 0, and N(t) is a Poisson process with intensity λ under the actual
probability measure P. We saw in Example 11.5.2 that e−αtS(t) is a martingale under
P, and hence S(t) has mean rate of return α. Indeed, in place of (11.5.9), we now
have

dS(t) = αS(t)dt + σS(t−)dM(t), (11.6.4)

where M(t) is the compensated Poisson process M(t) = N(t)− λt. We would like to
change to a probability measure P̃ under which

dS(t) = rS(t)dt + σS(t−)dM̃(t), (11.6.5)

where r is the interest rate, N(t) is a Poisson process with intensity λ̃ under P̃, and
M̃(t) = N(t) − λ̃t is a compensated Poisson process under P̃. Then, under P̃, the
geometric Poisson process would have mean rate of return equal to the interest rate,
and P̃ would be the risk-neutral measure.

To accomplish this, we note that the “dt” term in (11.6.4) is

(α− λσ)S(t)dt (11.6.6)

(recall that dM(t) = dN(t)− λdt) and the “dt” term in (11.6.5) is

(r − λ̃σ)S(t)dt. (11.6.7)

(Here again we are using the fact that S(t−)dt and S(t)dt have the same integrals, and
we can thus use them interchangeably.) We set (11.6.6) and (11.6.7) equal and solve
for

λ̃ = λ− α− r

σ
.
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We then change to the risk-neutral measure by formula (11.6.3) with Z(T ) defined
by (11.6.1).

To make the change of measure, we must have λ̃ > 0, which is equivalent to

λ >
α− r

σ
. (11.6.8)

If condition (11.6.8) does not hold, then there is no risk-neutral measure and hence
there must be an arbitrage. Indeed, if σ > 0 and (11.6.8) fails, then

S(t) ≥ S(0)ert(σ + 1)N(t) ≥ S(0)ert,

and borrowing at the interest rate r to invest in the stock is an arbitrage. If−1 < σ < 0,
the inequalities are reversed and the arbitrage consists of shorting the stock to invest
in the money market account.

¤

11.6.2 Change of Measure for a Compound Poisson Process

Let N(t) be a Poisson process with intensity λ, and let Y1, Y2, . . . be a sequence of
identically distributed random variables defined on a probability space (Ω,F ,P). We
assume the random variables Y1, Y2, . . . are independent of one another and also in-
dependent of the Poisson process N(t). We define the compound Poisson process

Q(t) =

N(t)∑

i=1

Yi. (11.6.9)

Note for future reference that if N jumps at time t, then Q jumps at time t and

∆Q(t) = YN(t). (11.6.10)

Our goal is to change the measure so that the intensity of N(t) and the distribution
of the jump sizes Y1, Y2, . . . both change. We first consider the case when the jump-
size random variables have a discrete distribution (i.e., each Yi takes one of finitely
many possible nonzero values y1, y2, . . . , yM ). Let p(ym) denote the probability that a
jump is of size ym:

p(ym) = P{Yi = ym}, m = 1, . . . , M.

This does not depend on i since Y1, Y2, . . . are identically distributed. We assume that
p(ym) > 0 for every m and, of course, that

∑M
m=1 p(ym) = 1.

Let Nm(t) denote the number of jumps in Q(t) of size ym up to and including time
t, so that

N(t) =
M∑

m=1

Nm(t) and Q(t) =
M∑

m=1

ymNm(t).

According to Corollary 11.3.4, N1, . . . , NM are independent Poisson processes and
each Nm has intensity λm = λp(ym).
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Let λ̃1, . . . , λ̃M be given positive numbers, and set

Zm(t) = e(λm−λ̃m)t

(
λ̃m

λm

)Nm(t)

and Z(t) =
M∏

m=1

Zm(t). (11.6.11)

Lemma 11.6.4. The process Z(t) of (11.6.11) is a martingale. In particular, EZ(t) =

1 for all t.

Proof. From Lemma 11.6.1, we have

dZm(t) =
λ̃m − λm

λm
Zm(t−)dMm(t), (11.6.12)

where
Mm(t) = Nm(t)− λmdt.

Because the integrand in (11.6.12) is left-continuous and the compensated Poisson
process is a martingale, the process Zm is a martingale (Theorem 11.4.5).

For m 6= n, the Poisson processes Nm and Nn have no simultaneous jumps, and
hence [Zm, Zn] = 0. Itô’s product rule (Corollary 11.5.5) implies that

d
(
Z1(t)Z2(t)

)
= Z2(t−)dZ1(t) + Z1(t−)dZ2(t). (11.6.13)

Because both Z1 and Z2 are martingales and the integrands in (11.6.13) are left-
continuous, the process Z1Z2 is a martingale. Because Z1Z2 has no jumps simultane-
ous with the jumps of Z3, Itô’s product rule further implies

d
(
Z1(t)Z2(t)Z3(t)

)
= Z3(t−)d

(
Z1(t)Z2(t)

)
+

(
Z1(t−)Z2(t−)

)
dZ3(t).

Once again, the integrators are martingales and the integrands are left-continuous.
Therefore, Z1Z2Z3 is a martingale. Continuing this process, we eventually conclude
that Z(t) = Z1(t)Z2(t) · · ·Zm(t) is a martingale.

Fix T > 0. Because Z(T ) > 0 almost surely and EZ(T ) = 1, we can use Z(T ) to
change the measure, defining

P̃(A) =

∫

A
Z(T )dP for all Z ∈ F .

Theorem 11.6.5 (Change of compound Poisson intensity and jump distribution for
finitely many jump sizes). Under P̃, Q(t) is a compound Poisson process with in-
tensity λ̃ =

∑M
m=1 λ̃m and Y1, Y2, . . . are independent, identically distributed random

variables with

P̃{Yi = ym} = p̃(ym) =
λ̃m

λ̃
. (11.6.14)

KEY STEP IN PROOF: We use the independence of N1, . . . , NM under P to compute
the moment-generating function of Q(t) under P̃. For 0 ≤ t ≤ T , Lemma 5.2.1 and
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the moment-generating function formula (11.3.4) imply

Ẽ
[
euQ(t)

]
= E

[
euQ(t)Z(t)

]

= E


exp

{
u

M∑

m=1

ymNm(t)

}
·

M∏

m=1

e(λm−λ̃m)t

(
λ̃m

λm

)Nm(t)



=
M∏

m=1

exp
{

(λm − λ̃m)t
}
· E

[
exp

{(
uym + log

λ̃m

λm

)
Nm(t)

}]

=
M∏

m=1

exp
{

(λm − λ̃m)t
}

exp
{

λmt
(
euym+log(λ̃m/λm) − 1

)}

=
M∏

m=1

exp
{

(λm − λ̃m)t + λ̃mteuym − λmt
}

=
M∏

m=1

exp
{

λ̃mt (euym − 1)
}

=
M∏

m=1

exp
{

λ̃tp̃(ym)euym − λ̃mt
}

= exp

{
λ̃t

(
M∑

m=1

p̃(ym)euym − 1

)}
.

According to (11.3.5), this is the moment-generating function for a compound Pois-
son process with intensity λ̃ and jump-size distribution (11.6.14).

The Radon-Nikodym derivative process Z(t) of (11.6.11) may be written as

Z(t) = exp

{
M∑

m=1

(λm − λ̃m)t

}
·

M∏

m=1

(
λ̃p̃(ym)

λp(ym)

)Nm(t)

= e(λ−λ̃)t
N(t)∏

i=1

λ̃p̃(Yi)

λp(Yi)
.

This suggests that if Y1, Y2, . . . are not discrete but instead have a common density
f(y), then we could change the measure so that Q(t) has intensity λ̃ and Y1, Y2, . . .

have a different density f̃(y) by using the Radon-Nikodym derivative process

Z(t) = e(λ−λ̃)t
N(t)∏

i=1

λ̃f̃(Yi)

λf(Yi)
. (11.6.15)

This is in fact the case, although the proof, given below, is harder than the one just
given for the case of a discrete jump-size distribution.

To avoid division by zero in (11.6.15), we assume that f̃(y) = 0 whenever f(y) =

0. This means that if a certain set of jump sizes has probability zero under P, then it
will also have probability zero under P̃ considered in Theorem 11.6.7 below.

Lemma 11.6.6. The process Z(t) of (11.6.15) is a martingale. In particular, EZ(t) =

1 for all t ≥ 0.
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Proof. We define the pure jump process

J(t) =

N(t)∏

i=1

λ̃f̃(Yi)

λf(Yi)
. (11.6.16)

At the jump times of Q, which axe also the jump times of N and J , we have (recall
(11.6.10))

J(t) = J(t−)
λ̃f̃

(
YN(t)

)

λf
(
YN(t)

) = J(t−)
λ̃f̃

(
∆Q(t)

)

λf
(
∆Q(t)

) ,

and hence

∆J(t) = J(t)− J(t−) =

[
λ̃f̃

(
∆Q(t)

)

λf
(
∆Q(t)

) − 1

]
J(t−) (11.6.17)

at the jump times of Q.
We define the compound Poisson process

H(t) =

N(t)∑

i=1

λ̃f̃(Yi)

λf(Yi)
(11.6.18)

for which

∆H(t) =
λ̃f̃

(
∆Q(t)

)

λf
(
∆Q(t)

) . (11.6.19)

Because

E

[
λ̃f̃(Yi)

λf(Yi)

]
=

λ̃

λ

∫ ∞

−∞
f̃(y)

f(y)
f(y)dy =

λ̃

λ

∫ ∞

−∞
f̃(y)dy =

λ̃

λ
,

the compensated compound Poisson process H(t) − λ̃t is a martingale (Theorem
11.3.1 with β = λ̃

λ). We may rewrite (11.6.17) as

∆J(t) = J(t−)∆H(t)− J(t−)∆N(t), (11.6.20)

and because all these terms are zero if there is no jump at t, this equation holds at
all times t, not just at the jump times of Q. Because J , H, and N are all pure jump
processes, we may also write (11.6.20) as

dJ(t) = J(t−)dH(t)− J(t−)dN(t).

Because J(t) is a pure jump process and e(λλ̃)t is continuous, the cross variation
between these two processes is zero. Therefore, Itô’s product rule for jump processes
(Corollary 11.5.5) implies that Z(t) = e(λλ̃)tJ(t) may be written as

Z(t) = Z(0) +

∫ t

0
J(s−)(λ− λ̃)e(λ−λ̃)sds +

∫ t

0
e(λ−λ̃)sdJ(s)

= 1 +

∫ t

0
e(λ−λ̃)sJ(s−)(λ− λ̃)ds +

∫ t

0
e(λ−λ̃)sJ(s−)dH(s)−

∫ t

0
e(λ−λ̃)sJ(s−)dN(s)

= 1 +

∫ t

0
e(λ−λ̃)sJ(s−)d

(
H(s)− λ̃s

)−
∫ t

0
e(λ−λ̃)sJ(s−)d

(
N(s)− λs

)

= 1 +

∫ t

0
Z(s−)d

(
H(s)− λ̃s

)−
∫ t

0
Z(s−)d

(
N(s)− λs

)
.

(11.6.21)
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Theorem 11.4.5 implies that Z(t) is a martingale. Since Z(t) is a martingale and
Z(0) = 1, we have EZ(t) = 1 for all t.

For future reference, we rewrite (11.6.21) in the differential form

dZ(t) = Z(t−)d
(
H(t)− λ̃t

)− Z(t−)d
(
N(t)− λt

)
.

This equation implies

∆Z(t) = Z(t−)∆H(t)− Z(t−)∆N(t). (11.6.22)

Fix a positive T and define

P̃(A) =

∫

A
Z(T )dP for all A ∈ F . (11.6.23)

Theorem 11.6.7 (Change of compound Poisson intensity and jump distribution for
a continuum of jump sizes). Under the probability measure P̃, the process Q(t), 0 ≤
t ≤ T , of (11.6.9) is a compound Poisson process with intensity λ̃. Furthermore, the
jumps in Q(t) are independent and identically distributed with density f̃(y).

KEY STEP IN PROOF: We need to show that, under P̃, the process Q(t) has the
moment-generating function corresponding to a compound Poisson process with in-
tensity λ̃ and jump density f̃(y). In other words, we must show that (see (11.3.2))

ẼeuQ(t) = exp
{

λ̃t
(
ϕ̃Y (u)− 1

)}
, (11.6.24)

where
ϕ̃Y (u) =

∫ ∞

−∞
euyf̃(y)dy. (11.6.25)

We define
X(t) = exp

{
uQ(t)− λ̃t

(
ϕ̃Y (u)− 1

)}

and show that X(t)Z(t) is a martingale under P. At jump times of Q,

X(t) = X(t−)eu∆Q(t),

and hence

∆X(t) = X(t)−X(t−) = X(t−)
(
eu∆Q(t) − 1

)
. (11.6.26)

We introduce the compound Poisson process

V (t) =

N(t)∑

i=1

euYi
λ̃f̃(Yi)

λf(Yi)
.

Because

E

[
euYi

λ̃f̃(Yi)

λf(Yi)

]
=

λ̃

λ

∫ ∞

−∞
euy f̃(y)

f(y)
f(y)dy =

λ̃

λ
ϕ̃Y (u),

the compensated compound Poisson process V (t) − λ̃tϕ̃Y (u) is a martingale (see
Theorem 11.3.1 with β = λ̃

λ ϕ̃Y (u)). At jump times of Q,

∆V (t) = eu∆Q(t) λ̃f̃
(
∆Q(t)

)

λf
(
∆Q(t)

) = eu∆Q(t)∆H(t), (11.6.27)
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where H(t), defined by (11.6.18), satisfies (11.6.19) at jump times of Q.
Because X(t) and Z(t) have no Itô integral components, (11.6.26), (11.6.22), and

(11.6.27) imply

[X,Z](t) =
∑

0<s≤t

∆X(s)∆Z(s)

=
∑

0<s≤t

X(s−)Z(s−)
(
eu∆Q(s) − 1

)
∆H(s)

−
∑

0<s≤t

X(s−)Z(s−)
(
eu∆Q(s) − 1

)
∆N(s)

=
∑

0<s≤t

X(s−)Z(s−)∆V (s)−
∑

0<s≤t

X(s−)Z(s−)∆H(s)

−
∑

0<s≤t

X(s−)Z(s−)
(
eu∆Q(s) − 1

)
.

(11.6.28)

We have omitted ∆N(s) in the last term because it is always either 1 or 0, and when
it is zero, eu∆Q(s) − 1 is also zero. In other words,

(
eu∆Q(s) − 1

)
∆N(s) =

(
eu∆Q(s) − 1

)
.

We use Itô’s product rule for jump processes to write

X(t)Z(t) = 1 +

∫ t

0
X(s−)dZ(s) +

∫ t

0
Z(s−)dX(s) + [X,Z](t).

We show that the right-hand side is a martingale under P. The integral
∫ t
0 X(s−)dZ(s)

is a martingale because the integrand is left-continuous and Z is a martingale. We
examine the two other terms, using (11.6.26) and (11.6.28):

∫ t

0
Z(s−)dX(s) + [X,Z](t)

=

∫ t

0
Z(s−)dXc(s) +

∑

0<s≤t

Z(s−)gDX(s) + [X,Z](t)

= −λ̃ (ϕ̃Y (u)− 1)

∫ t

0
X(s−)Z(s−)ds +

∑

0<s≤t

X(s−)Z(s−)
(
eu∆Q(s) − 1

)

+
∑

0<s≤t

X(s−)Z(s−)∆V (s)−
∑

0<s≤t

X(s−)Z(s−)∆H(s)

−
∑

0<s≤t

X(s−)Z(s−)
(
eu∆Q(s) − 1

)

=

∫ t

0
X(s−)Z(s−)d

(
V (s)− λ̃sϕ̃Y (u)ds

)
−

∫ t

0
X(s−)Z(s−)d

(
H(s)− λ̃s

)
.

This is a martingale because the processes V (t)− λ̃tϕ̃Y (u) and H(t)− λ̃t are martin-
gales and the integrands are left-continuous.

We can now prove (11.6.24). Using Lemma 5.2.1, we may write

Ẽ
[
euQ(t)

]
= E

[
euQ(t)Z(t)

]
. (11.6.29)



11.6 Change of Measure 465

But the martingale X(t)Z(t) has constant expectation 1, which implies

1 = E[X(t)Z(t)]

= exp
{
−λ̃t

(
ϕ̃Y (u)− 1

)} · E
[
euQ(t)Z(t)

]
.

(11.6.30)

Combining (11.6.29) and (11.6.30), we obtain (11.6.24).

11.6.3 Change of Measure for a Compound Poisson Process and a Brownian Motion

Suppose now that we have a probability space (Ω,F ,P) on which is defined a Brow-
nian motion W (t). Suppose that on this same probability space there is defined a
compound Poisson process

Q(t) =

N(t)∑

i=1

Yi

as in (11.3.1) with intensity λ and jumps having density function f(y). We assume
there is a single filtrationF(t), t ≥ 0, for both the Brownian motion and the compound
Poisson process. In this case, the Brownian motion and compound Poisson process
must be independent. (See Corollary 11.4.9 for the case of a Brownian motion and a
Poisson process. The case of a Brownian motion and a compound Poisson process is
Exercise 11.6.)

Let λ̃ be a positive number, let f̃(y) be another density function with the property
that f̃(y) = 0 whenever f(y) = 0, and let Θ(t) be an adapted process. We define

Z1(t) = exp

{
−

∫ t

0
Θ(u)dW (u)− 1

2

∫ t

0
Θ2(u)du

}
, (11.6.31)

Z2(t) = e(λ−λ̃)t
N(t)∏

i=1

λ̃f̃(Yi)

λf(Yi)
, (11.6.32)

Z(t) = Z1(t)Z2(t). (11.6.33)

Lemma 11.6.8. The process Z(t) of (11.6.33) is a martingale. In particular, EZ(t) =

1 for all t ≥ 0.

Proof. We know from stochastic calculus for continuous processes that Z1(t) is a
martingale and from Lemma 11.6.6 that Z2(t) is a martingale. Since Z1(t) is contin-
uous and Z2(t) has no Itô integral part, [Z1, Z2](t) = 0. Itô’s product rule for jump
processes thus implies

Z1(t)Z2(t) = Z1(0)Z2(0) +

∫ t

0
Z1(s−)dZ2(s) +

∫ t

0
Z2(s−)dZ1(s), (11.6.34)

and both integrals are martingales because of Theorem 11.4.5. This implies that Z(t)

is a martingale, and because Z(0) = 1, we have EZ(t) = 1 for all t ≥ 0.

Fix a positive T and define P̃(A) =
∫
A Z(T )dP for all A ∈ F . We have the follow-

ing.
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Theorem 11.6.9. Under the probability measure P̃, the process

W̃ (t) = W (t) +

∫ t

0
Θ(s)ds

is a Brownian motion, Q(t) is a compound Poisson process with intensity λ̃ and in-
dependent, identically distributed jump sizes having density f̃(y), and the processes
W̃ (t) and Q(t) are independent.

The key step in the proof of Theorem 11.6.9 is to show that W̃ (t) and Q(t) have
the correct joint moment-generating function under P̃. In other words, we must show

Ẽ
[
eu1

fW (t)+u2Q(t)
]

= exp

{
1

2
u2

1t

}
· exp

{
λ̃t

(
ϕ̃Y (u2)− 1

)}
, (11.6.35)

where ϕ̃Y (u2) is given by (11.6.25). Since e
1
2
u2

1t is the moment-generating function
for a normal random variable with mean zero and variance t, exp

{
λ̃t

(
ϕ̃Y (u2)− 1

)}

is the moment-generating function for a compound Poisson process with intensity λ̃

and jump density f̃(y), and since the joint moment-generating function factors into
the product of these two moment-generating functions, we would then know that
W̃ (t) and Q(t) have the right distributions under P̃ and are independent.

If the process Θ(t) is independent of the process Q(t), then Z1 is independent of Q

and we can obtain (11.6.35) from the following independence-based computation:

Ẽ
[
eu1

fW (t)+u2Q(t)
]

= E
[
eu1

fW (t)Z1(t) · eu2Q(t)Z2(t)
]

= E
[
eu1

fW (t)Z1(t)
]
· E

[
eu2Q(t)Z2(t)

]
.

Girsanov’s Theorem from stochastic calculus for continuous processes implies

E
[
eu1

fW (t)Z1(t)
]

= exp

{
1

2
u2

1t

}
,

and (11.6.30) implies

E
[
eu2Q(t)Z2(t)

]
= exp

{
λ̃t

(
ϕ̃Y (u2)− 1

)}
.

Equation (11.6.35) follows.
The surprising fact is that (11.6.35) and hence the conclusion of Theorem 11.6.9

hold even if Θ(t) is allowed to depend on Q(t). Indeed, we could have Θ(t) equal to
Q(t). We give the proof of this fact.

PROOF OF (11.6.35): We define

X1(t) = exp

{
u1W̃ (t)− 1

2
u2

1t

}
,

X2(t) = exp
{

u2Q(t)− λ̃t
(
ϕ̃Y (u2)− 1

)}
,

and show below that X1(t)Z1(t), X2(t)Z2(t), and X1(t)Z1(t)X2(t)Z2(t) are martin-
gales under P.
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The Itô-Doeblin formula for continuous processes implies

dX1(t) = X1(t)

(
u1dW̃ (t)− 1

2
u2

1dt

)
+

1

2
u2

1X1(t)dt

= u1X1dW̃ (t)

= u1X1dW (t) + u1Θ(t)X1(t)dt.

The Itô-Doeblin formula also implies

dZ1(t) = −Θ(t)Z1(t)dW (t).

Itô’s product rule yields

d
(
X1(t)Z1(t)

)
= X1(t)dZ1(t) + Z1(t)dX1(t) + dX1(t)dZ1(t)

= −Θ(t)X1(t)Z1(t)dW (t) + u1X1(t)Z1(t)dW (t)

+ u1Θ(t)X1(t)Z1(t)dt− u1Θ(t)X1(t)Z1(t)dt

=
(
u1 −Θ(t)

)
X1(t)Z1(t)dW (t).

Because its differential has no dt term, X{t)Z{t) is a martingale.
We showed in the proof of Theorem 11.6.7 that X2(t)Z2(t) is a martingale.
Finally, because X1(t)Z1(t) is continuous and X2(t)Z2(t) has no Itô integral part,

[X1Z1, X2Z2](t) = 0. Therefore, Itô’s product rule implies

X1(t)Z1(t)X2(t)Z2(t) = 1 +

∫ t

0
X1(s−)Z1(s−)d

(
X2(s)Z2(s)

)

+

∫ t

0
X2(s−)Z2(s−)d

(
X1(s)Z1(s)

)
,

and Theorem 11.4.5 implies that X1(t)Z1(t)X2(t)Z2(t) is a martingale. It follows that

E
[
X1(t)Z1(t)X2(t)Z2(t)

]
= 1;

this gives us (11.6.35).

Suppose a compound Poisson process Q(t) has jumps Y1, Y2, . . . that take only
finitely many nonzero values y1, y2, . . . , ym, with p(ym) = P{Yi = ym} so that p(ym) >

0 and
∑M

m=1 pm = 1. Let λ̃ be a positive constant and let p̃(y1), . . . , p̃(yM ) be positive
numbers that sum to 1. In place of (11.6.32), we now define

Z2(t) = e(λ−λ̃)t
N(t)∏

i=1

λ̃p̃(Yi)

λp(Yi)

and then define Z(t) by (11.6.33). Lemma 11.6.8 still applies and permits us to
define the probability measure P̃ by the formula P̃(A) =

∫
A Z(T )dP for all Z ∈ F .

A straightforward modification of the proof of Theorem 11.6.9 gives the following
result.

Theorem 11.6.10. Under the probability measure P̃, the process

W̃ (t) = W (t) +

∫ t

0
Θ(s)ds
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is a Brownian motion, Q(t) is a compound Poisson process with intensity λ̃ and in-
dependent, identically distributed jump sizes satisfying P̃{Yi = ym} = p̃(ym) for all i

and m = 1, . . . , M , and the processes W̃ (t) and Q(t) are independent.

11.7 Pricing a European Call in a Jump Model

In this section, we consider the problem of pricing a European call when the underly-
ing asset is a jump process. We work out the details for two cases: (1) the underlying
asset is driven by a single Poisson process, and (2) the underlying asset is driven by
a Brownian motion and a compound Poisson process. The market is complete in the
first case and incomplete in the second. We discuss the nature of the incompleteness
in the second case.

11.7.1 Asset Driven by a Poisson Process

We return to Example 11.6.3, in which the underlying asset price is given by

S(t) = S(0) exp{αt + N(t) log(σ + 1)− λσt}
= S(0)e(α−λσ)t(σ + 1)N(t),

(11.7.1)

for which the differential is

dS(t) = αS(t)dt + σS(t−)dM(t).

In this model, N(t) is a Poisson process with intensity λ > 0 on a probability space
(Ω,F ,P), and M(t) = N(t)−λt is the compensated Poisson process. We fix a positive
time T and wish to price a European call whose payoff at time T is

V (T ) =
(
S(T )−K

)+
.

We saw in Example 11.6.3 that we must assume λ > α−r
σ in order to rule out

arbitrage. Under this assumption,

λ̃ = λ− α− r

σ

is positive, and there is a risk-neutral measure given by

P̃(A) =

∫

A
Z(T )dP for all A ∈ F ,

where Z(t) = e(λ−λ̃)t
(

λ̃
λ

)N(t)
. This risk-neutral measure is in fact unique; see Re-

mark 11.7.2 below.
Under the risk-neutral measure, the compensated Poisson process M̃(t) = N(t)−

λ̃t is a martingale, and

dS(t) = rS(t)dt + σS(t−)dM̃(t) (11.7.2)

or, equivalently,
d
(
e−rtS(t)

)
= σe−rtS(t−)dM̃(t).
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The discounted asset price is a martingale under P̃. In terms of λ̃, we may rewrite the
second line in (11.7.1) as

S(t) = S(0)e(r−λ̃σ)t(σ + 1)N(t).

For 0 ≤ t ≤ T , let V (t) denote the risk-neutral price of a European call paying
V (T ) = (S(T ) −K)+ at time T . The discounted call price is a martingale under the
risk-neutral measure. In other words, the call price V (t) satisfies

e−rtV (t) = Ẽ[e−rT V (T )|F(t)] = Ẽ
[
e−rT

(
S(T )−K

)+
∣∣∣F(t)

]
.

We have

S(T ) = S(0)e(r−λ̃σ)t(σ + 1)N(t) · e(r−λ̃σ)(T−t)(σ + 1)N(T )−N(t)

= S(t)e(r−λ̃σ)(T−t)(σ + 1)N(T )−N(t).

It follows that

V (t) = Ẽ
[
e−r(T−t)

(
S(T )−K

)+
∣∣∣F(t)

]

= Ẽ
[
e−r(T−t)

(
S(t)e(r−λ̃σ)(T−t)(σ + 1)N(T )−N(t) −K

)+
∣∣∣∣F(t)

]
.

The random variable S(t) is F(t)-measurable, whereas

e(r−λ̃σ)(T−t)(σ + 1)N(T )−N(t)

is independent of F(t). According to the Independence Lemma, Lemma 2.3.4,

V (t) = c
(
t, S(t)

)
,

where

c(t, x) = Ẽ
[
e−r(T−t)

(
xe(r−λ̃σ)(T−t)(σ + 1)N(T )−N(t) −K

)+
]

=
∞∑

j=0

e−r(T−t)
(
xe(r−λ̃σ)(T−t)(σ + 1)j −K

)+ λ̃j(T − t)j

j!
e−λ̃(T−t)

=
∞∑

j=0

(
xe−λ̃σ(T−t)(σ + 1)j −Ke−r(T−t)

)+ λ̃j(T − t)j

j!
e−λ̃(T−t).

(11.7.3)

From this formula, the risk-neutral price of the call c(t, x) can be computed. The
j = 0 term in (11.7.3) is

(
xe−λ̃σ(T−t) −Ke−r(T−t)

)+
e−λ̃(T−t).

When t = T , this term is (x − K)+, and it is the only nonzero term in the sum in
(11.7.3) when t = T . Therefore, the function c satisfies the terminal condition

c(T, x) = (x−K)+ for all x ≥ 0. (11.7.4)
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We next derive the “partial differential equation” that c(t, x) must satisfy. The
usual iterated conditioning argument shows that

e−rtc
(
t, S(t)

)
= e−rtV (t) = Ẽ

[
e−rT

(
S(T )−K

)+
∣∣∣F(t)

]

is a martingale under P̃. Therefore, we compute d
(
e−rtc

(
t, S(t)

))
and set the “dt”

term equal to zero. The stochastic differential equation (11.7.2) may be rewritten as

dS(t) = (r − λ̃σ)S(t)dt + σS(t−)dN(t), (11.7.5)

which shows that the continuous part of the stock price satisfies

dSc(t) = (r − λ̃σ)S(t)dt.

On the other hand, if the stock price jumps at time t, then

∆S(t) = S(t)− S(t−) = σS(t−), S(t) = (σ + 1)S(t−).

The Itô-Doeblin formula implies

e−rtc
(
t, S(t)

)

= c
(
0, S(0)

)
+

∫ t

0
e−ru

[− rc
(
u, S(u)

)
du + ct

(
u, S(u)

)
du + cx

(
u, S(u)

)
dSc(u)

]

+
∑

0<u≤t

e−ru
[
c
(
u, S(u)

)− c
(
u, S(u−)

)]

= c
(
0, S(0)

)
+

∫ t

0
e−ru

[− rc
(
u, S(u)

)
+ ct

(
u, S(u)

)
+ (r − λ̃σ)S(u)cx

(
u, S(u)

)]
du

+

∫ t

0
e−ru

[
c
(
u, (σ + 1)S(u−)

)− c
(
u, S(u−)

)]
dN(u)

= c
(
0, S(0)

)
+

∫ t

0
e−ru

[− rc
(
u, S(u)

)
+ ct

(
u, S(u)

)
+ (r − λ̃σ)S(u)cx

(
u, S(u)

)]
du

+

∫ t

0
e−ru

[
c
(
u, (σ + 1)S(u−)

)− c
(
u, S(u−)

)]
λ̃du

+

∫ t

0
e−ru

[
c
(
u, (σ + 1)S(u−)

)− c
(
u, S(u−)

)]
dM̃(u).

However, the integral

∫ t

0
e−ru

[
c
(
u, (σ + 1)S(u−)

)− c
(
u, S(u−)

)]
λ̃du

is the same as the integral

∫ t

0
e−ru

[
c
(
u, (σ + 1)S(u)

)− c
(
u, S(u)

)]
λ̃du.
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We have shown that

e−rtc
(
t, S(t)

)
= c

(
0, S(0)

)

+

∫ t

0
e−ru

[
− rc

(
u, S(u)

)
+ ct

(
u, S(u)

)
+ (r − λ̃σ)S(u)cx

(
u, S(u)

)

+ λ̃
(
c
(
u, (σ + 1)S(u)

)− c
(
u, S(u)

))]
du

+

∫ t

0
e−ru

[
c
(
u, (σ + 1)S(u−)

)− c
(
u, S(u−)

)]
dM̃(u).

(11.7.6)

The last integral is a martingale because the integrator M(u) is a martingale and
the integrand is left-continuous. Because left-hand side of (11.7.6), e−rtc

(
t, S(t)

)
, is

also a martingale we can then solve for

c
(
0, S(0)

)
+

∫ t

0
e−ru

[
− rc

(
u, S(u)

)
+ ct

(
u, S(u)

)
+ (r − λ̃σ)S(u)cx

(
u, S(u)

)

+ λ̃
(
c
(
u, (σ + 1)S(u)

)− c
(
u, S(u)

))]
du

and see that it is the difference of two martingales and hence is itself a martingale.
This can only happen if the integrand is zero:

−rc
(
t, S(t)

)
+ ct

(
t, S(t)

)
+ (r − λ̃σ)S(t)cx

(
t, S(t)

)

+ λ̃
(
c
(
t, (σ + 1)S(t)

)− c
(
t, S(t)

))
= 0.

(11.7.7)

The way we have in the past argued for (11.7.7) using (11.7.6) (see the discussion
preceding Theorem 6.4.3) is by first taking the differential in (11.7.6) to obtain

d
(
e−rtc

(
t, S(t)

))
= e−rt

[
− rc

(
t, S(t)

)
+ ct

(
t, S(t)

)
+ (r − λ̃σ)S(t)cx

(
t, S(t)

)

+ λ̃
(
c
(
t, (σ + 1)S(t)

)− c
(
t, S(t)

))]
dt

+ e−rt
[
c
(
t, (σ + 1)S(t−)

)− c
(
t, S(t−)

)]
dM̃(t)

and then setting the dt term equal to zero. This still works, provided we make sure
the non-dt term has a martingale integrator, and if this integrator has jumps, then the
integrand for this martingale is left-continuous. In particular, we also have

d
(
e−rtc

(
t, S(t)

))
= e−rt

[
− rc

(
t, S(t)

)
+ ct

(
t, S(t)

)
+ (r − λ̃σ)S(t)cx

(
t, S(t)

)]
dt

+ e−rt
[
c
(
t, (σ + 1)S(t−)

)− c
(
t, S(t−)

)]
dN(t),

(11.7.8)

but setting the “dt” term

e−rt
[
− rc

(
t, S(t)

)
+ ct

(
t, S(t)

)
+ (r − λ̃σ)S(t)cx

(
t, S(t)

)]
dt

in this expression equal to zero gives an incorrect result because the non-dt term has
integrator dN(t) and N(t) is not a martingale.
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We conclude by replacing the stock price process S(t) in (11.7.7) by a dummy
variable x. This gives the equation

−rc(t, x) + ct(t, x) + (r − λ̃σ)xcx(t, x) + λ̃
(
ct(t, (σ + 1)x)− ct(t, x)

)
= 0, (11.7.9)

which must hold for 0 ≤ t < T and x ≥ 0. This is sometimes called a differential-
difference equation because it involves c at two different values of the stock price,
namely x and (σ + 1)x. The function c(t, x) defined by (11.7.3) satisfies this equation
because, by its construction, e−rtc

(
t, S(t)

)
is a martingale under P̃.

Returning to (11.7.6) and using equation (11.7.9), we see that for 0 ≤ t ≤ T ,

e−rtc
(
t, S(t)

)
= c

(
0, S(0)

)
+

∫ t

0
e−ru

[
c
(
u, (σ + 1)S(u−)

)− c
(
u, S(u−)

)]
dM̃(u).

(11.7.10)
In particular,

e−rT
(
S(T )−K

)+
= e−rT c

(
T, S(T )

)

= c
(
0, S(0)

)
+

∫ T

0
e−ru

[
c
(
u, (σ + 1)S(u−)

)− c
(
u, S(u−)

)]
dM̃(u).

(11.7.11)

We use this observation to construct the hedge for a short position in the call.
Suppose we sell the call at time zero in exchange for initial capital X(0) = c(0, S(0)).

We want to invest in the stock and money market account so that X(t) = c
(
t, S(t)

)

for all t or, equivalently,

e−rtX(t) = e−rtc
(
t, S(t)

)
for all t ∈ [0, T ].

To accomplish this, we match differentials. From (11.7.10), we see that the differen-
tial of e−rtc

(
t, S(t)

)
is

d
(
e−rtc

(
t, S(t)

))
= e−rt

[
c
(
t, (σ + 1)S(t−)

)− c
(
t, S(t−)

)]
dM̃(t). (11.7.12)

The differential of the value X(t) of a portfolio that at each time t holds Γ(t) shares
of stock (we use Γ(t) rather than ∆(t) to denote the number of shares of stock held in
the hedging portfolio to avoid confusion with the use of ∆ as the size of the jump in
a process) is

dX(t) = Γ(t−)dS(t) + r[X(t)− Γ(t)S(t)]dt.

Therefore,

d
(
e−rtX(t)

)
= e−rt[−rX(t)dt + dX(t)]

= e−rt[Γ(t−)dS(t)− rΓ(t)S(t)dt]

= e−rtσΓ(t−)S(t−)dM̃(t),

(11.7.13)

where we have used (11.7.2) in the last step. We are interested in determining the
value of Γ(t−), the position held just before any jump that may occur at time t.
Comparing (11.7.12) and (11.7.13), we conclude that we should take

Γ(t−) =
c
(
t, (σ + 1)S(t−)

)− c
(
t, S(t−)

)

σS(t−)
. (11.7.14)
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This is the hedging position we should hold at all times, whether they are jump times
or not. More specifically, if we define

Γ(t) =
c
(
t, (σ + 1)S(t)

)− c
(
t, S(t)

)

σS(t)
for all t ∈ [0, T ], (11.7.15)

then (11.7.14) will also hold and integration of (11.7.13) yields

e−rtX(t) = X(0) +

∫ t

0
e−ru

[
c
(
u, (σ + 1)S(u−)

)− c
(
u, S(u−)

)]
dM̃(u). (11.7.16)

Comparison of (11.7.10) with (11.7.16) shows that X(t) = c(t, S(t)) for all t. In par-
ticular, (11.7.11) shows that X(T ) = (S(T )−K)+; the short position in the European
call has been hedged.

Remark 11.7.1 (Sanity check). To convince ourselves that the hedge (11.7.15) really
works, we consider separately the cases when the stock jumps at time t and when the
stock does not jump at time t. In the event of a jump, the change in the option price
is c

(
t, (σ + 1)S(t−)

)− c
(
t, S(t−)

)
. The change in the hedging portfolio value is

Γ(t−)
(
S(t)− S(t−)

)
= Γ(t−)σS(t−) = c

(
t, (σ + 1)S(t−)

)− c
(
t, S(t−)

)
,

which agrees with the change in the option price.
On the other hand, if the stock price does not jump at time t, then the stock price

follows equation (11.7.5) without the dN(t) term at time t:

dS(t) = (r − λ̃σ)S(t)dt.

At this time, (11.7.8) shows that the discounted option price has the differential

d
(
e−rtc

(
t, S(t)

))

= e−rt
[− rc

(
t, S(t)

)
+ ct

(
t, S(t)

)
+ (r − λ̃σ)S(t)cx

(
t, S(t)

)]
dt

= −e−rtλ̃
[
c
(
t, (σ + 1)S(t)

)− c
(
t, S(t)

)]
dt,

where we have used the differential-difference equation (11.7.9) to obtain the sec-
ond equality. The differential of the discounted portfolio value at this time is (from
(11.7.13) without the dN(t) term implicit in dM̃(t))

d
(
e−rtX(t)

)
= e−rtσΓ(t)S(t)(−λ̃dt)

= −e−rtλ̃
[
c
(
t, (σ + 1)S(t)

)− c
(
t, S(t)

)]
dt.

Once again, the discounted portfolio value tracks the discounted option price.

¤

Remark 11.7.2 (Completeness). In this subsection, we have constructed the price
and hedge for a European call on a stock driven by a single Poisson process. It is
clear from the analysis that this same argument would work for an arbitrary European
derivative security with payoff h(S(T )) at time T written on a stock modeled this way.
One could simply replace the call payoff by the function h in equation (11.7.3). The
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differential-difference equation (11.7.9) would still apply, although now with termi-
nal condition c(T, x) = h(x) replacing (11.7.4), and the hedging formula (11.7.15)
would still be correct.

The model is complete and the risk-neutral measure is unique if and only if every
derivative security can be hedged (Second Fundamental Theorem of Asset Pricing,
Theorem 5.4.9). “Every” derivative security means also those derivative securities
that are path-dependent. We have not considered path-dependent derivative securities
in this subsection, but one can show that they also can be hedged, and thus the model
is complete.

11.7.2 Asset Driven by a Brownian Motion and a Compound Poisson Process

Let (Ω,F ,P) be a probability space on which is defined a Brownian motion W (t),
0 ≤ t ≤ T , and M independent Poisson processes N1(t), . . . , NM (t), 0 ≤ t ≤ T .
Let F(t), 0 ≤ t ≤ T , be the filtration generated by the Brownian motion and the M

Poisson processes.
Let λm > 0 be the intensity of the mth Poisson process and let −1 < y1 < · · · < ym

be nonzero numbers. Set

N(t) =
M∑

m=1

Nm(t), Q(t) =
M∑

m=1

ymNm(t).

Then N is a Poisson process with intensity λ =
∑M

m=1 λm and Q is a compound
Poisson process. Let Yi denote the size of the ith jump of Q. Then the Yi random
variables take values in the set {y1, . . . , yM}, and Q(t) can be written as

Q(t) =

N(t)∑

i=1

Yi.

Define
p(ym) =

λm

λ
.

The random variables Y1, Y2, . . . are independent and identically distributed, with
P{Yi = ym} = p(ym). These assertions all follow from Theorem 11.3.3.

Set

β = EYi =
M∑

m=1

ymp(ym) =
1

λ

M∑

m=1

λmym. (11.7.17)

According to Theorem 11.3.1,

Q(t)− βλt = Q(t)− t
M∑

m=1

λmym

is a martingale.
In this subsection, the stock price will be modeled by the stochastic differential

equation

dS(t) = αS(t)dt + σS(t)dW (t) + S(t−)d
(
Q(t)− βλt

)

= (α− βλ)S(t)dt + σS(t)dW (t) + S(t−)dQ(t).
(11.7.18)
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Under the original probability measure P, the mean rate of return on the stock is α.
The assumption that yi > −1 for i = 1, . . . , M guarantees that although the stock
price can jump down, it cannot jump from a positive to a negative value or to zero.
We begin with a positive initial stock price S(0), and the stock price is positive at all
subsequent times; see (11.7.19) below. If S(0) = 0, then S(t) = 0 for all t.

Theorem 11.7.3. The solution to (11.7.18) is

S(t) = S(0) exp

{
σW (t) +

(
α− βλ− 1

2
σ2

)
t

} N(t)∏

i=1

(Yi + 1). (11.7.19)

Proof. We show that S(t) defined by the right-hand side of (11.7.19) satisfies the
stochastic differential equation (11.7.18). Toward this end, define the continuous
stochastic process

X(t) = S(0) exp

{
σW (t) +

(
α− βλ− 1

2
σ2

)
t

}

and the pure jump process

J(t) =

N(t)∏

i=1

(Yi + 1).

Then S(t) = X(t)J(t). We show that S(t) = X(t)J(t) is a solution to the stochastic
differential equation (11.7.18).

The Itô-Doeblin formula for a continuous process says that

dX(t) = (α− βλ)X(t)dt + σX(t)dW (t). (11.7.20)

At the time of the ith jump, J(t) = J(t−)(Yi + 1) and hence

∆J(t) = J(t)− J(t−) = J(t−)Yi = J(t−)∆Q(t).

The equation ∆J(t) = J(t−)∆Q(t) also holds at nonjump times, with both sides
equal to zero. Therefore,

dJ(t) = J(t−)dQ(t). (11.7.21)

Itô’s product rule for jump processes implies that

S(t) = X(t)J(t) = S(0) +

∫ t

0
X(s−)dJ(s) +

∫ t

0
J(s)dX(s) + [X, J ](t). (11.7.22)

Since J is a pure jump process and X is continuous, [X, J ](t) = 0. Substituting
(11.7.20) and (11.7.21) into (11.7.22), we obtain

S(t) = X(t)J(t)

= S(0) +

∫ t

0
X(s−)J(s−)dQ(s) + (α− βλ)

∫ t

0
J(s)X(s)ds + σ

∫ t

0
J(s)X(s)dW (s),

which in differential form is
dS(t) = d

(
X(t)J(t)

)

= X(t−)J(t−)dQ(t) + (α− βλ)J(t)X(t)dt + σJ(t)X(t)dW (t)

= S(t−)dQ(t) + (α− βλ)S(t)dt + σS(t)dW (t).

This is (11.7.18).
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We now undertake to construct a risk-neutral measure. Let θ be a constant and let
λ̃1, . . . , λ̃M be positive constants2. Define

Z0(t) = exp

{
−θW (t)− 1

2
θ2t

}
,

Zm(t) = e(λm−λ̃m)t

(
λ̃m

λm

)Nm(t)

, m = 1, . . . , M,

Z(t) = Z0(t)
M∏

m=1

Zm(t),

P̃(A) =

∫

A
Z(T )dP for all A ∈ F .

The following assertions follow from Theorem 11.6.10 and Corollary 11.3.4. Inde-
pendence under P̃ between W̃ and each of the Poisson processes Nm, asserted in (iii)
below, follows from Corollary 11.5.3. Under the probability measure P̃,

(i) the process
W̃ (t) = W (t) + θt (11.7.23)

is a Brownian motion,

(ii) each Nm is a Poisson process with intensity λ̃m, and

(iii) W̃ and N1, . . . , Nm are independent of one another.

Define

λ̃ =
M∑

m=1

λ̃m, p̃(ym) =
λ̃m

λ̃
.

Under P̃, the process N(t) =
∑M

m=1 Nm(t) is Poisson with intensity λ̃, the jump-size
random variables Y1, Y2, . . . are independent and identically distributed with P̃{Yi =

ym} = p̃(ym), and Q(t)− β̃λ̃t is a martingale, where

β̃ = ẼYi =
M∑

m=1

ymp̃(ym) =
1

λ̃

M∑

m=1

λ̃mym.

The probability measure P̃ is risk-neutral if and only if the mean rate of return of
the stock under P̃ is the interest rate r. In other words, P̃ is risk-neutral if and only if

dS(t) = (α− βλ)S(t)dt + σS(t)dW (t) + S(t−)dQ(t)

= rS(t)dt + σS(t)dW̃ (t) + S(t−)d
(
Q(t)− β̃λ̃t

)
.

(11.7.24)

This is equivalent to the equation

α− βλ = r + σθ − β̃λ̃, (11.7.25)
2One could create more risk-neutral measures than we consider here by letting θ and λ̃1, . . . , λ̃M be adapted

stochastic processes.
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which is the market price of risk equation for this model. Recalling the definitions of
β and β̃, we may rewrite the market price of risk equation (11.7.25) as

α− r = σθ + βλ− β̃λ̃ = σθ +
M∑

m=1

(λm − λ̃m)ym. (11.7.26)

Because there is one equation and M + 1 unknowns, θ, λ1, . . . , λM , there are multiple
risk-neutral measures.

Extra stocks would help determine a unique risk-neutral measure. We illustrate
this point by taking M = 2 in the following example.

Example 11.7.4. (Three stocks and two Poisson processes).

With one Brownian motion W and two independent Poisson processes N1 and N2,
define three compound Poisson processes

Qi(t) = yi,1N1(t) + yi,2N2(t), i = 1, 2, 3,

where yi,m > −1 for i = 1, 2, 3 and m = 1, 2. Set

βi =
1

λ
(λ1yi,1 + λ2yi,2), i = 1, 2, 3,

where λ1 and λ2 are the intensities of N1 and N2, respectively, under the original
measure P. For i = 1, 2, 3, we have a stock process modeled by

dSi(t) = (αi − βiλ)Si(t)dt + σiSi(t)dW (t) + Si(t−)dQi(t).

In this model, there is a market price of risk equation analogous to (11.7.26) for each
stock. The market price of risk equations are

α1 − r = σ1θ + (λ1 − λ̃1)y1,1 + (λ2 − λ̃2)y1,2,

α2 − r = σ2θ + (λ1 − λ̃1)y2,1 + (λ2 − λ̃2)y2,2,

α3 − r = σ3θ + (λ1 − λ̃1)y3,1 + (λ2 − λ̃2)y3,2.

These are three equations in the three unknowns 0, λ̃1, and λ̃2. If they have a unique
solution, then there is a unique risk-neutral measure. In that case, the market would
be complete and free of arbitrage.

¤

We return to the discussion of the model with a single stock given by (11.7.18)
and (11.7.19). Let us choose some θ and λ̃1, . . . , λ̃M satisfying the market price of
risk equations (11.7.26). Then, in the notation of (11.7.24), we have

dS(t) = rS(t) + σS(t)dW̃ (t) + S(t−)d
(
Q(t)− β̃λ̃t

)

= (r − β̃λ̃)dt + σS(t)dW̃ (t) + S(t−)dQ(t).
(11.7.27)

This is like equation (11.7.18), and just as (11.7.19) is the solution to (11.7.18), the
solution to (11.7.27) is

S(t) = S(0) exp

{
σW̃ (t) +

(
r − β̃λ̃− 1

2
σ2

)
t

} N(t)∏

i=1

(Yi + 1). (11.7.28)
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Indeed, it is a straightforward matter to use (11.7.25) to verify that (11.7.19) and
(11.7.28) are in fact the same equation. We have not changed the stock price process;
we have changed only its distribution.

We compute the risk-neutral price of a call on the stock with price process given
by (11.7.28). Because θ does not appear explicitly in (11.7.28), it will not appear in
our pricing formula. However,

β̃λ̃ =
M∑

m=1

λ̃mym

will appear in this formula, and we can choose the risk-neutral intensities λ̃1, . . . , λ̃M

to be any positive constants and subsequently choose θ so that the market price of
risk equation (11.7.25) is satisfied. We assume for the remainder of this section that
some choice has been made. Our pricing formula will depend on the choice. It is
common to use these free parameters to calibrate the model to market data.

For the next step, we need some notation. Define

κ(τ, x) = xN
(
d+(τ, x)

)−Ke−rτN
(
d−(τ, x)

)
, (11.7.29)

where
d±(τ, x) =

1

σ
√

τ

[
log

x

K
+

(
r ± 1

2
σ2

)
τ

]

and
N(y) =

1√
2π

∫ y

−∞
e−

1
2
z2

dz

is the cumulative standard normal distribution function. In other words, κ(τ, x) is
the standard Black-Scholes-Merton call price on a geometric Brownian motion with
volatility σ when the current stock price is x, the expiration date is τ time units in the
future, the interest rate is r, and the strike price is K. We have

κ(τ, x) = Ẽ

[
e−rτ

(
x exp

{
−σ
√

τY +

(
r − 1

2
σ2

)
τ

})+
]

,

where Y is a standard normal random variable under P̃; see Subsection 5.2.5.

Theorem 11.7.5. For 0 ≤ t < T , the risk-neutral price of a call,

V (t) = Ẽ
[
e−r(T−t)

(
S(T )−K

)+
∣∣∣F(t)

]
,

is given by V (t) = c(t, S(t)), where

c(t, x) =
∞∑

j=0

e−λ̃(T−t) λ̃
j(T − t)j

j!
Ẽκ

(
T − t, xe−β̃λ̃(T−t)

j∏

i=1

(Yi + 1)

)
. (11.7.30)

Proof. Let t ∈ [0, T ) be given and define τ = T − t. From (11.7.28), we see that

S(T ) = S(t) exp

{
σ

(
W̃ (T )− W̃ (t)

)
+

(
r − β̃λ̃− 1

2
σ2

)
τ

} N(T )∏

i=N(t)+1

(Yi + 1).

(11.7.31)
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The term S(t) is F(t)-measurable, and the other term appearing on the right-hand side
of (11.7.31) is independent of F(t). Therefore, the Independence Lemma, Lemma
2.3.4, implies that

V (t) = Ẽ
[
e−rτ

(
S(T )−K

)+
∣∣∣F(t)

]
= c

(
t, S(t)

)
,

where

c(t, x) = Ẽ
[
e−rτ

(
x exp

{
σ

(
W̃ (T )− W̃ (t)

)
+

(
r − β̃λ̃− 1

2
σ2

)
τ

}

×
N(T )∏

i=N(t)+1

(Yi + 1)−K




+


= Ẽ
[
Ẽ

[
e−rτ

(
x exp

{
σ

(
W̃ (T )− W̃ (t)

)
+

(
r − β̃λ̃− 1

2
σ2

)
τ

}

×
N(T )∏

i=N(t)+1

(Yi + 1)−K




+∣∣∣∣∣∣
σ




N(T )∏

i=N(t)+1

(Yi + 1)










= Ẽ
[
Ẽ

[
e−rτ

(
xe−β̃λ̃ exp

{
σ
√

τY +

(
r − 1

2
σ2

)
τ

}

×
N(T )∏

i=N(t)+1

(Yi + 1)−K




+∣∣∣∣∣∣
σ




N(T )∏

i=N(t)+1

(Yi + 1)








 ,

where

Y = −W̃ (T )− W̃ (t)√
τ

is a standard normal random variable under P̃, and where the conditioning σ-algebra
σ

(∏N(T )
i=N(t)+1

(Yi + 1)
)

is the one generated by the random variable
∏N(T )

i=N(t)+1
(Yi+1).

Because
∏N(T )

i=N(t)+1
(Yi + 1) is σ

(∏N(T )
i=N(t)+1

(Yi + 1)
)

-measurable and Y is indepen-

dent of σ
(∏N(T )

i=N(t)+1
(Yi + 1)

)
, we may use the Independence Lemma, Lemma 2.3.4,

again to obtain

Ẽ
[
e−rτ

(
xe−β̃λ̃ exp

{
σ
√

τY +

(
r − 1

2
σ2

)
τ

}

×
N(T )∏

i=N(t)+1

(Yi + 1)−K




+∣∣∣∣∣∣
σ




N(T )∏

i=N(t)+1

(Yi + 1)







= κ


τ, xe−β̃λ̃τ

N(T )∏

i=N(t)+1

(Yi + 1)


 .

It follows that

c(t, x) = Eκ


τ, xe−β̃λ̃τ

N(T )∏

i=N(t)+1

(Yi + 1)


 . (11.7.32)
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To see that (11.7.32) agrees with (11.7.30), we note that conditioned on N(T ) −
N(t) = j, the random variable

∏N(T )
i=N(t)+1

(Yi+1) has the same distribution as
∏j

i=1(Yi+

1). Furthermore,

P{N(T )−N(t) = j} = e−λ̃τ λ̃jτ j

j!
.

Remark 11.7.6 (Continuous jump distribution). Suppose the jump sizes Yi have a
density f(y) rather than a probability mass function p(yi), . . . , p(ym), and this density
is strictly positive on a set B ⊂ (−1,∞) and zero elsewhere. In this case, we replace
(11.7.17) by the formula

β = EYi =

∫ ∞

−1
yf(y)dy.

For the risk-neutral measure, we can choose θ, λ̃ > 0 and any density f̃(y) that is
strictly positive on B and zero elsewhere so that the market price of risk equation
(see (11.7.26))

α− r = σθ + βλ− β̃ − λ̃

is satisfied, where now

β̃ = ẼYi =

∫ ∞

−1
yf̃(y)dy.

Under these conditions, Theorem 11.7.5 still holds.

¤

We return to the model with discrete jump sizes. The following theorem provides
the differential-difference equation satisfied by the call price.

Theorem 11.7.7. The call price c(t, x) of (11.7.30) satisfies the equation

−rc(t, x) + ct(t, x) + (r − β̃λ̃)xcx(t, x) +
1

2
σ2x2cxx(t, x)

+ λ̃

[
M∑

m=1

p̃(ym)c
(
t, (ym + 1)x

)− c(t, x)

]
= 0, 0 ≤ t < T, x ≥ 0,

(11.7.33)

and the terminal condition

c(T, x) = (x−K)+, x ≥ 0.

Proof. From (11.7.27), we see that the continuous part of the stock price satisfies
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dSc(t) = (r − β̃λ̃)S(t)dt + σS(t)dW̃ (t). Therefore, the Itô-Doeblin formula implies

e−rtc
(
t, S(t)

)− c
(
0, S(0)

)

=

∫ t

0
e−ru

[
− rc

(
u, S(u)

)
+ ct

(
u, S(u)

)
+ (r − β̃λ̃)S(u)cx

(
u, S(u)

)

+
1

2
σ2S2(u)cxx

(
u, S(u)

)]
du +

∫ t

0
e−ruσS(u)cx

(
u, S(u)

)
dW̃ (u)

+
∑

0<u≤t

e−ru
[
c
(
u, S(u)

)− c
(
u, S(u−)

)]
.

(11.7.34)

We examine the last term in (11.7.34). If u is a jump time of the mth Poisson
process Nm, the stock price satisfies S(u) = (ym + 1)S(u−). Therefore,

∑

0<u≤t

e−ru
[
c
(
u, S(u)

)− c
(
u, S(u−)

)]

=
M∑

m=1

∑

0<u≤t

e−ru
[
c
(
u, (ym + 1)S(u−)

)− c
(
u, S(u−)

)]
∆Nm(u)

=
M∑

m=1

∫ t

0
e−ru

[
c
(
u, (ym + 1)S(u−)

)− c
(
u, S(u−)

)]
d
(
Nm(u)− λ̃mu

)

+

∫ t

0
e−ru

[
M∑

m=1

λ̃m

λ̃
c
(
u, (ym + 1)S(u)

)− c
(
u, S(u)

)
]

λ̃du

=
M∑

m=1

∫ t

0
e−ru

[
c
(
u, (ym + 1)S(u−)

)− c
(
u, S(u−)

)]
d
(
Nm(u)− λ̃mu

)

+

∫ t

0
e−ruλ̃

M∑

m=1

[
p̃(ym)c

(
u, (ym + 1)S(u)

)− c
(
u, S(u)

)]
du.

Substituting this into (11.7.34) and taking differentials, we obtain

d
(
e−rtc

(
t, S(t)

))

= e−rt
{
− rc

(
t, S(t)

)
+ ct

(
t, S(t)

)
+ (r − β̃λ̃)S(t)cx

(
t, S(t)

)

+
1

2
σ2S2(t)cxx

(
t, S(t)

)

+ λ̃
M∑

m=1

[
p̃(ym)c

(
t, (ym + 1)S(t)

)− c
(
t, S(t)

)] }
dt

+ e−rtσS(t)cx

(
t, S(t)

)
dW̃ (t)

+
M∑

m=1

e−rt
[
c
(
t, (ym + 1)S(t−)

)− c
(
t, S(t−)

)]
d
(
Nm(t)− λ̃mt

)
.

(11.7.35)

The integrators Nm(t) − λ̃mt in the last term are martingales under P̃, and the in-
tegrands e−rt

[
c
(
t, (ym + 1)S(t−)

)− c
(
t, S(t−)

)]
are left-continuous. Therefore, the

integral of this term is ajnartingale. Likewise, the integral of the next-to-last term
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e−rtcx

(
t, S(t)

)
dW̃ (t) is a martingale. Since the discounted option price appearing on

the left-hand side of (11.7.35) is also a martingale, the remaining term in (11.7.35)
is a martingale as well. Because the remaining term is a dt term, it must be zero.
Replacing the price process S(t) by the dummy variable x in the integrand of this
term, we obtain (11.7.33).

Corollary 11.7.8. The call price c(t, x) of (11.7.30) satisfies

d
(
e−rtc

(
t, S(t)

))

= e−rtσS(t)cx

(
t, S(t)

)
dW̃ (t)

+
M∑

m=1

e−rt
[
c
(
t, (ym + 1)S(t−)

)− c
(
t, S(t−)

)]
d
(
Nm(t)− λ̃mt

)

= e−rtσS(t)cx

(
t, S(t)

)
dW̃ (t)

+ e−rt
[
c
(
t, S(t)

)− c
(
t, S(t−)

)]
dN(t)

− e−rtλ̃

[
M∑

m=1

p̃(ym)c
(
t, (ym + 1)S(t−)

)− c
(
t, S(t−)

)
]

dt.

(11.7.36)

Proof. We use (11.7.33) to cancel the dt term in (11.7.35) and obtain the first equality
in (11.7.36). For the second equality, recall that N(t) =

∑M
m=1 Nm(t), λ̃ =

∑M
m=1 λ̃m,

and λ̃p̃(ym) = λ̃m.

Remark 11.7.9 (Continuous jump distribution). There are modifications of Theorem
11.7.7 and Corollary 11.7.8 for the case when the jump sizes Yi have a density f̃(y)

under the risk-neutral measure P̃. In (11.7.33), the term
∑M

m=1 p̃(ym)c
(
t, (ym + 1)x

)

would be replaced by
∫∞
−1 c

(
t, (y +1)x

)
f̃(y)dy. In (11.7.36), we would use the second

formula for d
(
e−rtc(t, S(t))

)
, which is written in terms of the total number of jumps

(i.e., in terms of the Poisson process N(t) =
∑M

m=1 Nm(t)) rather than in terms of
the individual Poisson processes Nm, and replace

∑M
m p̃(ym)c

(
t, (ym + 1)S(t−)

)
by∫∞

−1 c
(
t, (y + 1)S(t−)

)
f̃(y)dy

¤

Finally, we think about hedging a short position in the European call whose dis-
counted price satisfies (11.7.36). Suppose we begin with a short call position and a
hedging portfolio whose initial capital is X(0) = c(0, S(0)). We compare the differ-
ential of the discounted call price with the differential of the discounted value of the
hedging portfolio. If Γ(t) shares of stock are held by the hedging portfolio at each
time t, then

dX(t) = Γ(t−)dS(t) + r[X(t)− Γ(t)S(t)]dt
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and

d
(
e−rtX(t)

)
= e−rt[−rX(t)dt + dX(t)]

= e−rt[Γ(t−)dS(t)− rΓ(t)S(t)dt]

= e−rt
[
Γ(t)σS(t)dW̃ (t) + Γ(t−)S(t−)d

(
Q(t)− β̃λt

)]

= e−rt

[
Γ(t)σS(t)dW̃ (t) + Γ(t−)S(t−)

M∑

m=1

ym

(
dNm(t)− λ̃mdt

)
]

,

(11.7.37)

where we have used (11.7.27). It is natural to try the “delta-hedging” strategy

Γ(t) = cx

(
t, S(t)

)
.

This equates the dW̃ (t) terms in (11.7.36) and (11.7.37) (i.e., it provides a perfect
hedge against the risk introduced by the Brownian motion).

However, the delta hedge leaves us with

d
[
e−rtc

(
t, S(t)

)− e−rtX(t)
]

=
M∑

m=1

e−rt
[
c
(
t, (ym + 1)S(t−)

)− c
(
t, S(t−)

)− ymS(t−)cx

(
t, S(t−)

)](
dNm(t)− λ̃mdt

)
.

(11.7.38)

The function c(t, x) is strictly convex in x. This is a consequence of the strict convex-
ity of the function κ(τ, x) of (11.7.29) and equation (11.7.30). From strict convexity,
we have

c(t, x2)− c(t, x1) > (x2 − x1)cx(t, x1)

for all x1 ≥ 0, x2 ≥ 0 such that x1 6= x2. Therefore,

c
(
t, (ym + 1)S(t−)

)− c
(
t, S(t−)

)
> ymS(t−)cx

(
t, S(t−)

)
, (11.7.39)

the strict inequality being a consequence of the assumption that each ym is greater
than −1 and different from 0. It follows from (11.7.39) and (11.7.38) that between
jumps

d
[
e−rtc

(
t, S(t)

)− e−rtX(t)
]

< 0.

Between jumps, the hedging portfolio outperforms the option. However, at jump
times, the option outperforms the hedging portfolio.

Because both e−rtc
(
t, S(t)

)
and e−rtX(t) are martingales under P̃, so is their dif-

ference. Furthermore, at the initial time, the difference is c
(
0, S(0)

) − X(0) = 0.
Therefore, the expected value of the difference is always zero:

Ẽ
[
e−rtc

(
t, S(t)

)]
= Ẽ[e−rtX(t)], 0 ≤ t ≤ T.

“On average,” the delta-hedging formula hedges the option, where the average is
computed under the risk-neutral measure we have chosen. This provides some jus-
tification for choosing λ̃m = λm, so that, at least as far as the jumps are concerned,
the average under the risk-neutral measure we are using is also the average under the
actual probability measure.
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Remark 11.7.10 (Continuous jump distribution). When the risk-neutral distribution
of the jumps Yi has density f̃(y), (11.7.38) becomes

d
[
e−rtc

(
t, S(t)

)− e−rtX(t)
]

= e−rt
[
c
(
t, S(t)

)− c
(
t, S(t−)

)− (
S(t)− S(t−)

)
cx

(
t, S(t−)

)]
dN(t)

− e−rtλ̃

∫ ∞

−1

[
c
(
t, (y + 1)S(t−)

)− c
(
t, S(t−)

)− yS(t−)cx

(
t, S(t−)

)]
f̃(y)dydt.

(11.7.40)

Equation (11.7.40) can be interpreted just as (11.7.38) was. Because

c
(
t, (y + 1)S(t−)

)− c
(
t, S(t−)

)− yS(t−)cx

(
t, S(t−)

)
> 0

for all y > −1, y 6= 0, between jumps

d
[
e−rtc

(
t, S(t)

)− e−rtX(t)
]

< 0,

the hedging portfolio outperforms the option. At jump times, the option outperforms
the hedging portfolio because

c
(
t, S(t)

)− c
(
t, S(t−)

)− (
S(t)− S(t−)

)
cx

(
t, S(t−)

)
> 0.

On “average,” where the average is computed under the risk-neutral measure we have
chosen, these two effects cancel one another.

11.8 Summary

The fundamental pure jump process is the Poisson process. Like Brownian motion,
the Poisson process is Markov, but unlike Brownian motion, it is not a martingale.
The Possion process only jumps up, and between jumps it is constant. To obtain
a martingale, one must subtract away the mean of the Poisson process to obtain a
compensated Poisson process (Theorem 11.2.4).

All jumps of a Poisson process are of size one. A compound Poisson process is
like a Poisson process, except that the jumps are of random size. Like the Poisson
process, a compound Poisson process is Markov (Exercise 11.7), and although it is
generally not a martingale, one can obtain a martingale by subtracting away its mean
(Theorem 11.3.1). A compound Poisson process that has only finitely many, say M ,
possible jump sizes can be decomposed into a sum of M independent scaled Poisson
processes (Theorem 11.3.3 and Corollary 11.3.4).

A jump process has four components: an initial condition, an Itô integral, a Rie-
mann integral, and a pure jump process. The sum of the first three constitute the
continuous part of the jump process. Stochastic integrals and stochastic calculus for
the continuous part of a jump process were treated in Chapter 4. In this chapter, the
pure jump part is a right-continuous process that has finitely many jumps in each fi-
nite time interval and is constant between jumps. Stochastic integrals with respect to
such processes are straightforward. The quadratic variation of such a process over a
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time interval is the sum of the squares of the jumps within that time interval, and the
quadratic variation of a (nonpure) jump process is the quadratic variation of the con-
tinuous part plus the quadratic variation of the pure jump part. These observations
lead to a version of the Itô-Doeblin formula for jump processes (Theorems 11.5.1
and 11.5.4). One of the consequences of these theorems is that a Brownian motion
and a Poisson process relative to the same filtration must be independent (Corollary
11.5.3) and that two Poisson processes are independent if and only if they have no
simultaneous jumps (Exercises 11.4 and 11.5).

If we integrate an adapted process with respect to a jump process that is a mar-
tingale, the resulting stochastic integral can fail to be a martingale. However, if the
integrand is left-continuous, then the stochastic integral will be a martingale.

For compound Poisson processes, one can change the measure in order to obtain
an arbitrary positive intensity (average rate of jump arrival) and an arbitrary distribu-
tion of jump sizes, subject to the condition that every jump size that was impossible
before the change of measure is still impossible after the change of measure. This
provides a great deal of freedom when constructing risk-neutral measures. In partic-
ular, if there are M possible jump sizes, there are M − 1 degrees of freedom in the
assignment of probabilities to these jump sizes (the probabilities must sum to one,
and thus there are not M degrees of freedom). In order to have a complete market,
there must be a money market account and as many nonredundant securities as there
are sources of uncertainty. Each possible jump size counts as a source of uncertainty.
If there is no Brownian motion and only one possible jump size, a single security in
addition to the money market account will make the model complete (Section 11.7.1).
If there are two possible jump sizes and an additional source of uncertainty due to
a Brownian motion, three securities in addition to the money market account are re-
quired (Example 11.7.4). If there are infinitely many possible jump sizes, infinitely
many securities would be required to make the model complete.

As the discussion above suggests, jump-diffusion models are generally incomplete
and there are typically multiple risk-neutral measures in such mod- els. The practice
is to consider a parametrized class of such measures and then calibrate the model to
market prices to determine values for the parameters. One can then apply the risk-
neutral pricing formula to price derivative securities, but this formula can no longer
be justified by a hedging argument. It is instead an elaborate interpolation procedure
by which prices of nontraded securities are computed based on prices of traded ones.
One can use this formula to examine the effectiveness of various hedging techniques.
This is done for the delta-hedging rule in Subsection 11.7.2 following Remark 11.7.9.

11.9 Notes

A text on Poisson and compound Possion processes, but that does not include the
ideas of change of measure, is Ross [141]. The easiest place to read about stochastic
calculus for processes with jumps is Protter [133].
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In Section 11.7, we consider a European call in two models, one in which the
driving process for the underlying asset is a single Poisson process and the other
in which the underlying asset is driven by a Brownian motion and multiple Pois-
son processes. In both these models, there are only finitely many jump sizes, but
the analogous results for models with a continuous jump distribution are presented
in Remarks 11.7.6,11.7.9, and 11.7.10. Such a model was first treated by Merton
[123], who considered the case in which one plus the jump size has a log-normal
distribution. Some of the more recent works on option pricing in models with jumps
are Brockhaus et al. [23], Elliott and Kopp [63], Madan, Carr, and Chang [113],
Madan and Milne [114], Madan and Seneta [115], Mercurio and Runggaldier [120],
and Overhaus et al [130]. Term-structure models with jumps are treated by Bj’́ork,
Kabanov and Runggaldier [12], Das [46], Das and Foresi [47], Glasserman and Kou
[73], and Glasserman and Merener [74].

11.10 Exercises

Exercise 11.1.

Let M(t) be the compensated Poisson process of Theorem 11.2.4.

(i) Show that M2(t) is a submartingale.

(ii) Show that M2(t)− λt is a martingale.

Exercise 11.2.

Suppose we have observed a Poisson process up to time s, have seen that N(s) = k,
and are interested in the value of N(s + t) for small positive t. Show that

P{N(s + t) = k|N(s) = k} = 1− λt + O(t2),

P{N(s + t) = k + 1|N(s) = k} = λt + O(t2),

P{N(s + t) ≥ k + 2|N(s) = k} = O(t2),

where O(t2) is used to denote terms involving t2 and higher powers of t.

Exercise 11.3 (Geometric Poisson process).

Let N(t) be a Poisson process with intensity λ > 0, and let S(0) > 0 and σ > −1 be
given. Using Theorem 11.2.3 rather than the Itô-Doeblin formula for jump processes,
show that

S(t) = exp{N(t) log(σ + 1)− λσt} = (σ + 1)N(t)e−λσt

is a martingale.

Exercise 11.4.

Suppose N1(t) and N2(t) are Poisson processes with intensities λ1 and λ2, respec-
tively, both defined on the same probability space (Ω,F ,P) and relative to the same
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filtration F(t), t ≥ 0. Show that almost surely N1(t) and N2(t) can have no simulta-
neous jump. (Hint: Define the compensated Poisson processes M1(t) = N1(t) − λ1t

and M2(t) = N2(t) − λ2t, which like N1 and N2 are independent. Use Itô’s product
rule for jump processes to compute M1(t)M2(t) and take expectations.)

Exercise 11.5.

Suppose N1(t) and N2(t) are Poisson processes defined on the same probability
space (Ω,F ,P) relative to the same filtration F(t), t ≥ 0. Assume that almost surely
N1(t) and N2(t) have no simultaneous jump. Show that, for each fixed t, the ran-
dom variables N1(t) and N2(t) are independent. (Hint: Adapt the proof of Corollary
11.5.3.) (In fact, the whole path of N1 is independent of the whole path of N2, al-
though you are not being asked to prove this stronger statement.)

Exercise 11.6.

Let W (t) be a Brownian motion and let Q(t) be a compound Poisson process, both
defined on the same probability space (Ω,F ,P) and relative to the same filtrationF(t),
t ≥ 0. Show that, for each t, the random variables W (t) and Q(t) are independent. (In
fact, the whole path of W is independent of the whole path of Q, although you are
not being asked to prove this stronger statement.)

Exercise 11.7.

Use Theorem 11.3.2 to prove that a compound Poisson process is Markov. In other
words, show that, whenever we are given two times 0 ≤ t ≤ T and a function h(x),
there is another function g(t, x) such that

E
[
h
(
Q(T )

)∣∣F(t)
]

= g
(
t, Q(t)

)
.



Appendix A

Advanced Topics in Probability Theory

This appendix to Chapter 1 examines more deeply some of the topics touched upon
in that chapter. It is intended for readers who desire a fuller explanation. The material
in this appendix is not used in the text.

A.1 Countable Additivity

It is tempting to believe that the finite-additivity condition (1.1.5) can be used to
obtain the countable-additivity condition (1.1.2). However, the right-hand side of
(1.1.5) is a finite sum, whereas the right-hand side of (1.1.2) is an infinite sum. An
infinite sum is not really a sum at all but rather a limit of finite sums:

∞∑

n=1

P(An) = lim
N→∞

N∑

n=1

P(An). (A.1.1)

Because of this fact, there is no way to get condition (1.1.2) from condition (1.1.5),
and so we build the stronger condition (1.1.2) into the definition of probability space.

In fact, condition (1.1.2) is so strong that it is not possible to define P(A) for every
subset A of an uncountably infinite sample space Ω so that (1.1.2) holds. Because of
this, we content ourselves with defining P(A) for every set A in a σ-algebra F that
contains all the sets we will need for our analysis but omits some of the pathological
sets that a determined mathematician can construct.

There are two other consequences of (1.1.2) that we often use implicitly, and these
are provided by the next theorem.

Theorem A.1.1. Let (Ω,F ,P) be a probability space and let A1, A2, A3, . . . be a se-
quence of sets in F .

(i) If A1 ⊂ A2 ⊂ A3 ⊂ . . ., then

P

( ∞⋃

k=1

Ak

)
= lim

n→∞P(An).

(ii) If A1 ⊃ A2 ⊃ A3 ⊃ . . ., then

P

( ∞⋂

k=1

Ak

)
= lim

n→∞P(An).
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Proof. In the first case, we define

B1 = A1, B2 = A2\A1, B3 = A3\A2, . . . ,

where Ak+1\Ak = Ak+1 ∩ Ac
k. Then B1, B2, B3, . . . are disjoint sets, and

An =
n⋃

k=1

Ak =
n⋃

k=1

Bk,
∞⋃

k=1

Ak =
∞⋃

k=1

Bk.

Condition (1.1.2) used to justify the second equality below and (1.1.5) used to justify
the fourth imply

P

( ∞⋃

k=1

Ak

)
= P

( ∞⋃

k=1

Bk

)
=

∞∑

k=1

P(Bk) = lim
n→∞

n∑

k=1

P(Bk)

= lim
n→∞P

(
n⋃

k=1

Bk

)
= lim

n→∞P(An).

This concludes the proof of (i).
Let us now assume A1 ⊃ A2 ⊃ A3 ⊃ . . .. We define Ck = Ac

k, so that C1 ⊂ C2 ⊂
C3 ⊂ . . . and ∩∞k=1Ak = (∪k=1Ck)

c. Then (1.1.6) and (i) imply

P

( ∞⋂

k=1

Ak

)
= 1− P

( ∞⋃

k=1

Ck

)
= 1− lim

n→∞P(Cn)

= lim
n→∞

(
1− P(Cn)

)
= lim

n→∞P(An).

Thus we have (ii).

Property (i) of Theorem A.1.1 was used in (1.2.6) at the step

lim
n→∞P{−n ≤ X ≤ n} = P{X ∈ R}.

Property (ii) of this theorem was used in (1.2.4). Property (ii) can also be used in the
following example.

Example A.1.2.

We continue Example 1.1.3, the uniform measure on [0, 1]. Recall the σ-algebra
B[0, 1] of Borel subsets of [0, 1], obtained by beginning with the closed intervals and
adding all other sets necessary in order to have a σ-algebra. A complicated but in-
structive example of a set in B[0, 1] is the Cantor set, which we now construct. We
also compute its probability, where the probability measure P we use is the uniform
measure, assigning a probability to each interval [a, b] ⊂ [0, 1] equal to its length b−a.

From the interval [0, 1], remove the middle third (i.e., the open interval (1
3 , 2

3)). The
remaining set is

C1 =

[
0,

1

3

]
∪

[
2

3
, 1

]
,
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which has two pieces, each with probability 1
3 , and the whole set C1 has probability

2
3 . From each of the two pieces of C1, remove the middle third (i.e., remove the open
intervals (1

9 , 2
9) and (7

9 , 8
9)). The remaining set is

C2 =

[
0,

1

9

]
∪

[
2

9
,
1

3

]
∪

[
2

3
,
7

9

]
∪

[
8

9
, 1

]
,

which has four pieces, each with probability 1
9 , and the whole set C2 has probability

4
9 . See Figure A.1.1.

Continue this process so at stage k we have a set Ck that has 2k pieces, each with
probability 1

3k , and the whole set Ck has probability (2
3)k . The Cantor set is defined

to be C = ∩∞k=1Ck. From Theorem A.1.1(ii), we see that

P(C) = lim
k→∞

P(Ck) = lim
k→∞

(
2

3

)k

= 0.

Despite the fact that it has zero probability, the Cantor set has infinitely many
points. It certainly contains the points 0, 1

3 , 2
3 , 1, 1

9 , 2
9 , 7

9 , 8
9 , 1

27 , 2
27 , . . ., which are the

endpoints of the intervals appearing at the successive stages, because these are never
removed. This is a countably infinite set of points. In fact, the Cantor set has un-
countably many points. To see this, assume that all the points in the Cantor set can be
listed in a sequence x1, x2, x3, . . .. Let K1 denote the piece of C1, either [0, 1

3 ] or [23 , 1],
that does not contain x1. Let K2 be a piece of K1 ∩ C2 that does not contain x2. For
example, if K1 = [0, 1

3 ] and x2 ∈ [29 , 1
3 ], we take K2 = [0, 1

9 ]. If x2 6= K1, it does not
matter whether we take K2 = [0, 1

9 ] or K2 = [29 , 1
3 ]. Next let K3 be a piece of K2 ∩ C3

that does not contain x3. Continue this process. Then

K1 ⊃ K2 ⊃ K3 ⊃ · · · , (A.1.2)

and x1 6∈ K1, x2 6∈ K2, x3 6∈ K3, . . .. In particular, ∩∞n=1Kn does not contain any point
in the sequence x1, x2, x3, . . .. But the intersection of a sequence of nonempty closed
intervals that are “nested” as described by (A.1.2) must contain something, and so
there is a point y satisfying y ∈ ∩∞n=1Kn. But ∩∞n=1Kn ⊂ C, and so the point y is in
the Cantor set but not on the list x1, x2, x3, . . .. This shows that the list cannot include
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every point in the Cantor set. The set of all points in the Cantor set cannot be listed
in a sequence, which means that the Cantor set is uncountably infinite.

¤

A.2 Generating σ-algebras

We often have some collection C of subsets of a sample space Ω and want to put in all
other sets necessary in order to have a σ-algebra. We did this in Example 1.1.3 when
we constructed the σ-algebra B[0, 1] and again in Example 1.1.4 when we constructed
F∞. In the former case, C was the collection of all closed intervals [a, b] ⊂ [0, 1]; in
the latter case, C was the collection of all subsets of Ω∞ that could be described in
terms of finitely many coin tosses.

In general, when we begin with a collection C of subsets of Ω and put in all other
sets necessary in order to have a σ-algebra, the resulting σ-algebra is called the σ-
algebra generated by C and is denoted by σ(C). The description just given of σ(C) is
not mathematically precise because it is difficult to determine how and whether the
process of “putting in all other sets necessary in order to have a σ-algebra” terminates.
We provide a precise mathematical definition at the end of this discussion.

The precise definition of σ(C) works from the outside in rather than the inside out.
In particular, we define σ(C) to be the “smallest” σ-algebra containing all the sets in C
in the following sense. Put in σ(C) every set that is in every σ-algebra that is “bigger”
than C (i.e., that contains all the sets in C). There is at least one σ-algebra containing
all the sets in C, the σ-algebra of all subsets of Ω. If this is the only σ-algebra bigger
than C, then we put every subset of Ω into σ(C) and we are done. If there are other
σ-algebras bigger than C, then we put into σ(C) only those sets that are in every such
σ-algebra. We note the following items.

(i) The empty set ∅ is in σ(C) because it is in every σ-algebra bigger than C.

(ii) If A ∈ σ(C), then A is in every σ-algebra bigger than C. Therefore, Ac is in every
such σ-algebra, which implies that Ac is in σ(C).

(iii) If A1, A2, A3, . . . is a sequence of sets in σ(C), then this sequence is in every σ-
algebra bigger than C, and so the union ∪∞n=1An is also in every such σ-algebra.
This shows that the union is in σ(C).

(iv) By definition, every set in C is in every σ-algebra bigger than C and so is in σ(C).

(v) Suppose G is a σ-algebra bigger than C. By definition, every set in σ(C) is also
in G.

Properties (i)-(iii) show that σ(C) is a σ-algebra. Property (iv) shows that σ(C) con-
tains all the sets in C. Property (v) shows that σ(C) is the “smallest” σ-algebra con-
taining all the sets in C.
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Definition A.2.1. Let C be a collection of subsets of a nonempty set Ω. The σ-algebra
generated by C, denoted σ(C), is the collection of sets that belong to all σ-algebras
bigger than C (i.e., all σ-algebras containing all the sets in C).

A.3 Random Variable with Neither Density nor Probability Mass Func-
tion

Using the notation of Example 1.2.5, let us define

Y =
∞∑

n=1

2Yn

3n
.

If Y1 = 0, which happens with probability 1
2 , then 0 ≤ Y ≤ 1

3 . If Y1 = 1, which also
happens with probability 1

2 , then 2
3 ≤ Y ≤ 1. If Y1 = 0 and Y2 = 0, which happens

with probability 1
4 , then 0 ≤ Y ≤ 1

9 . If Y1 = 0 and Y2 = 1, which also happens with
probability 1

4 , then 2
9 ≤ Y ≤ 1

3 . This pattern continues. Indeed, when we consider the
first n tosses we see that the random variable Y takes values in the set Cn defined in
Example A.1.2, and hence Y can only take values in the Cantor set C = ∩∞n=1Cn.

We first argue that Y cannot have a density. If it did, then the density f would have
to be zero except on the set C. But C has zero Lebesgue measure, and so f is almost
everywhere zero and

∫ 1
0 f(x)dx = 0 (i.e., the function f would not integrate to one,

as is required of a density).
We next argue that Y cannot have a probability mass function. If it did, then for

some number x ∈ C we would have P(Y = x) > 0. But x has a unique base-three
expansion

x =
∞∑

n=1

xn

3n
,

where each xn is either 0, 1, or 2 unless x is of the form k
3n for some positive integers

k and n. In the latter case, x has two base-three expansions. For example, 7
9 can be

written as both
7

9
=

2

3
+

1

9
+

0

27
+

0

81
+

0

243
+ · · ·

and
7

9
=

2

3
+

0

9
+

1

27
+

1

81
+

1

243
+ · · · .

In either case, there are at most two choices of ω ∈ Ω∞ for which Y (ω) = x. In other
words, the set {ω ∈ Ω; Y (ω) = x} has either one or two elements. The probability
of a set with one element is zero, and the probability of a set with two elements is
0 + 0 = 0. Hence P{Y = x} = 0.

The cumulative distribution function F (x) = P{Y ≤ x} satisfies (see Figure A.3.1
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for a partial rendition of F (x))

F (0) = 0, F (1) = 1, F (x) =
1

2
for

1

3
≤ x ≤ 2

3
,

F (x) =
1

4
for

1

9
≤ x ≤ 2

9
, F (x) =

3

4
for

7

9
≤ x ≤ 8

9
,

F (x) =
1

8
for

1

27
≤ x ≤ 2

27
, F (x) =

3

8
for

7

27
≤ x ≤ 8

27
,

F (x) =
5

8
for

19

27
≤ x ≤ 20

27
, F (x) =

7

8
for

25

27
≤ x ≤ 26

27
,

...

and, because P{Y = x} = 0 for every x, F is continuous. Furthermore, F ′(x) = 0 for
every x ∈ [0, 1]\C, which is almost every x ∈ [0, 1]. A nonconstant continuous func-
tion whose derivative is almost everywhere zero is said to be singularly continuous.



Appendix B

Existence of Conditional Expectations

This appendix uses the Radon-Nikodym Theorem, Theorem 1.6.7, to establish the
existence of the conditional expectation of a random variable X with respect to a σ-
algebra G. Here we treat the case when X is nonnegative and integrable. If X is only
integrable, one can decompose it in the usual way as X = X+ − X−, the difference
of nonnegative integrable random variables, and then apply Theorem B.1 below to
X+ and X− separately. If X is only nonnegative, one can write it as the limit of
a nondecreasing sequence of nonnegative integrable random variables and use the
Monotone Convergence Theorem, Theorem 1.4.5, to extend Theorem B.1 below to
cover this case.

Theorem B.0.1. Let (Ω,F ,P) be a probability space, let G be a sub-σ-algebra of
F , and let X be an integrable nonnegative random variable. Then there exists a
G-measurable random variable Y such that

∫

A
Y (ω)dP(ω) =

∫

A
X(ω)dP(ω) for every A ∈ G. (B.1)

In light of Definition 2.3.1, the random variable Y in the theorem above is the
conditional expectation E[X|G].

PROOF OF THEOREM B.1: We define a probability measure by

P̃(A) =

∫

A

X(ω) + 1

E[X + 1]
dP(ω) for every A ∈ F .

Because the integrand X+1
E[X+1] is strictly positive almost surely and has expectation

1, P and P̃ are equivalent probability measures (see Theorem 1.6.1 and the comment
following Definition 1.6.3).

The probabilities P(A) and P̃(A) are defined for every subset A of Ω that is in F .
We define two equivalent probability measures on the smaller σ-algebra G. The first
is simply P restricted to G (i.e., we define Q(A) = P(A) for every A ∈ G, and we
leave Q(A) undefined for A 6∈ G). The second is P̃ restricted to G (i.e., we define
Q̃(A) = P̃(A) for every A ∈ G, and we leave Q̃(A) undefined for A 6∈ G). We
now have two probability spaces, (Ω,G,Q) and (Ω,G, Q̃), which differ only by their
probability measures Q and Q̃. Moreover, Q and Q̃ are equivalent. The Radon-
Nikodym Theorem, Theorem 1.6.7, implies the existence of a random variable Z
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such that
Q̃(A) =

∫

A
Z(ω)dQ(ω) for every A ∈ G.

However, since we are now working on probability spaces with σ-algebra G, the
random variable Z whose existence is guaranteed by the Radon-Nikodym Theorem
will be G-measurable rather than F-measurable. (Recall from Definition 1.2.1 that
every random variable is measurable with respect to the σ-algebra in the space on
which it is defined.)

Since Q̃ and Q agree with P̃ and P on G, we may rewrite the formula above

P̃(A) =

∫

A
Z(ω)dP(ω) for every A ∈ G

or, equivalently,
∫

A

X(ω) + 1

E[X + 1]
dP(ω) =

∫

A
Z(ω)dP(ω) for every A ∈ G.

Multiplication by E[X + 1] leads to the equation
∫

A
X(ω)dP(ω) +

∫

A
1dP(ω) =

∫

A
E[X + 1]Z(ω)dP(ω) for every A ∈ G.

We conclude that
∫

A
X(ω)dP(ω) =

∫

A

(
E[X + 1]Z(ω)− 1

)
dP(ω) for every A ∈ G.

Taking Y (ω) = E[X + 1]Z(ω) − 1, we have (B.1). Because Z is G-measurable and
E[X + 1] is constant, Y is also G-measurable.



Appendix C

Completion of the Proof of the Second
Fundamental Theorem of Asset Pricing

This appendix provides a lemma that is the last step in the proof of the Second Fun-
damental Theorem of Asset Pricing, Theorem 5.4.9 of Chapter 5.

Lemma C.0.2. Let A be an m × d-dimensional matrix, b an m-dimensional vector,
and c a d-dimensional vector. If the equation

Ax = b (C.1)

has a unique solution x0, a d-dimensional vector, then the equation

A′y = c (C.2)

has at least one solution y0, an m-dimensional vector. (Here, A′ denotes the transpose
of the matrix A.)

Proof. We regard A as a mapping from Rd to Rm and define the kernel of A to be

K(A) = {x ∈ Rd : Ax = 0}.
If x0 solves (C.1) and x ∈ K(A), then x0 + x also solves (C.1). Thus, the assumption
of a unique solution to (C.1) implies that K(A) contains only the d-dimensional zero
vector.

The rank of A is defined to be the number of linearly independent columns of
A. Because K(A) contains only the d-dimensional zero vector, the rank must be d.
Otherwise, we could find a linear combination of these columns that would be the m-
dimensional zero vector, and the coefficients in this linear combination would give
us a non-zero vector in K(A). But any matrix and its transpose have the same rank,
and so the rank of A′ is d as well. The rank of a matrix is also the dimension of its
range space. The range space of A′ is

R(A′) = {z ∈ Rd : z = A′y for some y ∈ Rm}.
Because the dimension of this space is d and it is a subspace of Rd, it must in fact
be equal to Rd. In other words, for every z ∈ Rd, there is some y ∈ Rm such that
z = A′y. Hence, (C.2) has a solution y0 ∈ Rm.
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Birkhäuser, Boston.

37. CLEMENT, E., LAMBERTON, D., AND PROTTER, P. (2002) An analysis of a least
squares regression algorithm for American option pricing, Fin. Stochastics 6, 449-471.



References 499

38. COLLIN-DUFRESNE, P. AND GOLDSTEIN, R. (2002) Pricing swaptions in the affine
framework, J. Derivatives 10, 9-26.

39. COLLIN-DUFRESNE, P. AND GOLDSTEIN, R. (2001) Generalizing the affine frame-
work to HJM and random fields, Graduate School of Industrial Administration, Carnegie
Mellon University.

40. COX, J. C, INGERSOLL, J. E., AND ROSS, S. (1981) The relation between forward
prices and futures prices, J. Fin. Econ. 9, 321-346.

41. COX, J. C, INGERSOLL, J. E., AND ROSS, S. (1985) A theory of the term structure
of interest rates, Econometrica 53, 373-384.

42. COX, J. C, ROSS, S. A., AND RUBINSTEIN, M. (1979) Option pricing: a simplified
approach, J. Fin. Econ. 7, 229-263.

43. COX, J. C. AND RUBINSTEIN, M. (1985) Options Markets, Prentice-Hall, Englewood
Cliffs, NJ.

44. DAI, Q. AND SINGLETON, K. (2000) Specification analysis of affine term structure
models, J. Fin. 55, 1943-1978.

45. DALANG, R. C, MERTON, A., AND WILLINGER, W. (1990) Equivalent martingale
measures and no-arbitrage in stochastic security market models, Stochastics 29, 185-
201.

46. DAS, S. (1999) A discrete-time approach to Poisson-Gaussian bond option pricing in
the Heath-Jarrow-Merton model, J. Econ. Dynam. Control 23, 333-369.

47. DAS, S. AND FORESI, S. (1996) Exact solutions for bond and option prices with
systematic jump risk, Rev. Derivatives Res. 1, 7-24.

48. DEGROOT, M. (1986) Probability and Statistics, 2nd ed., Addison-Wesley, Reading,
MA.

49. DELBAEN, F. AND SCHACHERMAYER, W. (1997) Non-arbitrage and the fundamental
theorem of asset pricing: summary of main results, Proceedings of Symposia in Applied
Mathematics, American Mathematical Society, Providence, RI.

50. DERMAN, E. AND KANI, I. (1994) Riding on a smile, Risk 7 (2), 98-101.

51. DERMAN, E., KANI, I., AND CHRISS, N. (1996) Implied binomial trees of the volatil-
ity smile, J. Derivatives 3, 7-22.

52. DOEBLIN, W. (1940) Sur l’équation de Kolmogoroff, C. R. Ser. I 331, 1059-1102.

53. DOOB, J. (1942) Stochastic Processes, Wiley, New York.

54. DOTHAN, M. U. (1990) Prices in Financial Markets, Oxford University Press, New
York.

55. DUFFIE, G. (2002) Term premia and interest rate forecasts in affine models, J. Fin. 57,
405-444.

56. DUFFIE, D. (1992) Dynamic Asset Pricing Theory, Princeton University Press, Prince-
ton, NJ.

57. DUFFIE, D. AND KAN, R. (1994) Multi-factor term structure models, Philos. Trans.
R. Soc. London, Ser. A 347, 577-586.



500 References

58. DUFFIE, D. AND KAN, R. (1994) A yield-factor model of interest rates, Math. Fin. 6,
379-406.

59. DUFFIE, D., PAN, J., AND SINGLETON, K. (2000) Transform analysis and option
pricing for affine jump-diffusions, Econometrica 68, 1343-1376.

60. DUFFIE, D. AND PROTTER, P. (1992) From discrete- to continuous-time finance; weak
convergence of the financial gain process, Math. Fin. 2, 1-15.

61. DUPIRE, B. (1994) Pricing with a smile, Risk 9 (3), 18-20.

62. EINSTEIN, A. (1905) On the movement of small particles suspended in a stationary
liquid demanded by the molecular-kinetic theory of heat, Ann. Phys. 17.

63. ELLIOTT, R. AND KOPP, P. (1990) Option pricing and hedge portfolios for Poisson
processes, Stochastic Anal. Appl. 9, 429-444.

64. FAMA, E. (1965) The behavior of stock-market prices, J. Business 38, 34-104.

65. FEYNMAN, R. (1948) Space-time approach to nonrelativistic quantum mechanics, Rev.
Mod. Phys. 20, 367-387.
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